
2 Technical Preliminaries
In this chapter we brie�y review some basics of �rst-order predicate logic. As
we mentioned above, in what follows we only assume familiarity with material
tha tis covered in a typical basic introductory logic course or an introductory
textbook such as (Halbach 2010).�e expert reader may safely skip this chapter.
In the respective chapters we de�ne our languages in some detail. �e present
chapter only serves the purpose of preparing a reader with little background in
logic to understand the terminology used later, as di�erent terminologies are
used in di�erent textbooks. Moreover, we discuss some topics that the reader
might not have seen. For instance, we will make heavy use of function symbols
in our formal languages. Function symbols, however, are o�en not covered in
introductory logic books. �us we introduce them here and explain them in
some detail.

Abbreviations
We will use some abbreviations. ‘i� ’ is short for ‘if and only if ’. Occasionally we
use ‘⇒’ for ‘if then’.�e double arrow does not belong to any object language; it
is just an abbreviation in our metalanguage.

2.1 Languages of First-Order Predicate Logic
All languages we consider have an in�nite stock of variables: v, v, v, v,. . . Some
also contain function symbols. Each function symbol has an arity assigned, which
is some natural number , ,. . .
All variables are terms. If f is a function symbol of arity n and t, . . . , tn are

terms, then f (t . . . tn) is a term. For some binary function symbols, that is, func-
tion symbols f of arity  wemake an exception and say that (t f t) is a term, that
is, we write the function symbol between terms and use brackets around this ex-
pression. In mathematics the symbols for addition and multiplication are binary

9

10 2 Technical Preliminaries

function symbols. �ey correspond to the English phrases ‘the sum of . . . and
. . . ’ and ‘the product of . . . and . . . ’. In mathematics we write + and × between
terms, for instance, a+b rather than +ab. It is also clear that when we use binary
function symbols brackets are required: (a − b)+ c and a − (b + c), for instance,
are clearly not equivalent.
Unary function symbols correspond to expressions such as ‘the father of ’ in

English. �e expression ‘the father of ’ has arity . It takes a term, for instance,
‘Alfred Tarski’ and yields a new term ‘the father of Alfred Tarski’. An example of
a binary function expression is ‘the border between . . . and . . . ’
We also allow function symbols with arity . �ey are individual constants.

Since individual constants are -place function symbols, they need to be com-
bined with  many terms to yield a term, that is, they are terms by themselves.
How many function symbol of a speci�c arity is in a language will be speci-

�ed for each language. A language may have no function symbols at all or only
individual constants, that is, function symbols of arity . All the languages we
consider will have only �nitely many function symbols.
In our languages we also have predicate symbols. As is the case with function

symbols, each of the languages we consider will feature only a �nite number of
predicate symbols. Predicate symbols also come with an arity. If P is a predicate
symbol with arity n and t, . . . , tn are terms, then Pt . . . tn is an atomic formula.
An exception is the binary predicate symbol = for identity, which is written be-
tween terms. We use = as a predicate symbol in our formal languages, but also
as the usual identity symbol in the language we use.�e identity symbol will be
a predicate symbol in all of the languages we consider.
As in the case of function symbols, the predicate symbols will be speci�ed for

every language we discuss. Inmany elementary logic textbooks such as (Halbach
2010) a single language with in�nitely many predicate symbols of arbitrary arity
is considered. �is ascertains that we never run out of predicate symbols when
formalizing argument in natural language. But once we consider a speci�c set of
assumptions, that is, a theory, this will o�en be formulated with very few pred-
icate symbols. Set theory, for instance, in which all (or perhaps almost all) of
mathematics can be carried out, has only one binary predicate symbol.
All atomic formulæ are formulæ. If φ, ψ are formulæ and x is a variable, then

¬φ, (φ → ψ), and ∀xφ are formulæ.We use (φ ∧ψ) as a abbreviation for ¬(φ →

¬ψ), (φ ∨ ψ) as an abbreviation for (¬φ → ψ), (φ ↔ ψ) as an abbreviation for
¬((φ → ψ)→ ¬(ψ → φ)), and �nally ∃xφ as an abbreviation for ¬∀x¬φ.�ese

version: 9th October 2016

2.1 Languages of First-Order Predicate Logic 11

abbreviations are metalinguistic abbreviations.�at is, we do not introduce new
symbols ∧, ∨, ↔, and ∃ into our formal object language; rather, we use in our
informal metalanguage ∧, ∨, ↔, and ∃ in order to save some space and make
this book more readable.

�e notion of a free and bound occurrences is de�ned in the usual way: In an
atomic formula all occurrences of variables are free. All occurrences of variables
that are free in φ and ψ are also free in ¬φ and (φ → ψ). All occurrences of
a variable y in φ are also free in ∀xφ i� y is not x. formulæ without any free
occurrence of a variable are sentences.

We use rules for omitting brackets. Our formulæ are always the formulæ with
all the brackets. If we omit brackets, we obtain abbreviations of formulæ. �e
rules for omitting brackets are speci�c to the particular occurrence of a formula;
so they should be formulated for occurrences of formulæ. For instance we can
omit the outer brackets in an occurrence of a formula (φ → ψ), if (ψ → ψ)

does not occur within another formula. �at is we can drop the ‘outermost’ set
of brackets. �e expression (φ ∧ ψ ∧ χ) is short for ((φ ∧ ψ) ∧ χ)) . A similar
rule applies to ∨. Of course, here we are already suing the abbreviations ∧ and
∨. Moreover, in abbreviated formulæ with ∧ and ∨, ∧ and ∨ bind more strongly
than→ and↔.�us φ ∧ ψ → χ, for instance, is short for ((φ ∧ ψ)→ χ).

Abovewe have already used x and y asmetavariables for variables in the object
language. �is means that x could be any of the variables v, v, v,. . .As in the
case of the metavariables for formulæ, we employed metavariables for variables
on order to make our de�nitions su�ciently general. For instance, we stipulated
that ∀xφ is a formula if x is a variable and φ is a formula. It would not su�ce
to say that ∀vφ is a formula if φ is, because this would not imply that ∀vφ is a
formula. In what follows we continue to use x, y, and so on as metavariables for
variables.

Writing ‘v’, ‘v’, and so on makes the notation somewhat cluttered. To avoid
the indices we write x for v, y for v, and z for v. So sans-serif letters stand for
speci�c variables, while letters in italics aremetavariables for variables. In logic it
usually does not matter which variable is used, as long as the variables employed
in a formula are pairwise distinct. But in a theory of expressions and proving
results such as the diagonal theorem, we have to be very speci�c and will use
sans-serif letters, that is, speci�c variables.

version: 9th October 2016

12 2 Technical Preliminaries

2.2 Logical Calculi
�ere are numerous way to generate the logically valid sentences of these lan-
guages. In many textbooks such as (Halbach 2010) some variant of the system of
Natural Deduction is used, while tableaux systems are used in others.�ere are
also sequent and axiomatic systems, and calculi less likely to be seen in introduc-
tory texts for philosophers. For most parts of this book it does not matter which
logical calculus is used. However, the reader should be familiar with at least one
such calculus. When we prove a sentence of our formal language, we do not pro-
vide a proof in some speci�c calculus, but we outline the crucial steps that should
allow the reader versed in a particular calculus to convert our informal proofs
into a fully formal proof in his or her preferred logical calculus.
For many logical calculi an in�nite stock of individual constants is needed for

the quanti�ers rules. However, we consider languages with only �nitely many
constants (or -place function symbols). We can simply add constants for the
sake of proofs, so that these constants never appear in the premisses and the
conclusion of the proof, but only in the intermediate steps. Alternatively, free
variables can be used instead of the constants.
For the identity symbol = the chosen logical calculus should contain suitable

rules and/or axioms. For function symbols usually additional speci�c axioms or
rules are not required, as long as the rules for identity apply. However, compared
to calculi for languages without function symbols, the rules and axioms must
cover not only free variables and/or constants as terms but also complex terms
involving function symbols. In section 2.3 we show that function symbols are
dispensable.
When a sentence φ is provable in some �xed logical calculus, for instance, in

Natural Deduction, from sentences in the set Γ of sentences, we write Γ ⊢ φ.�e
sentences φ such that Γ ⊢ φ are the theorems of the theory Γ. �e set Γ can be
empty. In this case we write ⊢ φ. Occasionally we will write Γ ⊢ φ for a formula
φ containing free variables. We can take this to be shorthand for the claim that
the universal closure of φ is provable from Γ.�e universal closure of a formula
is the result of pre�xing universal quanti�ers for all free variables in φ to φ. For
instance, if φ(v, v) has free occurrences of the variables v and v but of no
other variables, then ∀v∀vφ(v, v) is the universal closure of φ(v, v).
Sentence φ and ψ are logically equivalent i� ⊢ φ ↔ ψ. A theory Γ is inconsis-

tent i� Γ ⊢ φ for all sentences φ of the language. It is not hard to show that Γ is

version: 9th October 2016

2.3 Function Symbols 13

inconsistent i� there is a sentence φ such that Γ ⊢ φ and Γ ⊢ ¬φ.
We use the Deduction theorem without mentioning it explicitly, that is, we

assume the following:
Γ ∪ {φ} ⊢ ψ i� Γ ⊢ φ → ψ

�e proof of the Deduction theorem varies from calculus to calculus. For Natu-
ral Deduction it is trivial: ψ is provable with the undischarged assumption φ i�
φ → ψ is provable without φ as undischarged assumption.�is follows from the
introduction and elimination rules for the material conditional→.
We will o�en talk about theories. A theory is just a set Γ of sentence. We say

that a theory is given by certain axioms and rules i� exactly all sentences logically
derivable from Γ can be obtained from these axioms and with these rules. Our
theories are always classical �rst-order theories. �ey can always be obtained
from a certain set of axioms and the axioms and/or rules of �rst-order predicate
logic (depending on our chosen logical calculus).

2.3 Function Symbols
Sincemany introductory logic textbooks donot cover function symbols, we sketch
some basics about function symbols.
Unary functions (not function symbols) can be understood as binary relations

with certain properties. Wewrite Rde to express that d and e stand in the relation
R. If relations are conceived as sets of ordered pairs, this means that ∐︀d , ẽ︀ ∈ R

(see, for instance, Halbach 2010). A binary relation is a unary function on a set
S i� is satis�es the following two properties:

1. For all d ∈ S there is an e such that Rde.

2. If d ∈ S, Rde, and Rde, then e = e.

We call 1. the existence condition and 2. the uniqueness condition.�e relation
‘d has e as a father’ is a function on the set of persons. �e two conditions are
satis�ed, because 1. every person has a father and, 2. every person has at most
one father. Together the two conditions express that every person has exactly one
father.
Binary functions are de�ned in an analogous way as special ternary relations:

A ternary relation is a binary function on a set S i� the following two conditions
are satis�ed:

version: 9th October 2016

14 2 Technical Preliminaries

1. For all d, d ∈ S there is an e such that Rdde.

2. If d, d ∈ S, Rdde, and Rdde, then e = e.

In mathematics addition is a binary function on the natural numbers. For any
numbers d and d there is exactly one number that is the sum of d and d.
Similarly, if d and d are strings of symbols, then there is exactly one string of
symbols that is the result of writing d a�er d or, in otherwords, of concatenating
d with d.
�is is generalized in the obvious way to functions of arbitary arity: A n + -

ary relation is a n-ary function on a set S i� the following two conditions are
satis�ed:

1. For all d, . . . , dn ∈ S there is an e such that Rd . . . dne.

2. If d, . . . , dn ∈ S, Rd, . . . , dne, and Rd, . . . , dne, then e = e.

�e interpretations or semantic values of an n-ary function symbol will be an
n-ary function on the domain of the model (or structure).
When we formulate our theories about expressions later, we will use function

symbols, for instance, for concatenation of expressions, that is, for the result ap-
pending an expression to an expression. We hope that it makes our formulæ
easier to comprehend. We could dispense with the function symbols and use
suitable relation symbols instead. How functions symbols can be eliminated us-
ing suitable predicate symbols is described inmany textbooks, including (Boolos,
Burgess, and Je�rey 2007). Here we show how to eliminate function symbols or
arity  or higher with predicate symbols. We do not eliminate individual con-
stants, although this can be done as well.
Before describing the method of elimination in more detail, we give a sketch

of the strategy. Assume we have a formula of the form f ab = c where a, b,
and c are individual constants and f is a binary function symbol. We introduce
a new ternary predicate symbol P that corresponds to the function symbol f .
�e sentence f ab = c will be replaced everywhere with Pabc. But Pabc car-
ries less information than f ab, because Pabc is consistent with Pabd ∧ ¬c = d,
while f ab = c and f ab = d imply c = d by the logical rules for identity. �us
we will have to add an additional assumption about P to our theory, namely
∀x∀y∀v∀v(Pxyv∧Pxyv → v = v).�is expresses the uniqueness condition
above. We also have to add an axiom corresponding to the existence condition.

version: 9th October 2016

2.3 Function Symbols 15

We can prove ∀x∃y f x = y in our logical calculus, that is, in logic (with iden-
tity), because we have ∀x f x = f x and thus, by existential weakening ∀x∃y f x = y.
However, the corresponding sentence ∀x∃yPxy with the predicate symbol is not
logically true.�erefore we add∀x∃yPxy as an additional axiom. A�er replacing
the function symbol f with the predicate symbol P and adding the uniqueness
and existence axioms to our theory, the new theory with the predicate symbol
P and without the function symbol f will prove exactly the translations of the
theorems of the original theory with f into our new theory with P.
Of course there remain some details that need to be �lled in. In particular,

function symbols may not only occur in formulæ of the form f tt = t where
t and t are constants or variables and t is a term without an occurrence of f .
Function symbols can be iterated. For instance f x f x f x y is a term if f is a binary
function symbol and x and y variables. Moreover the function symbol can occur
not only in atomic formula with identity, but also in atomic formulæ built form
other predicate symbols. We sketch the method of elimination only for a binary
function symbol f . �e method works for function symbols of another arity in
an analogous way. If more than one function symbol is present in the language,
they can be eliminated by the same method.
First we show that any formula φ in the language with the binary function

symbol f is logically equivalent to a formula in which all occurrences of f in
atomic formulæ are in atomic formulæ of the form f tt = t where each of
t, t, and t is either a constant or a variable. �is is shown by induction on
the complexity of φ. Starting from the le� of the formula there must be a �rst
occurrence of f that is part of a term f tt with t and t a variable or constant
that is not on the le� hand side of an identity symbol (such an occurrence will
be le� alone). Replace f tt with the �rst variable x not occurring in φ to obtain
φ(x) and de�ne φ′ as ∃x(f tt = x∧φ(x)). φ′ is logically equivalent to φ. Iterate
this procedure, always using the �rst variable not already used. �e resulting
formula φ′⋯′ is called φ∗. In φ∗ there are only occurrences of f le� that are
in atomic formulæ of the form f tt = . . . with t and t variables or constants.
Finally we de�ne φP as the result of replacing all atomic subformulæ f tt = t
of φ∗ with Pttt.
Let a theory Γ and a sentence φ in the language with f but without P be given.

Let ΓP be the result of replacing all sentences γ in Γ with γ∗ and adding the two
axioms

1. ∀x∀y∃zPxyz

version: 9th October 2016

16 2 Technical Preliminaries

2. ∀x∀y∀v∀v(Pxyv ∧ Pxyv → v = v)

�en it is not hard to prove the following equivalence:

Γ ⊢ φ i� Γ∗ ⊢ φ∗

A detailed proof depends on the logical calculus chosen. We hope to have given
enough detail that would allow the reader to carry out the proof for his or her
chosen calculus.
�us we can dispense with the use of f and use a predicate symbol instead. As

the elimination procedure indicates, the formulation with the predicate symbol
tends to produce less legible formulæ.

version: 9th October 2016

	Technical Preliminaries
	Languages of First-Order Predicate Logic
	Logical Calculi
	Function Symbols

