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Logical consequence in �rst-order predicate logic is de�ned substitution-
ally in set theory augmented with a primitive satisfaction predicate: An ar-
gument is de�ned to be logically valid i� there is no substitution instance
with true premisses and a false conclusion. Substitution instances are
permitted to contain parameters. It is shown that each model in the sense
of model theory corresponds to a substitution instance together with
an interpretation of the parameters. Substitutional and model-theoretic
consequence are proved to be extensionally equivalent. Variations of the
substitutional de�nition lead to concepts of logical consequence in free
logic and �xed-domain semantics. In contrast to the model-theoretic
analysis, the substitutional account of logical consequence features an in-
tended interpretation, preserves non-relativized truth, and follows more
closely traditional de�nitions of logical consequence.

1 the substitutional analysis of logical consequence

In this paper I provide a formal substitutional account of logical consequence. Substi-
tutional notions of consequence have been discussed at least since the middle ages.
In what could be called semantic theories of logical consequence (as opposed to
proof-theoretic analyses), logical consequence is de�ned as truth preservations under
all interpretations. In model-theoretic semantics, interpretations are conceived as
formal set-theoretic models. However, this is only a very recent understanding of
interpretation. Traditionally, in order to refute the formal validity of an argument,
logicians showed that there is a substitution instance with true premisses but a false
conclusion. Such an interpretation is a substitutional counterexample to the argument
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in question. In traditional logic there were no restrictions on the vocabulary that can
be used to devise counterexamples.1In the present paper I would like to revive this
old-fashioned substitutional understanding of interpretation and make the informal
substitutional account precise in a mathematical setting for �rst-order predicate logic.

�e substitutional account of logical consequence advanced in this paper contrast
with earlier substitutional de�nitions of logical truth and consequence byQuine (1986)
and others. Many of them were based on the Hilbert’s and Bernays’ (1939) formalized
completeness theorem.�eir theorem shows that, whenever a formula is not provable,
it has a substitutional counterexample in the language of arithmetic. However, such
an account is hardly usable as a conceptual analysis of logical validity: A non-trivial
theorem is required in order to demonstrate that there are su�ciently many counterex-
amples in the language of arithmetic to arrive at an extensionally correct de�nition
of logical validity. To most logicians such a substitutional de�nition looks much less
plausible as an analysis of logical validity than the model-theoretic that has become
the standard de�nition from the 1950s. It is obvious that every arithmetical substi-
tutional counterexample corresponds to a model-theoretic counterexample; but not
every model-theoretic counterexample corresponds to a arithmetical substitutional
counterexample: Set theory provide a plethora of interpretations that is not bound by
any cardinality.�at the arithmetical substitutional account with its limited stock of
counterexamples yields the same set of �rst-order validities as the model-theoretic
account with its rich class of interpretations comes as a substantial insight. However,
one would expect from an adequate conceptual analysis of logical validity that it is
obviously adequate and that seeing its adequacy does not require an equivalence proof
with another de�nition.

�e substitutional analysis of logical validity advanced in this paper is fundamen-
tally di�erent from those based on the Hilbert–Bernays theorem. In particular, it
provides a very rich class of counterexamples. In fact, it can be shown that every
model-theoretic interpretation corresponds to a substitutional interpretation; but
not every substitutional interpretation has a set-theoretic model as counterpart.�e
‘intended’ interpretation is an example of a substitutional interpretation that has no
model-theoretic counterpart.

�e philosophical rami�cations of the substitutional account of logical validity are
discussed in another paper (Halbach 2017). Here I list only a few advantages of the
substitutional de�nition as a conceptual analysis of logical validity without going into
details:

1. On the substitutional account logical consequence is truth preserving. On the
usual model-theoretic account it is only truth preserving relative to a given

1Many logicians up to this day do not identify formal validity with logical validity; here I do make
this identi�cation without further defending it.
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model; it does not preserve truth simpliciter.

2. �ere is no interpretation in the sense of model theory that can be seen as the
‘intended’ interpretation of a sentence in the language of set theory. An intended
interpretation is exactly what is missing in the proof of truth preservation on
the model theoretic account. �e absence of an intended interpretation has
led philosophers to speculate on the inde�nite extensibility of the universe and
the impossibility of quantifying over absolutely everything. If logical validity
is understood substitutionally, the intended interpretation is trivial: It is the
homophonic translation that maps every sentence to itself.

3. As I mentioned above, logical consequence has been understood substitution-
ally at least since Buridan (see Halbach 2017).�e model-theoretic de�nition
appeared only in the 1950s, presumably it made its �rst appearance in (Tarski
and Vaught 1956). It would be reassuring to have a proof that the traditional no-
tion of logical validity, appropriately understood, does not di�er extensionally
from the modern model theoretic understanding. To this end I present such
an equivalence result as�eorem 1.

4. �e domain of an ordinary set-theoretic model is not allowed to be empty.
�ere are good reasons for this restriction. If truth is de�ned as truth under
all variable assignments, then all sentences are true in the empty model.�ere
are ways around the problem of course; but the empty domain is a nuisance in
model theory and excluded for technical reasons, although there does not seem
to be a good philosophical reason. It would be nice to have an account of logical
validity that naturally accommodates the empty domain. �e substitutional
de�nition a�ords this.

5. It has been argued that a proper treatment of quanti�ers as logical constants
requires that they should not be interpreted as ranging over all objects under
all interpretations. Yet in model theory the domain varies frommodel to model
and the quanti�ers do not range over all objects in any model. �is is easily
achievable on the substitutional approach.

2 satisfaction

�e formal starting point for my account is the language of set theory. I could develop
my account on the background of a much weaker theory. But since I am going
to compare it with the model-theoretic de�nition of logical consequence, which is
formulated in set theory, I choose a set-theoretic framework.
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�e language L of set theory is a �rst-order language with the predicate symbol ∈
as its only nonlogical symbol. For simplicity, I restrict the number of connectives and
quanti�ers: ∀ is the only quanti�er, ¬ and ∧ are the only connectives.�e variables
are v, v, v, . . .. Letters such as x and y are used as metavariables for them. �e
existential quanti�er and other connectives are metalinguistic abbreviations in what
follows. Further predicate symbols and individual constants could easily be added.
Function symbols are more awkward; I return to them below.�e expansion of L by
a new binary symbol Sat for satisfaction is called LSat.
On the model-theoretic account, the notion of truth in a model is de�ned in set

theory. By Tarski’s theorem on the unde�nability of truth, this means that there cannot
be an ‘intended’ set-theoretic model. Simple, ‘absolute’ truth that is not relativized
to some model cannot be de�ned. As has been mentioned above, this has lead to
some dissatisfaction with the model-theoretic de�nition.2 In particular, on the model-
theoretic account, it is not obvious why a logically true sentence should be true, or
why a valid argument cannot have premisses that are (actually) true and a conclusion
that is (actually) false.

�e present account strongly deviates in this point form the model-theoretic anal-
ysis of logical consequence. �e substitutional account presented here relies on a
primitive axiomatized semantic notion. It is a notion of satisfaction rather than mere
truth. No predicate satisfying these conditions can be de�ned in the language L of set
theory.
I assume that all expressions of the language LSat have been coded in the �nite von

Neumann ordinals in some natural way. In what follows, I do not distinguish between
expressions and their codes. For satisfaction I employ the following set of axioms.
�e notation is explained below.

(s1) ∀v ∀w ∀a (Sat(v∈.w , a)↔ a(v) ∈ a(w))

(s2) ∀v ∀w ∀a (Sat(v=.w , a)↔ a(v) = a(w))

(s3) ∀a∀ϕ (Sat(¬. ϕ, a)↔ ¬Sat(ϕ, a))

(s4) ∀a∀ϕ∀ψ (Sat(ϕ∧.ψ, a)↔ (Sat(ϕ, a) ∧ Sat(ψ, a)))

(s5) ∀a∀ϕ (Sat(∀. vϕ, a)↔ (∀b (var(b, a, v)→ Sat(ϕ, b))))

�e quanti�ers ∀v and ∀w range over (codes of) variables, ∀a over variable assign-
ments, and ∀ϕ and ∀ϕ over formulae of the expanded language LSat. All these

2Kreisel (1965, 1967a,b) developed his squeezing argument to overcome the lack of an intended
interpretation. Göran Sundholm made me aware of (Kreisel 1965, p. 116f.) and (Kreisel 1967b,
p. 253�.)
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restrictions can be expressed in set theory.�e symbol ∈. stands for the function that
yields, applied to variables v and w the formula v ∈ w.�is function is expressible in
the language of set theory, although it lacks any function symbols and the function
has to expressed using a suitable formula.�e other underdotted symbols are to be
understood in an analogous way. Finally, the formula var(b, a, v) expresses that the
variable assignment b di�ers from a at most in the variable v.
Adding these axioms to Zermelo–Fraenkel set theory and expanding all axiom

schemata of ZF yields the theory S.�e theory S of satisfaction looks very similar to a
‘Tarskian’ theory of satisfaction.�e recursive clauses of the de�nition of satisfaction
have been turned into axioms à la Davidson.�e theory is type-free in the sense that
the quanti�ers ∀ϕ and ∀ψ range over all sentences of LSat, including those containing
the satisfaction predicate. However, S lacks any axioms that impose any restrictions
on the satisfaction of atomic formulae with Sat. Of course, one has to proceed very
carefully:�e addition of an axiom analogous to (s1) for Sat will yield an inconsistency.
�ere are various way to avoid the inconsistency.�e theories FS and CGwould serve
the purpose (see Halbach 2014 and Halbach and Fujimoto 2018). Here, however, no
such additional strengthening is required.

lemma 1 (uniform T-sentences) For all formulae of L, that is for all formulae without
Sat, ϕ(x, . . . , xn) the following holds:

S ⊢ ∀a (Sat(⌜ϕ(x, . . . , xn)⌝, a)↔ ϕ(a(x), . . . , a(xn)))

�e proof is by induction on the length of ϕ(x, . . . , xn). Axioms (s1) and (s2)
provide the induction base.

3 substitution functions

Substitution functions are functions that uniformly replace the nonlogical vocabulary
in all formulae of the language with suitable expressions.�e language LSat contains
only the binary predicate symbols ∈ and Sat as nonlogical symbols.
To avoid variable clashes, substitution functions will have to rename some variables.

Let formulae σ∈(x , y), σSat(x , y) and possibly δ(x) be given and let vn be the variable
with the highest index, that occurs in any of the formulae σ∈(x , y), σSat(x , y) and
possibly δ(x) and is distinct from the displayed ones, that is, x and y. If z is the k-th
variable vk, then z′ is the variable vk+n.

�e substitution function I based on the three, or possibly two, formulae (σ∈(x , y),
σSat(x , y) and possibly δ(x)) is then de�ned on the set of all LSat-formulae ϕ in the
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following way:

I(ϕ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ∈(x′, y′) if ϕ is x ∈ y,
x′ = y′ if ϕ is x = y,
σSat(x′, y′) if ϕ is Sat(x , y),
¬I(ψ) if ϕ is ¬ψ,
I(ψ) ∧ I(χ) if ϕ is ψ ∧ χ, and
∀x′ ([δ(x′)→]I(ψ)) if ϕ is ∀x ψ

In the last line a relativizing formula δ(x) is present if a formula δ(x) is speci�ed by
the substitution function. If there is no such formula, quanti�ers are not relativized.
A function is a substitution function if it is a substitution function based on three
such formulae.
Renaming the variables ensures that the free variables in the formulae σ∈(x , y),

σSat(x , y) and δ(x) are not accidentally bound by quanti�ers already present in ϕ.
Applying a substitution function to a sentence ϕ of LSat does not necessarily result

in a sentence again, because the formulae σ∈, σSat, and δ are allowed to contain free
variables. In fact, it will be crucial for some proofs below that free variables are allowed
as parameters.

4 the definition of logical consequence

We de�ne logical consequence as a relation between sets of formulae and formulae
of LSat.�e formulae may contain free variables. If free variables are understood as
analogues of personal and demonstrative pronouns, then a restriction to sentences is
hard to justify. For instance, the following argument should count as logically valid:

All men are mortal.
�is is a man.
�erefore this is mortal.

As long as the reference of ‘this’ is kept �xed between the second premiss and the
conclusion, the argument is logically valid, whether the object that is pointed at has a
name or not.
�e de�nition of a substitution function can be carried out in ZF. �e formula

SubF(x) expresses in ZF that x is a substitution function. Logical consequence is
now de�ned in S in the following way, if FormSat is the set of LSat-formulae:

substitutional definition of logical validity

∀x ∀y (x ⊧S y ∶↔ x ⊆ FormSat ∧ y ∈ FormSat∧

∀a∀I (SubF(I)→ (∀z ∈ x Sat(I(z), a)) ∧ Sat(I(⌜∃x x = x⌝), a)→ Sat(I(y), a)))
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I write ⊧S y for Ø ⊧S y, which expresses that y is a logical truth.

�e de�nition is a straightforward formal rendering of the informal substitutional
de�nition of logical truth: A formula is logically true i� all its substitution instances
are always satis�ed.
�e formula δ(x) in the de�nition corresponds to the domain of a set-theoretic

model, as it restricts the range of the quanti�er. Since I haven’t imposed any restrictions
on δ(x), there are, however, two essential di�erences:�e formula δ(x)may fail to
apply to something, for instance, if x /= x is chosen as δ(x). In the canonical semantics
of �rst-order predicate logic, in contrast, the domain must not be empty. Only in
order to obtain a match between the model-theoretic and the substitutional de�nition
of logical consequence, I have added the extra assumption Sat(I⌜∃x x = x⌝), a). In
S it can be proved that I(⌜∃x x = x⌝) = ⌜∃x′(δI(x′) ∧ x′ = x′)⌝, where δI(x) is the
domain formula associated with the substitution function I and x′ is the variable that
is substituted for x by I.
At the other extreme, δ(x) may fail to de�ne a set, for instance, if δ(x) is the

formula x = x. On the model-theoretic account, in contrast, the domain always has to
be a set. Of course, we could impose restrictions on δ(x) that rule out such formulae.
In the end I do not think that any of the two restrictions should be imposed.�e

exclusion of the empty and class-sized domains are forced upon the model-theoretic
account by technical di�culties. Admitting the empty domain in the de�nition of
models is not an insurmountable problem; there are just no variable assignments
over the empty domain and we cannot de�ne truth as satisfaction under all variable
assignments, because otherwise all sentences would be true in a model with the empty
domain. Logicians have de�ned semantics in free logic that overcome this problem.
�e other restriction, in contrast, is indispensable for the model-theoretic approach:
If proper classes were admitted as domains, we could no longer de�ne the notion of
satisfaction in a model.�e inductive de�nition could not be shown to have a �xed
point for arbitrary class-sized models. On the substitutional approach these problems
do not arise, and there are reason to keep the de�nition more liberal.
�e reader may suspect that there is a third di�erence between the substitutional

and the model-theoretic account with respect to domains. On the latter approach
it is not required that the domain is de�nable by a formula, whereas it is de�nable
by δ(x) on the substitutional account.�is is not a real di�erence, though, because
δ(x)may contain parameters, as will be shown below.

7



5 linking the substitutional and model-theoretic conceptions
of consequence

On the substitutional analysis defended in this paper, every set-theoretic model
corresponds to a substitutional model in a sense de�ned below.�e correspondence
between set-theoretic and substitutional models is not just elementary equivalence;
that is, not only satisfy both models the same sentences of the language (without any
additional parameters); the set-theoretic model and its substitutional counterpart
make the same formulae true for arbitrary variable assignments. Consequently, for
every set-theoretic model there is a substitutional model; but not vice versa. In this
sense there are ‘more’ substitutional models than set-theoretic models, although the
number of set-theoretic and substitutional models is proper class-size.
A substitutional model is a pair (I, a) of a substitutional interpretation and a

variable assignment. Now for each set-theoretic modelsM a corresponding substitu-
tional model (I , aM) is de�ned.�e substitutional interpretation I is the same for
all set-theoretic modelM. Only the variable assignment aM depends onM.
�e substitutional interpretation I is based on ⟨x , y⟩ ∈ v as σ∈(x , y), ⟨x , y⟩ ∈ v

as σSat(x , y) and x ∈ v as δ(x). As above v, v, and v are the �rst three variables.
For any variable vn, v′n is the variable vn+. So no variable v′n can be any of the three
variables v, v, and v .�e substitution function I based on these three formulae
looks as follows:

I(ϕ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨x′, y′⟩ ∈ v if ϕ is x ∈ y,
x′ = y′ if ϕ is x = y,
⟨x′, y′⟩ ∈ v if ϕ is Sat(x , y),
¬I(ψ) if ϕ is ¬ψ,
I(ψ) ∧ I(χ) if ϕ is ψ ∧ χ, and
∀x′ (x′ ∈ v → I(ψ)) if ϕ is ∀x ψ

Whether a formula ϕ contains Sat or not, I(ϕ) is always a formula of L, that is, a
formula without Sat.
Amodel forLSat in the usual set-theoretic sense ofmodel theory is a triple (D, E , S):

D, the domain, is some set; E, the extension of ∈, is a set of pairs over D; and S, the
extension of Sat, is a set of pairs over D. I write (D, E , S) ⊧ ϕ[a] for the formula L
of set theory expressing that the formula ϕ holds in the model (D, E , S) under the
variable assignment a.
Given a variable assignment a and amodelM ∶= (D, E , S), the variable assignment
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aM is de�ne in set theory in the following way:

aM(v) ∶= D
aM(v) ∶= E
aM(v) ∶= S

aM(vn+) ∶= a(vn)

For every set-theoretic modelM there is an equivalent substitutional model (I , aM)

in the following sense:

lemma 2 S ⊢ ∀ϕ∀a ((D, E , S) ⊧ ϕ[a]↔ Sat(I(ϕ), aM))

As before, the quanti�ers ∀ϕ ranges here over all formulae of LSat. Lemma 1 and
the fact that I(ϕ) is always in L are used in the proof by induction on the length of ϕ.
In a nutshell, Lemma 2 show that for every model in the usual sense of model

theory there is a substitutional model satisfying exactly the same formulae under any
given variable assignment (modulo renaming of variables).�e variable assignment
aM plays a dual role: On the one hand it supplies the values for the free variables v,
v, and v in σ∈, σSat, and δ, on the other it contains the original variable assignment a.
Lemma 2 immediately establishes that substitutional validity implies ordinary

model-theoretic validity: If there is a modelM that makes all sentences in Γ true and
ϕ false, then (I , aM) refutes the substitutional validity Γ ⊧S ϕ, where all elements of
Γ and ϕ are LSat-sentences:

lemma 3 Γ ⊧S ϕ implies Γ ⊧ ϕ

�e converse is also true: Set-theoretic validity implies substitutional validity.�ere
are di�erent ways to show this.�e di�erences between the proof strategies matter
when generalizations of the account here are considered, for instance, when a theory
much weaker than full set theory are considered or the substitutional approach is
extended to languages with higher-order or generalized quanti�ers.
Kreisel’s (1967a) squeezing argument shows that intuitive validity extensionally

coincides with usual model-theoretic validity. Now substitutional validity nicely
slots into the place of intuitive validity in the squeezing argument. First, it is shown
that some chosen calculus, say some Hilbert-style calculus, is sound with respect to
substitutional validity:

lemma 4 Γ ⊢ ϕ implies Γ ⊧S ϕ.

�e proof is by induction on the length of proofs and makes use of the axioms for
Sat(x , y) and relies on induction on a formula with the satisfaction predicate.
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To complete the squeezing argument, the usual completeness theorem is invoked.
�at is, Γ ⊧ ϕ implies Γ ⊢ ϕ. Combining this with Lemmata 4 and 3 establishes that
Γ ⊧ ϕ, Γ ⊢ ϕ, and Γ ⊧S ϕ are all equivalent. In particular, we have the equivalence of
model-theoretic and substitutional validity:

theorem 1 (equivalence of model-theoretic and substitutional consequence)

Γ ⊧S ϕ i� Γ ⊧ ϕ

Here ϕ and all elements of Γ can be arbitrary LSat-sentences.

�e detour via provability and Gödel completeness for the right-to-le� direction
can be avoided. Let a substitutional model (I, a) with a relativizing formula δ(x) be
given. If the domain formula δ(x) of the substitutional model (I, a) de�nes a set, a
corresponding set-theoretic model can easily be de�ned. If the domain is a proper
class, one can show a lemma similar to the Löwenheim–Skolem downwards theo-
rem which yields a substitutional set-sized ‘elementary submodel’ of (I, a). For this
argument no class theory is assumed and talk about proper classes is just shorthand.
�e reader who is worried about the use of a type-free theory of satisfaction may

wonder to what extent the proof of�eorem 1 depends on the use of the untyped
axioms for Sat. Lemma 2 and therefore also Lemma 3 could have been proved in a
typed theory of satisfaction, that is, we could have restricted the quanti�ers ∀ϕ and
∀ψ in Axioms (s3)–(s5) to sentences of L.�is is because I(ϕ) is always a sentence
of L even if ϕ does contain the satisfaction predicate. In contrast, the soundness
Lemma 4, which allows one to pass from Γ ⊢ ϕ to Γ ⊧S ϕ, requires the type-free
axioms. If the quanti�ers in in Axioms (s3)–(s5) were restricted to sentences of L,
Lemma 4 could be proved only for sentences of L, but not for sentences containing
Sat.�is means that the equivalence

Γ ⊧S ϕ i� Γ ⊧ ϕ

could be proved in a typed theory of satisfaction, as long as ϕ and all elements of
Γ are in L. Basically, the notion ⊧S of substitutional consequence could be applied
meaningfully only to Sat-free sentences in a type-free setting. Such an approach would
resemble Tarski’s (1936) old, pre-model-theoretic de�nition of logical consequence. In
contrast to the modern model-theoretic de�nition of logical consequence, the notion
of logical validity would be restricted to an object language and not be universal. I
retain universality by using a type-free theory of satisfaction.

6 the intended interpretation

Philosophers have agonized about the elusive intended model V of set theory. If one
is serious about set theory as one’s overall theory and does not assume another class
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theory on top of it, then there is no intended model. On the substitutional account,
in contrast, the intended substitutional interpretation is easily de�ned:�e intended
substitutional interpretation just does not substitute anything and leaves all formulae
alone: On the intended interpretation formulae are understood at face value and
nothing is reinterpreted. As there is no relativizing formula δ(x) and σ∈, σSat are ∈ and
Sat respectively, no renaming of variables is required. On the substitutional account,
the intended interpretation is the identity function on the set of formulae; it is the
simplest interpretation, as one would expect from the intended interpretation.
It is obvious that substitutional logical truth implies truth and substitutional conse-

quence preserves truth:

lemma 5 1. S ⊢ ∀ϕ ∈ SentSat ( ⊧S ϕ → ∀a Sat(ϕ, a))

2. S ⊢ ∀Γ ⊆ SentSat ∀ϕ ∈ SentSat (Γ ⊧S ϕ → ∀a (∀γ ∈ Γ Sat(γ, a)→ Sat(ϕ, a)))

For Kreisel (1967a) the absence of an intended interpretation from the model-
theoretic de�nition of logical validity was the main reason for distinguishing it from
the ‘intuitive’ concept of logical validity.�e substitutional analysis does not su�er
from the same problem, and I would like to advocate it as an explication of the the
intuitive concept.

7 varying the base theory.

I have chosen set theory as the basis for S in order compare it with its main rival, the
model-theoretic conception of logical validity. In particular, the choice of the base
theory makes it possible to show that for any model in the set-theoretic sense there is
a corresponding substitutional model. However, it is also easily possible to formulate
the substitutional de�nition in other theories; this is o�en less straightforward for the
model-theoretic de�nition.
For instance, instead of Zermelo-Fraenkel set theory, its weakened variant without

the axiom of in�nity can be used.�e existence of variable assignments as arbitrary
functions, conceived as sets of ordered pairs, from the set of variables or their indices
can no longer be proved. However, in the absence of the axiom of in�nity, variable
assignment can be de�ned as a function with a subset of the set of variables or their
indices as its domain. One can think of these function still as assigning values to
every variable by setting a(x) equal to some arbitrary object, say Ø, if the variable x
is not in the domain of the �nite function.�is facilitates the formulation of the Sat
axioms. Otherwise, if a(x) is unde�ned fro somex, one would have to add conditions
in the Sat axioms requiring that the variable assignment assigns values to all variables
occurring freely in the formula in question.�is will make notation more clumsy.
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If some arithmetical system is used as base theory, similar tricks can be applied.
Otherwise the substitutional de�nition of logical validity can be reformulated in the
obvious way. Perhaps even more appropriate would be a theory of syntax as base
theory.
So far I have considered a language of set theory with only one nonlogical symbol,

the membership symbol ∈. Other predicate symbols can be treated analogously. Con-
stants, can also be accommodated in the de�nition of logical consequence. First, the
de�nition of a substitution function is tweaked so that constants can be substituted
with arbitrary terms, including variables (avoiding variable clashes).�en the de�ni-
tion of logical consequence is modi�ed to ensure that c always denoted an object in
the extension of the relativizing formula in the relevant substitutional models. If there
is an individual constant c in the language, for instance, an additional clause is added
expressing that the object denoted by c is in the extension of the relativizing formula:

∀x ∀y (x ⊧S y ∶↔ x ⊆ FormSat ∧ y ∈ FormSat∧

∀a∀I (SubF(I)→ (∀z ∈ x Sat(I(z), a))∧

Sat(I(⌜∃x x = x⌝), a) ∧ Sat(I(⌜∃x x = c⌝), a)→ Sat(I(y), a)))

(1)

�e condition Sat(I(⌜∃x x = c⌝), a) is equivalent to Sat(⌜δI(c)⌝, a). Additional con-
stants can be dealt with in the same way.
Function symbols with higher arity are less easy to deal with: In a nutshell, function

symbols should not only be replaced only with function symbols of the appropriate
arity, because there may be functions in the language expressible by some formula
(with parameters) but not with a functional expression.�e methods used to de�ne
relative interpretations for languages with function symbols can be employed.
Finally it may be asked how strong a theory needs to be for de�ning a substitutional

notion of logical consequence that is provably equivalent to the usual model-theoretic
notion.�e problem is that the usual model-theoretic notion of consequence will
not be de�nable in weaker theories, at least not in a straightforward way. Here I do
not go into these weaker theories.�e formalized completeness theorem will become
relevant in such situations and the account becomes close to substitutional theories
in Quine’s (1986) style. At any rate, the substitutional theory is less tied to set theory
in its formulation than the model-theoretic de�nition.

8 free logic and constant domains

Some of the complications in the substitutional de�nition of logical validity arise in
connection with the relativizing formula δI(x) of a substitution function I.�ere are
two ways to eliminate at least some of these complications.
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First, the de�nition of a substitution function could be simpli�ed by dropping the
relativizing formula completely.�is is not just a technical simpli�cation. Relativizing
formulae (on the substitutional de�nition) and domains (on the model-theoretic
de�nition) may be seen as varying interpretations of the quanti�ers. A proponent
of the simpli�ed de�nition of a substitution function may argue that quanti�ers
are logical constants and therefore should not be reinterpreted in any way. On the
substitutional approach this is actually very easy, easier thanwith relativizing formulae.
On the model-theoretic account, it is not so straightforward, because we cannot use
the set of all objects as our domain; there is no such set. However, one can go
higher-order and de�ne logical consequence in a higher-order language.�e set of all
objects becomes then a higher-order object. Tarski’s (1936) original theory of logical
consequence was of this kind. More recently, Williamson (2000) defended such an
approach.
If relativizing formulae are removed from the de�nition of substitution function,

sentences such as ∃x ∃y x /= y become logically valid. More generally, the sentences
expressing that there are at least n many objects become logical truths. �is phe-
nomenon is well known from Etchemendy’s (1999) attack on Tarski’s (1936) de�nition
of logical consequence; a related problem was spotted earlier by Hinman et al. (1968)
for a �xed �nite domain.
As mentioned at the beginning of the section, there are at least two ways to simplify

the substitutional de�nition with respect to the relativizing formulae. On the second,
the relativizing formulae are retained, but the restriction that a relativizing formula
has to be satis�ed by some object is dropped. �at is, substitution functions are
de�ned as usual, but the de�nition of logical consequence is simpli�ed as follows:

∀x ∀y (x ⊧S y ∶↔ x ⊆ FormSat ∧ y ∈ FormSat∧

∀a∀I (SubF(I)→ (∀z ∈ x Sat(I(z), a))→ Sat(I(y), a)))

Under the model-theoretic de�nition, this corresponds to individual constants not
denoting an object in the domain. Unsurprisingly, this yields free logic. Sentences
such as ∃x x = c or ∃x x = x are no longer logically valid.
�is is another advantage of the substitutional account. On the usual model-

theoretic de�nition, the empty domain is excluded because it causes (solvable) prob-
lems. If the domain of a set-theoreticmodel is empty, there are no variable assignments
over this domain.�erefore, if truth is de�ned as satisfaction under all variable assign-
ments, every sentence is true in the model with the empty domain as Schneider (1958)
observed. Of course, there are very well-known workarounds, but I assume that the
di�culties with the empty domain has lead logicians (and Tarski as the founder of
model theory) to exclude the empty domain. But I consider this exclusion merely as a
technical quirk ofmodel theory. All problems disappear if the substitutional de�nition
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is employed. If logical validity is de�ned substitutionally, free logic arises naturally;
mimicking the technical quirk of the model-theoretic de�nition and excluding the
empty domain causes additional complications.

�e languages considered in free logic usually feature individual constants.�ese
constants may fail to denote anything and correspond with singular terms or names in
natural language that do not denote anything.�e de�nition of logical consequence
with an individual constant c can be simpli�ed by dropping the requirement that c
denotes an object by removing the clause Sat(I(⌜∃x x = c⌝), a). �e resulting free
logic is positive in the sense that an atomic sentence Pc where P is some predicate
symbol can still be satis�ed even though c denotes an object that does not satisfy the
relativizing formula δI(x) of a given substitution function I. In a negative free logic
all such formula would be declared false. To obtain a negative free logic, one can
modify the de�nition of a substitution function by attaching the extra conjunct δI(c)
to any translation of an atomic formula containing the constant c.
Generally, many of the moves that can be made in model-theoretic semantics can

be mirrored in the substitutional framework advanced here.
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