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ABSTRACT

As large waves form in the open ocean their dynamics are mod-
ified from classic linear dispersion by non-linear physics. In this
study we use a numerical model to study the evolution of isolated
wave-groups in deep water. We find that the non-linear changes
are rather sensitive to the initial conditions, with small changes
in parameters such as directional spreading giving significantly
different results. In all cases, although as aforementioned in dif-
fering degrees, we find changes to the shape of the extreme wave-
group – the wave-groups contracting in the mean wave direction,
expanding laterally to increase the width of the extreme crest, and
with the largest wave moving to the front of the groups. We find
that significant extra elevation of the wave-group only occurs for
cases which are close to uni-directional.

INTRODUCTION

The formation and dynamics of the largest waves in the sea are of
interest to scientists and engineers. In the open ocean, the domi-
nant dynamics is described by dispersive focussing, where at cer-
tain points of time and space linear components come randomly
into phase. There is much interest as to whether physics beyond
this is needed to satisfactorily model the dynamics of large waves
(Kharif and Pelinovsky; 2003; Dysthe et al.; 2008; Adcock and
Taylor; 2014).
The most likely extra physics which may be significant is to ac-
count for the non-linearity of ocean wave propagation. The influ-
ence of this on large waves has been studied by numerous Authors
over the past few decades (Socquet-Juglard et al.; 2005; Mori
et al.; 2007; Onorato et al.; 2009).
There have been two main approaches to studying how non-
linearity changes the dynamics of steep waves. One is to consider
random wave-fields and study the statistics and properties of their
largest waves. An alternative approach is to study the focussing
of isolated wave-groups. This deterministic approach is useful to

examining some of the details of the non-linear physics. A recent
study by Adcock et al. (2015) found excellent general agreement
between the non-linear changes to isolated wave-groups which
under linear evolution would form the average shape of a large
wave in the open ocean (a NewWave), and the average non-linear
change that extreme groups undergo in random seas. This gives us
confidence that conclusions drawn from studying isolated wave-
groups can be applied to random waves in the real ocean. Thus,
the isolated wave-group approach is the one taken in the present
paper.
The results of the majority of studies of large waves suggest
that there is a fundamental difference between waves in uni-
directional, or nearly uni-directional, seas and those which are
directionally spread. In uni-directional seas non-linearity causes
large waves to be amplified relative to linear evolution. This is
accompanied by a contraction of the spatial extent of the group
along the direction of motion (Baldock et al.; 1996). The key
parameter for the strength of this mechanism is the ratio of the
wave steepness to the spectral bandwidth – a parameter often de-
scribed as the Benjamin-Feir index (Janssen; 2003). However,
in the open ocean, waves are not uni-directional but always have
a directional spread of energy. This fundamentally changes the
non-linear physics. For waves with a realistic directional spread-
ing the non-linear physics appears to only give very small in-
creases in the amplitudes of the largest waves over that expected
by linear theory.
In this paper we seek to explore in more detail the sensitivity of
the nonlinear physics of extreme waves to the underlying spec-
trum.

METHODS

The basic approach used in this paper is well established. We start
with a wave-group which has the expected shape of a large wave-
group in a linear random sea-state (Lindgren; 1970; Boccotti;
1983) – in offshore engineering this shape has become known



as NewWave (Tromans et al.; 1991). The expected shape is given
by the scaled autocorrelation function

η(x, y) = Amax

∑
n

∑
m S(kn, θm) cos(Ψn,m)∑
n

∑
m S(kn, θm)

, (1)

where Amax is the amplitude of the wave and S(k, θ) is the di-
rectional wavenumber spectrum of the underlying spectrum with
θ being the angle of a given component relative to the mean wave
direction. The phase Ψ is

Ψn,m = kn cos(θm)x+ kn sin(θm)y. (2)

This is then run backwards in time under linear evolution. In this
study we run back twenty wave periods (as done by Gibbs and
Taylor (2005)). The wave-group is then propagated forward in
time until the peak height of the wave-group is a maximum. For
this we use the broadbaneded non-linear Schrödinger equation de-
rived by Dysthe (1979); Trulsen and Dysthe (1996) and given by
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where ω and k are the frequency and wavenumber of the carrier
wave and A is the complex wave amplitude, and A∗ is the com-
plex conjugate of A. The left hand side of this equation is lin-
ear and is an approximation to the linear dispersion relationship
(Trulsen et al.; 2000). For ‘linear’ evolution we set the right hand
side of this equation to zero.
The final term in equation 3 accounts for the interaction between
the wave-group and the induced current. The potential φ satisfies
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, (4)

(with a higher order approximation being given in Dysthe (1979))
and within the fluid

∇2φ = 0. (5)

Equation 3 is time-marched using a pseudo-spectral scheme to
solve the linear dispersive part with the non-linear terms evaluated
in the spatial domain. We use a spatial discretisation of 10 m and
time-march using a timestep of 0.5 s and a Runge-Kutta scheme.
For the cases presented in this paper the scheme conserves energy
to within 0.2%.
The modified broadbanded non-linear Schrödginer equation has
some key limitations. These are discussed in detail by Adcock
and Taylor (2016a,b). In this study the critical limitation is the
bandwidth. This may not be obvious as we use initial conditions

with bandwidths that are narrow enough that the Dysthe equation
would be expected to accurately predict the subsequent evolution.
However, as wave-groups focus the non-linearity drives a local
broadening of the bandwidth and, beyond a certain point, this
leads to the broadbanded non-linear Schrodinger equation giving
results which differ from potential flow simulations and can be
assumed to be inaccurate. For this study we choose to exclude
any run in which the local bandwidth in the mean wave direction
exceeds 0.135m−1. We derive the local bandwidth by fitting a
Gaussian to the points around the spectral peak. This is an impor-
tant limitation to this study.
In this study we use as initial conditions a Gaussian spectrum
in both x and y directions with a central wavenumber of k =
0.0279m−1 corresponding to a wavelength of 225 m and peak
period of 12 s.
We vary the bandwidths of this spectrum. The bandwidth in
the mean wave direction, sx, we vary between 0.0023m−1 and
0.0092m−1. Note that Gibbs (2004) found that a bandwidth
of 0.0046m−1 fitted the peak of a JONSWAP spectrum with
γ = 3.3. We vary the directional spreading, s, between 2.5◦ and
30◦. The spectral bandwidth in the lateral direction is then found
using

sy = k
πs

180
. (6)

We define the amplitudes of the different cases based on the am-
plitude of the group at focus under linear evolution. Three ampli-
tudes, Alin, are considered: 5 m, 8 m and 11 m (Alink equal to
0.14, 0.223 and 0.307).
In this study we just consider the complex envelope A and, in
terms of results, only analyse the magnitude of this. Thus in this
investigation we do not consider the phase. The phase of the un-
derlying waves in the wave-group can be considered arbitrary –
although the relative phase between components is not.

RESULTS

We start by presenting some examples picked from the different
cases that we have simulated. Figure 1 shows wave-groups at fo-
cus for four different initial conditions and shows both the wave-
group under linear and non-linear evolution.
For all cases presented in Figure 1 there is minimal change in am-
plitude between linear and non-linear cases. The changes in the
group shape are very dependent on the initial conditions. How-
ever, all cases show the same fundamental changes in shape albeit
to a greater or lesser extent. The groups expand in the lateral (y)
direction; contract around the crest in the mean wave direction;
and shift in the peak of the wave-group towards the front of the
wave-group. These results are generally consistent with the po-
tential flow results of Gibbs and Taylor (2005) and the random
wave simulations of Adcock et al. (2015).
We now consider the difference between the maximum elevation
reached under linear evolution to that recorded during the non-
linear simulations. Figure 2 presents the maximum elevation dur-
ing a non-linear run, relative to the elevation of the linearly fo-
cussing wave-group.
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FIGURE 1: Wave-groups at maximum point elevation in simulation. Plot shows wave envelopes – carrier waves moving left to right. Amplitudes
normalised by maximum amplitude of linear simulation. Note that different axes are used for different cases. Left – linear evolution; right – non-linear

evolution. a and b – Alin = 5m; s = 2.5◦. sx = 0.0023m−1. c and d – Alin = 5m; s = 25◦. sx = 0.0055m−1. e and f – Alin = 8m; s = 10◦.
sx = 0.0028m−1. g and h – Alin = 8m; s = 25◦. sx = 0.0055m−1.



2.5 3 3.5 4 4.5 5 5.5

x 10
−3

5

10

15

20

25

30

s
x
 (m

−1
)

S
p
re

a
d
in

g
 (

d
e
g
)

A
lin

=5 m

2.5 3 3.5 4 4.5 5 5.5

x 10
−3

5

10

15

20

25

30

s
x
 (m

−1
)

S
p
re

a
d
in

g
 (

d
e
g
)

A
lin

=8 m

2.5 3 3.5 4 4.5 5 5.5

x 10
−3

5

10

15

20

25

30

s
x
 (m

−1
)

S
p
re

a
d
in

g
 (

d
e
g
)

A
lin

=11 m

 

 

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

FIGURE 2: Maximum amplitude reached during non-linear run
normalised by maximum amplitude of linear simulation. Hatching

shows region where bandwidth limit was exceeded and no results are
available.

The pattern is the same for all three steepnesses considered. For
large directional spreads there is little or no increase in amplitude
relative to the linear case. As directional spreading is decreased
(i.e. the sea-state becomes closer to uni-directional) there is gen-
erally a significant increase in amplitude, although this is masked
somewhat by the limitations of the present modelling not giving
useful results for the most non-linear cases. For all three cases
there is a region, for the narrowest bandwidth considered here,
where there is a decrease in the maximum amplitude reached in
non-linear evolution.
We next consider the changes to group shape. We define these
simply by finding where the amplitude of the group drops be-
low 2/3 of its maximum value. To evaluate the change in shape
we equate this to the width of an equivalent Gaussian to find the
‘bandwith’ in the x and y directions. We also use this to evaluate
the asymmetry of the wave-group. We define asymmetry as the
ratio of distances from maximum point of the wave envelope to
where the envelope drops below 2/3 of the maximum behind and
in front of the crest in the mean wave direction. Thus an asymme-
try of 1 implies a symmetrical group whereas a value greater than
1 implies the crest has moved towards the front of the group. In
all cases we present the ratio of the bandwidth at non-linear focus
to the bandwidth at linear focus.
Figure 3 presents the change in the bandwidth in the mean wave
direction. In all cases we observe a contraction of the wave-
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FIGURE 3: Mean-wave direction bandwidth of wave-group at
maximum amplitude normalised by bandwidth under linear evolution.
Hatching shows region where bandwidth limit was exceeded and no

results are available.

group in the mean wave direction. In general the change is greater
for steeper (larger amplitude) wave-groups, with smaller sx and
smaller directional spreading. A marked feature is that for certain
initial conditions this change is very dramatic whereas for others,
with only slightly different initial conditions, the change is quite
small. To put this another way, the contours on the plots are either
very spread out or very close together.
Figure 4 presents the change to the lateral width of the group due
to non-linear dynamics. In all cases non-linearity leads to an in-
crease in the width of the wave-group. The changes are greater for
cases with larger amplitudes and narrower mean wave direction
spectral bandwidth. For large directional spreads there is rela-
tively little change. This is also the case for very small directional
spreads – this latter may be due to these wave-groups being very
close to uni-directional already and so large lateral expansions are
suppressed. The biggest relative lateral expansion thus occurs for
wave-groups whose initial directional spreading is around 5◦ to
10◦. A notable feature of these results is that unlike the contrac-
tion of the group in the mean wave direction, the contour plots are
much flatter – i.e. there is no point in the plots where there is a
sudden increase in the non-linear changes.
Figure 5 presents the asymmetry of the group at non-linear focus
(noting that at linear focus the group is symmetrical so using the
measure adopted here the asymmetry is unity). In all cases the
asymmetry measure is greater than unity implying a movement
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FIGURE 4: Lateral bandwidth of wave-group at maximum amplitude
normalised by bandwidth under linear evolution. Hatching shows region

where bandwidth limit was exceeded and no results are available.

of the peak towards the front of the wave-group. Like the lateral
expansion, the movement towards the front of the wave-group is
greater for larger amplitudes and narrower mean-wave direction
bandwidths. The trend with directional spreading is more com-
plex. In general for high directional spread (∼ 30◦) there is rela-
tively little movement. The directional spreading which gives the
most asymmetry is dependent on the amplitude and mean-wave
direction bandwidth.

DISCUSSION

This study shows that the evolution of large wave-groups are
strongly dependent on the spectral bandwidths of the underlying
sea-state. In particular, the non-linear dynamics are very strongly
dependent upon the directional spreading.
An important result which these simulations demonstrate the sen-
sitivity of the different changes to the underlying spectrum. The
key results are:

• The contraction in the mean wave direction is very strongly
dependent on the non-linearity and directional spreading.
For realistic sea-states it would only occur for large waves
in the steepest and most narrow banded sea-states.

• The expansion in the lateral direction occurs even for mod-
erate steepness and spectral bandwidth. Although we find
that this is greater for steeper sea-states with narrower band-
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FIGURE 5: Asymmetry of wave-group at maximum amplitude.
Hatching shows region where bandwidth limit was exceeded and no

results are available.

widths this dependence is much weaker than the contraction
in the mean wave direction.

• The movement of the largest wave to the front of the wave-
group is again a strong function of the steepness and mean-
wave direction bandwidth. Although the dependence is not
quite as strong as for the contraction in the mean-wave direc-
tion we would still only expect to observe this in steep and
narrow-banded seas.

These conclusions appear to be consistent with, and may help
explain, past results.
Gibbs (2004) (see also Gibbs and Taylor (2005)) used a poten-
tial flow solver to simulate the focussing of isolated wave-groups.
They did not vary the mean-wave direction bandwidth but only
the steepness. They only considered two directional spreads: ei-
ther uni-directional or a directional spread of 15◦. For both cases
they found that the contraction in the mean wave direction var-
ied more strongly than a quadratic in steepness. By contrast they
found the lateral expansion approximately varied quadratically
with wave steepness.
Adcock and Taylor (2009) and Adcock et al. (2012) derived ap-
proximate analytical expressions for the change in the contraction
in the mean wave direction and lateral expansion. The two papers
were for uni-directional and directionally spread results respec-
tively. Unfortunately the directionally spread result does not re-



duce to the uni-directional case and these equations must be used
with caution. However, they do again suggest a similar trend to
those observed here – that the contraction in the mean-wave di-
rection is much more sensitive that the expansion in the lateral
direction.
Adcock et al. (2015) carried out simulations of random waves.
Although directional spreading and mean-wave direction band-
width of the background sea-state were not varied, the dependen-
cies of the different changes in shape were entirely consistent with
those found in this paper.

CONCLUSIONS

In this study we examined the non-linear changes that occur
to large waves in the open ocean. We have examined the fo-
cussing of isolated wave packets using the broadbanded non-
linear Schrödinger equation to model the non-linear dynamics.
We have explored the sensitivity of the changes to the size
(or steepness) of the waves, the bandwidth, and the directional
spread.
Consistent with previous studies we find that extra amplitude only
occurs for waves that are close to uni-directional. We also observe
significant changes to the shape of extreme wave-groups. Relative
to linear evolution the extreme wave-group contract in the mean-
wave direction, expand in a lateral direction, and the largest wave
moves to the front of the group. We find that the first and last of
these is a strong function of the initial conditions and will only
happen for steep sea-states with a narrow bandwidth; the lateral
expansion will occur even for more moderate sea-states.
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