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ABSTRACT 
Estimating the probability of a wave crest exceeding a given threshold 
is of fundamental importance in offshore engineering. At present 
second-order theory is used, with the Forristall distribution typically 
being used for this calculation. In this paper we investigate several 
points in connection with this approach. Firstly we examine some of the 
sensitivities involved in deriving second order statistics, including the 
high frequency cut-off, the directional spreading and spectral 
bandwidth. The paper then examines how the second order contribution 
varies for waves of different shapes. We investigate whether the 
NewWave can be used to predict the second order contribution to a 
wave-crest but find that the variation in wave shape is too great for this 
to be practical. 
 
KEY WORDS:  Second order wave crest; Forristall distribution; 
Random ocean waves; NewWave  
 
 
INTRODUCTION 
 
One of the key problems in offshore engineering is calculating the 
short-term probability of a wave-crest of given magnitude occurring at 
a point. A common use for this is in “air-gap” calculations for offshore 
platforms. The air-gap problem is complicated and this paper only 
considers one part of the calculation: the second-order contribution to 
the wave-crest height. 
There is an ongoing dispute as to whether physics other than that given 
by second-order theory is needed for describing the evolution of non-
breaking wave-crests over a timescale in which a large wave-group 
forms and then disperses. Waves for which additional physics are 
important are termed rogue waves (see reviews by Kharif & Pelinovsky 
(2003); Dysthe et al. (2009); Adcock & Taylor (2014)). Current design 
practice assumes that physics beyond second order is not significant for 
practical offshore calculations, an assumption which appears to be 
generally consistent with field measurements. 
The standard statistical model that is used to describe the short-term 
distribution of wave-crests is the Forristall distribution (Forristall, 
2000). This distribution was derived by fitting a probability distribution 

to the results of numerical simulations of random waves using second-
order theory. Forristall derived two distributions: a 2D and a 3D. The 
2D is only applicable to laboratory studies. The 3D distribution was 
based on simulations of JONSWAP spectra with a number of different 
peak enhancement factors and with a constant, frequency dependent, 
directional spreading function.  
The Forristall distribution is straightforward to apply to practical 
engineering calculations and seems to agree satisfactorily with most 
measurements and laboratory tests. The distribution is known to 
produce inaccurate results in some situations. For instance, if there is 
significant wave-breaking then the distribution will over-predict the 
magnitude of wave-crests. Conversely, in crossing seas, the set-down 
under a large wave, predicted by second-order theory, can become a 
set-up (Christou et al., 2009) although the changes to the magnitude of 
the second order sum term mean that this does not always increase the 
overall crest height. These variations are not captured in the Forristall 
distribution as this only considers one form of directional spreading. 
This paper examines some details and sensitivities of the calculation of 
second order wave crest statistics. We also examine whether it is 
possible to avoid the computational demands of simulating random 
waves by using the second order structure from a NewWave wave-
group to calculate the second order correction. 
Second order random simulations are also used in other applications 
such as calculating velocities and loads (Alberello et al. 2014). 
 
THEORY 
 
Second order correction 
 
There is no change to the dispersion equation that governs the 
propagation of wave components in second order theory. Thus, the free 
surface can be described by a number of “free” or “linear” waves which 
propagate as described by the linear dispersion equation, and “bound” 
waves which are a correction to the free surface profile and which are a 
function only of the linear wave components. 
This paper uses standard second order theory. For random directional 
linear waves this theory was first given in Dean & Sharma (1981) 
although unfortunately this contains a number of typos. The results 



 

presented in Forristall (2000) and Dalzell (1999) are consistent 
(although formulated differently). 
As highlighted in Dalzell (1999) there is an inconsistency when a linear 
component interacts with itself in finite water depth and a further 
assumption has to be made. For random simulations this is generally 
not an issue as the self-interaction term is small compared to the 
interactions of different waves. In this paper we have set the value of 
the interaction kernel to zero for such interactions. 
Following Dalzell we present the second order contribution for the 
interaction of two waves (which is easy to generalise to N interacting 
waves). Let us assume that the linear wave components have amplitude, 
aj, and phase, φj, which is given by the components natural frequency 
multiplied by time plus some arbitrary phase shift. The linear waves are 
then given by 

 (1) 

It is convenient to split the second order contribution into sum and 
difference terms. These have frequencies that are the sum and 
difference of the interacting linear components. 
The sum terms are given by 

η2+ = ai
j

2

∑
j=1

2

∑ ajBp cos ϕi +ϕ j( )                 (2) 

  
where Bp is a given by a complicated expression and is a function of the 
interacting frequencies and the water depth (Dalzell, 1999) given in the 
appendix. Similarly the difference terms are given by 

 (3) 
where again the interaction kernel Bm is given in the appendix with the 
reader also referred to Dalzell (1999) and Forristall (2000). 
We demonstrate the form of the second order correction to the free 
surface by plotting the results of fully non-linear simulations carried out 
by Gibbs & Taylor (2005). The simulations are of a focused NewWave 
wave-group with an amplitude ak = 0.1 and a wrapped normal 
directional spreading of 15° starting 20 periods before linear focus. The 
wave-group is split into linear and second order constituents using the 
method described in Taylor et al. (2005) and by standard spectral 
filtering. Figure 1 shows the linear and second order waves at linear 
focus, demonstrating the second order sum terms being in phase with a 
large crest, whilst the difference terms are out of phase. The sum and 
difference terms are in excellent agreement with those predicted by 
second order theory (Adcock, 2009). 
 
Random waves 
 
The fundamental assumption underlying much offshore wave theory is 
that the linear waves at different frequencies are uncorrelated with each 
other and that the free surface is a random Gaussian process. 
For a given spectrum, simulating random waves can be done 
numerically. In this paper we follow the general approach described in 
Tucker et al. (1984). 
Once random linear waves have been generated these can be written as 
given in equation 1 and the second order correction to the free surface 
may be calculated from equations (2) and (3) for a given directional 
distribution of energy. 
 
SENSITIVITY TO HIGH FREQUENCY CUT-OFF 
 
In calculating a second order random time series it is necessary to 
curtail the calculation of the interactions at some high frequency cut-

off. For instance, in his seminal paper Forristall (2000) states: “The 
calculations described in this paper were typically truncated… [at] four 
or five times the peak frequency”. 
One reason for this truncation is computational. Calculating a 
directionally spread second order sea is computer intensive and for 
practical purposes many simulations may be required in order to derive 
robust statistics. 
However, there is a more significant reason why this is an issue. To 
demonstrate, let us consider the interaction between two components 
with angular frequency 𝜔! and 𝜔!. In this example we consider waves 
travelling in the same direction but the general result is the same for 
waves travelling in different directions. Taking 𝜔! =  0.5 rad s-1 the 
magnitude of the interactions 𝐵! and 𝐵! for different values of 𝜔! are 
plotted in Figure 2 for deep water (actually 3000 m) and intermediate to 
shallow water (30 m). Both interaction terms increase in magnitude as 
the difference in frequency increases. The value of 𝐵! increases at the 
square of the difference in frequencies, whilst the increase in 𝐵! is 
more complicated but similar in leading order term. For a JONSWAP 
spectrum, the high frequency tail of the amplitude decays with ω-3. 
Thus, the decay in the magnitude of the second order terms is very 
slow. 

ηlinear = aj
j=1

2

∑ cosϕ j

η2− = aiajBm cos(ϕi −ϕ j )
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Figure 1 Example of second order contribution to the free surface 
from fully non-linear potential flow simulations based on a NewWave 
wavegroup. 
 



 

 
 
 

The issue can be seen by examining the spectra of a random wave 
simulation. A JONSWAP spectrum is used with 𝛾 = 3.3 with a low 
frequency cut-off at 0.5𝜔! and a high frequency cut-off at 4𝜔!. The 
directional spreading of the sea-state is given by the Ewans (1998) 
distribution. Figure 3 shows the omnidirectional spectra of the different 
constituents of the second-order sea state. The second order difference 
spectra shows a slow decrease in amplitude between zero frequency 
and the artificial cut-off caused by curtailing the linear spectrum at |𝜔!  

- 4𝜔!  | and decays to zero at |𝜔!  - 4𝜔!|. Similarly, the second order sum 
term increases between 2×0.5𝜔! and 2𝜔!. It then decays slowly until 
the point at which the linear peak is no longer taking part in the 
interactions. The key result is that, prior to the change-point caused by 
curtailing the linear spectrum, the decay of both second order sum, and 
second order difference terms is slow. 

 

Figure 3 Different components of a simulated second order spectrum. 
Linear — black; second order difference — magenta; second order sum 
— green. 
 
This behavior is not physically correct. This is a known problem 
perhaps first described in general terms by Barik & Webber (1977). 
The physics of the anomaly is resolved in Janssen (2009) where it is 
shown that linear and third order terms will interact to cancel much of 
the upper tail of the spectrum. 
There remains the problem of where to curtail the spectrum for 
practical engineering calculations. In practice, the calculation of 
extreme wave-crests in random simulations is not overly sensitive to  
the precise cut-off point. The reason for this is that a crest will tend to 
occur where the highest energy parts around the peak of the spectrum 
are in phase, with the low energy components at higher frequencies less 
likely to be in phase at the crest. This means that the second order terms 
due to interactions between components in the peak (that are correctly 
given by second order theory) will generally be correlated giving the 
required second order correction. However, the interactions between 
the peak and the tail of the spectrum are likely to not have a phase that 
leads to them being correlated with the crest, and so these introduce 
relatively small errors into the estimate of the second order correction 
at the extreme crest.  In this paper we use 2.5𝜔! as a suitable cut-off. It 
should be noted however that for high-cycle fatigue calculations on 
objects near the surface the cut-off point will be more significant. 
 
 
INFLUENCE OF SPECTRAL SHAPE ON SECOND ORDER 
CONTRIBUTION 
 
Directional spreading 
 
The magnitude of the second order contribution will be dependent on 
the spectral shape. Whilst it would be possible to investigate this by 
running random simulations it is easier to analyse the problem using 
deterministic wave-groups. In this study we use NewWave wave 
groups. These are the expected shape of a large wave-group in a linear 
random sea-state. A NewWave in the time domain focusing at t = 0 is 
given by equation (4) and an example is shown in Figure 1. The 
derivation is given in Lindgren (1970) and it was brought into offshore 
engineering practice by Tromans et al. (1991). It has been shown to 
agree with field measurements in numerous studies (e.g. Jonathan & 
Taylor, 1997) and to be valid up until the point where waves are 
dominated by shallow water wave breaking (Haniffah, 2013). It may be 
noted that a spectrum derived from the time history of a NewWave 
decays rather quicker than that of the spectrum, S(𝜔), which was used 
to derive the NewWave. Thus there is no problem with high frequency 
cut-off location 

 (4) 

Except for in very shallow water, all sea states are directionally spread. 
The degree of directional spreading will vary depending on the type of 
storm. In realistic sea-states directional spreading is strongly dependent 
on frequency, but in this investigation we assume a constant directional 
spreading across all frequencies. We use a wrapped normal directional 
spreading and calculate the magnitude of the second order contribution 
under a large crest for different widths of directional spreading. In this 
we use a constant omni-directional frequency spectrum given by a 
JONSWAP spectrum with γ = 3.3, water depth 40 m, and a unit 
NewWave (i.e. a crest amplitude of 1m). 
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Figure 3 Magnitude of second order interaction kernel for co-linear 
waves 
 



 

Figure 4 shows the magnitude of the sum and difference contributions 
under the crest. The magnitude of both terms reduces as directional 
spreading is increased. It is noticeable the magnitude of the second 
order difference term, although smaller, decreases by a relatively 
greater amount which is one reason why Adcock & Taylor (2009) used 
this to estimate directional spreading from a measured Eulerian 
timeseries. What is remarkable is that the changes almost cancel out so 
that the combined extra elevation is insensitive to the degree of 
directional spreading. This result is consistent across different water 
depths until the water is sufficiently shallow that the whole approach in 
this paper breaks down. 

 
Figure 4 Second order contribution to wave crest height normalized by 
amplitude under a NewWave group as a function of directional spread 
σ in degrees.  
 
A more realistic spreading function is that given by Ewans (1998). If 
this is used then the second-order sum contribution is 0.0244 and the 
difference -0.0061, giving a combined second-order contribution of 
0.0184. This is broadly consistent with the frequency independent 
spreading estimates. 
We conclude that for “following” sea-states (i.e. ones where the waves 
are going in a narrowly confined direction) an accurate knowledge of 
spreading is not crucial in determining second-order amplitudes 
implying that the Forristall distribution can be applied. The relative 
independence from directional spreading also suggests that any non-
linear reduction in spreading under a large wave (Gibbs & Taylor, 
2005; Adcock et al., 2012) can be ignored when calculating second 
order statistics. Of course, as noted in the introduction, in crossing sea 
states there can be a significant difference in the second order 
contribution to crest amplitude. 
 
Spectral bandwidth 
 
The above simulations considered a constant spectral width described 
by the JONSWAP spectral enhancement factor  𝛾. Similar simulations 
of second-order NewWaves were carried out but showed that second 
order sum, and second order difference contributions changed 
negligibly for values of 𝛾 between 1 and 5. 
 
VARIATION OF SECOND ORDER CONTRIBUTION IN 
RANDOM SIMULATIONS  
 
In a real sea-state, large waves that are of practical interest to engineers 
show a significant variation in shape, although the average profile is 
given by the theoretical NewWave form (Tucker, 1999). Figure 5 

shows plots of the 2D free surface around two large waves with linear 
crest amplitudes greater than significant wave height 𝐻!, generated 
randomly from the same underlying spectrum. The difference in the 
general shape, and particularly the broadness of the crest, is marked. 

 
Figure 5 Examples of two large waves drawn from numerical 
simulations of identical sea-states with different shapes. Vertical axis 
free surface elevation normalized by Hs. Mean wave direction in x 
direction 
 
The difference in the shape of the wave will lead to variations in the 
magnitude of the second order contribution to the crest elevation. It is 
not immediately obvious to the Authors whether the variation in the 
shape of an extreme wave event will lead to a small or large change in 
the second order contribution. If the magnitude of the second order 
contribution were strongly dependent only on the amplitude of the 
wave then knowledge of the linear wave amplitude statistics would 
immediately allow one to determine second order statistics, greatly 
simplifying design. 
We investigate how second order contributions vary by running 10000 
simulations of three hours of waves and recording the second order 
contribution to the largest (linear) wave observed in each simulation. 
We have used a JONSWAP spectrum with γ = 3.3 and a Ewans 
spreading function. The magnitude of the linear component, the second 
order sum and second order difference components were recorded. 
Figure 6 plots the magnitude of the second order components against 
the linear crest amplitude. If we consider a given linear amplitude of 
wave we can see that there is a significant variation in both second 
order terms. Despite the large waves considered in these simulations 
there is no obvious sign that the absolute magnitude of the variation in 
the size of the second order terms reduces for larger waves as would be 
the case if the largest waves were all close to the NewWave in form. It 
can also be observed that the total second order term (sum + difference) 
shows slightly less variation than the sum term alone suggesting that, to 
some extent, a larger sum term than the mean is correlated with a larger 
(negative) difference term than the mean; hence some of the variation 
cancels out. 
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Figure 6 Magnitude of second order contribution to wave crest 
amplitude from random wave simulations (dots) and NewWave 
estimation (continuous line) as a function of linear crest amplitude. Top 
— second order sum; middle — second order difference; bottom — 
combined (sum + difference) 
 
It is also noticeable than despite this simulation being in a following sea 
a few large waves have a positive second order difference term (i.e. 
they have a set-up under the crest). This occurs when much of the 
highly directionally spread high frequency tail is in phase with the 
wave crest. There are however, only a handful of set-ups that are of 
equal magnitude to the expected set-down as was observed at the 
famous Draupner wave recorded in the North Sea (Walker et al., 2005; 
Adcock et al., 2011).  
 
USING NEWWAVE TO ESTIMATE THE SECOND ORDER 
CORRECTION 
 
A number of Authors have, at various times, tried to estimate the 
second order correction from the local properties of the waves without 
carrying out full second order simulations (e.g. Kriebel & Dawson, 
1991). These have typically assumed that the linear waves are a slowly 
modulated sine wave and have calculated a local second order correction 
by assuming that locally the linear wave is a Stokes wave. This obviously 
does not account for the second order difference wave or for finite 
directional spreading. To account for these we could instead assume that 
the free surface around an extreme event is given by NewWave and use 

this to calculate the second order correction. This is straightforward, 
computationally quick, and as noted above does not suffer from 
ambiguity in the high frequency cut-off. It would also be straightforward 
to extend it to third, or higher, order which would be computationally 
difficult for random wave simulations. 
Figure 6 shows the sum, difference and combined amplitude predicted by 
the NewWave approach. The approach shows good general agreement 
with the random wave simulations although it appears to slightly 
underestimate the mean size of the second order contribution. However, 
this approach obviously does not capture the variation in wave shapes in a 
realistic sea state. In estimating the probability of an extreme crest it is 
vital to capture this variation and so the NewWave approach cannot be 
used for this purpose. 
 
VARIATION IN SECOND ORDER CONTRIBUTION IN 
FIELD DATA 
 
Examining the variation in second order contribution in field data is 
problematic as sea-states do not remain stationary long enough to 
observe sufficient extreme waves to build up a robust picture of what is 
happening. In examining field data it is considerably easier to separate 
the low frequency difference terms compared to the high frequency 
sum terms as there are generally few other waves present in the low 
frequency part of the spectrum. Despite the lack of data, analysis of the 
low frequency waves present in North Sea data (Adcock & Taylor, 
2009) and hurricane data (Santo et al, 2013) does indicate that large 
waves of similar magnitude occurring a short time from each other will 
have very different second order contributions. 
 
CONCLUSIONS 
 
This paper investigates the contribution second order bound waves 
make to the amplitude of the crests of large ocean waves. We note than 
when computing these the point chosen for the high-frequency cut-off 
can influence the results due to the limitations of second order theory. 
The extra amplitude under a wave crest is remarkably independent of 
directional spreading as the changes in sum and difference 
contributions to the amplitude roughly cancel out. The magnitude of the 
second order contribution is strongly dependent on the local time-
history of the wave and not just on linear crest amplitude. This leads to 
considerable variation in the magnitude of the second order 
contribution across waves of similar amplitude. This has implication 
both for deriving crest statistics and for analysis of field measurements. 
Calculating the magnitude of the second order contribution using 
NewWave gives a reasonable first estimate but does not capture the 
important variations in second order contribution due to the random 
nature of waves. 
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APPENDIX 
This interaction kernels describe the magnitude of the second order 
difference interaction between two interacting components in equations 
2 and 3. The frequency and wavenumber of the linear components, 𝜔 
and k, and related by the linear dispersion relationship. The angle 
between components is θ, and the water depth is d. The “plus” and 
“minus” terms, Bp and Bm respectively are  

Bp =α −
βpγ p
δp

+
εpζ p

δp
, 

and 

Bm =α +
βmγm
δm

+
εmζm
δm
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γm = ω1 −ω2( )
2
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