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ABSTRACT
Steep, focusing waves can experience fast and local non-

linear evolution of the spectrum due to wave-wave interactions
resulting in energy transfer to both higher and lower wavenum-
ber components. The shape and kinematics of a steep wave
may, thus, differ substantially from the predictions of linear the-
ory. We have investigated the role of nonlinear interactions on
group-shape for a steep, narrow-banded, directionally-spread
wave group focusing in deep water using the fully-nonlinear po-
tential flow solver, OceanWave3D. Exact second-order correc-
tion of the initial conditions has been implemented together with
a novel third-order approximate correction based on a Stokes-
type formulation for surface elevation combined with a scaling-
argument for the third-order velocity potential. Four-phase sep-
aration reveals that the third-order scheme provides a good esti-
mate for the third-order superharmonics. A quantitative assess-
ment of numerical error has also been performed for the spa-
tial and temporal discretization, including energy conservation,
a reversibility check and validation against previous simulations
performed with a higher-order spectral (HOS) code. The ini-
tially narrow-banded amplitude spectrum exhibits the formation
of sidelobes at angles of approximately±35◦ to the spectral peak
during the simulated extreme wave event, occurring in approx-
imately 10 wave periods, with a preferential energy transfer to
high-wavenumber components. The directional energy transfer
is attributed to resonant third-order interactions with a discus-
sion of the engineering implications.

∗Corresponding Author

INTRODUCTION
The shape and kinematics of extreme waves remains a topic

of interest for research and a relevant consideration for offshore
engineering design. Extreme wave formation can arise from dis-
persive focusing, characterised by the superposition of Fourier
modes, as well as various nonlinear focusing mechanisms such
as the modulational instability; wave interactions with current,
wind and bathymetry; crossing seas and shallow water effects
with extensive reviews by Kharif & Pelinovsky [1], Dysthe et
al. [2] and Adcock & Taylor [3]. Extreme waves are charac-
terised by excessive steepness (ε = πH0/λ0), defined in terms
of the characteristic height (H0) and characteristic length (λ0) of
the waves. Linear theory approximately describes the evolution
of a wave group if ε << 1 while nonlinear effects become signif-
icant if the steepness exceeds this criterion, due to the presence
of higher-order nonlinear terms in the dynamic and kinematic
free-surface boundary conditions. Rogue waves are typically ex-
pected to be steep and consequently exhibit a greater prevalence
of nonlinearity. The shape of an extreme wave has been pre-
viously investigated for “weakly nonlinear” random seas featur-
ing waves of moderate steepness with a uniform distribution of
phase [4–6]. Random-sea investigations of extreme waves repre-
sent the most realistic approach and account for the natural vari-
ability of focused-events as well as the interaction of focused-
events with surrounding wave groups and the background sea-
state. However, the random-sea approach is also innately com-
putationally inefficient because, for much of the space and time,
the simulation is resolving wave events which are not particu-
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FIGURE 1. WING-WAVES: constructive interference between wing-
waves and central crests as observed by Gibbs & Taylor [8].

larly extreme. Thus, an alternate approach has been used, based
on isolated wave groups featuring a coherent phase distribution
designed to focus components in time and space; this approach
has also been suggested as a design method for the assessment
of loads on offshore structures [7] since a focusing wave group
encompasses all forms of wave-wave interaction present in a ran-
dom sea but remains less computationally expensive to simu-
late, less vulnerable to error-wave contamination (since the error
waves separate out from the wave-group during the simulation)
and changes in group-shape can be more easily identified. Gibbs
& Taylor [8] simulated extreme waves of the NewWave form [9],
with directional-spreading, using the “BST” code of Bateman,
Swan & Taylor [10], with a 5th-order Dirichlet-Neumann oper-
ator, and identified third-order nonlinear wave-wave interactions
as the cause of group-contraction in the direction of propaga-
tion and group-expansion in the lateral direction as well as the
movement of the largest crest to the front of the group. The lat-
eral group-expansion has been linked to the formation of “wing-
waves” (labeled W in Fig. 1) which manifest as localised pro-
trusions at the periphery of the group and interfere constructively
with the central crests to form notably broader crests. An intrigu-
ing feature of the wing-waves is the observed direction of travel,
at approximately ±35◦ to the propagating wave group, leading
Adcock & Taylor [11] to suggest that the wing-waves are a di-
rect result of third-order interactions along the arctan(1/

√
2) res-

onance angle identified by Longuet-Higgins [12] for the spectral-
peak of a three-dimensional wave packet. The present study in-
vestigates the spectral evolution of a steep, focusing wave group,
of the same form as Gibbs & Taylor [8], using the fully-nonlinear
potential flow solver OceanWave3D [13] and performs a detailed
assessment of the simulation fidelity.

NUMERICAL METHOD
OceanWave3D numerically solves the governing equations

of potential flow for surface gravity waves [14] in a three-
dimensional Eulerian frame-of-reference using a Cartesian co-
ordinate system (x,y,z) with the origin of the vertical coordinate
(z = 0) at the mean-water-level. The code is, thus, restricted to
free-surface shapes which can be expressed as a single-valued
function of the horizontal coordinates and cannot capture over-
turning waves.

Code Description
The governing equations require nonlinear boundary condi-

tions to be applied at the free-surface and, as a “fully nonlinear”
code, OceanWave3D applies the prescribed boundary conditions
without simplification. However, the location of the free-surface,
η(x,y, t), is unknown a priori. Thus, a non-conformal transform
maps the solution to a time-invariant domain:

σ ≡ z+d(x,y)
η(x,y, t)+d(x,y)

, (1)

compatible with a variable depth domain, d(x,y), but restricted
to constant depth, d(x,y) = d, for the present study. Discretiza-
tion of the governing equations is performed with a method of
lines approach, based on time-integration with the classical ex-
plicit four-stage, fourth-order Runge-Kutta scheme and finite-
difference discretization of the spatial derivatives with direct
product approximation of the nonlinear terms. A grid (Nx,Ny)
of uniformly distributed points is defined along the horizontal
xy-axes for evolution of the free-surface variables η(x,y, t) and
φ̃ = φ(x,y,η , t). In the σ -transformed domain, Nσ points are de-
fined in the vertical direction below each horizontal free-surface
grid point, in the restricted range 0≤σ ≤ 1. Thus, h-adaptivity is
implemented by adjusting the number of grid points in the hori-
zontal and vertical directions, for a given size of domain, to refine
or coarsen the spatial resolution. In the interior of the domain, all
derivatives are centrally discretized with a flexible-order finite-
difference scheme that allows for p-adaptivity. Near the struc-
tural boundaries (i.e., the bottom and sidewalls of the domain)
stencils become off-centered but the order of the scheme is the
same as the interior domain. Simultaneous application of the
Laplace equation and no-normal-flow condition is accomplished
at the structural boundaries using a single layer of ghost-nodes
outside the physical domain of interest, as explained by Engsig-
Karup et al. [13]. Discretization, thus, yields a rank n = NxNyNz
linear system of equations of the form:

AΦ = b, (2)

comprised of the coefficient matrix A, the unknown vector of ve-
locity potential (Φ) corresponding to each grid point at an in-
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stant in time and the vector b holding zeros and the inhomo-
geneous boundary conditions. Numerical solution of Eq. (2) is
performed with the Generalized Minimum Residual (GMRES)
method with left-preconditioning by the linearised version of the
coefficient matrix A, constructed with a second-order finite dif-
ference scheme and denoted as A2:

A2
−1{AΦ = b} (3)

The preconditioner A2 is time-constant and, thus, needs only to
be generated once at the beginning of the simulation. Based
on an initial guess for Φ0, the initial residual is computed,
r0 = AΦ0−b, and preconditioned by solving A2u0 = r0 followed
by one iteration of the GMRES algorithm in the Krylov sub-
space. Preconditioning is, thus, repeated once every iteration
solving a system of the form A2um = rm where m indicates the
iteration number. Optimal linear scaling of the solution effort is
ensured by multi-grid solution of the preconditioning step using
Gauss-Seidel smoothing. The preconditioner A2 is thus gener-
ated for every grid level using Direct Coarse grid Approxima-
tion (DCA) and a V-cycle with one pre-smoothing step and one
post-smoothing step employed. The number of GMRES itera-
tions required for convergence at a particular time step has been
found to be independent of grid-size using the multi-grid precon-
ditioning scheme [13]. Notably, the inclusion of ghost nodes has
also been shown to improve the numerical stability of the pre-
conditioning relaxation scheme, especially in the presence of the
Neumann boundary conditions applied at the structural bound-
aries [13], allowing for an anisotropic grid distribution in the ver-
tical direction. Clustering of points near the free-surface using
Chebyshev-Gauss-Lobatto (CGL) points has, thus, been imple-
mented to minimise dispersion error, anticipated to be the domi-
nant form of error in OceanWave3D [15].

Numerical Domain
A numerical wave-tank 7680 m in length (L), 2560 m in

width (W) and 200 m in depth (d) has been employed. The simu-
lated extreme wave event follows the dimensions and timescales
of Gibbs & Taylor [8] with a characteristic wavelength (λp)
of 225 m and characteristic period (Tp) of 12 s – both cor-
responding to the initial peak of the wavenumber spectrum,
kp = 0.02796 m−1. The water is consequently approximated as
“deep” with kpd = 5.6. A symmetry plane has been implemented
in the transverse (y) direction along the center-plane of the group
to exploit the symmetry property of the wave event (see Fig. 1).

TABLE 1. Initial Condition Parameters.

Akp kp kw ς

0.3 0.02796 m−1 0.004606 m−1 15◦

INITIAL CONDITIONS
The NewWave model describes the average shape of an ex-

treme wave in a linear sea using the scaled autocorrelation func-
tion, as detailed by Tromans et al. [9]. In the present study, ini-
tial conditions for the simulations have been prescribed as an ap-
proximation for a NewWave group calculated at 20 wave periods
before the linear focus time, using the linear dispersion relation-
ship. The low steepness of the dispersed initial conditions min-
imises the contribution of higher-order bound harmonics. How-
ever, exact second-order correction of the surface elevation and
velocity potential has been performed with the expressions of
Dalzell [16] for finite-depth wave-wave interactions—the second
order terms have been evaluated at the mean-water-level (z = 0)
but the first-order terms have been evaluated at the free surface
(z = η) to avoid pseudo-second-order error waves, as detailed in
Appendix A. Time-marching of the initial conditions has been
performed for a total of 40 wave periods, terminating the simu-
lation at 20 wave periods after the linear focus time. The param-
eters for the initial conditions of the wave group match those of
Gibbs & Taylor [8] and are listed in Table 1.

Conventionally, directional spreading of the frequency spec-
trum is implemented as the product of a unidirectional spec-
trum, S(ω), and a spreading function, D(θ), where ω is the
radian frequency and θ the direction of wave propagation:
F(ω,θ) = S(ω)D(θ).

A Gaussian unidirectional spectrum has been implemented
in terms of wavenumber, Ŝ(k), by this study:

Ŝ(k) = exp
(
−(k− kp)

2

2k2
w

)
, (4)

where k is the wavenumber, kp is the wavenumber correspond-
ing to the initial spectral peak and kw is the spectral width, which
yields a close approximation to a JONSWAP spectrum with a
peak enhancement of γ = 3.3. A wrapped-normal Gaussian dis-
tribution has been used for the spreading function:

D(θ) =
1√
2πς

exp
(
−
(

θ 2

2ς2

))
, (5)

with a constant rms spreading parameter (ς ) of 15◦ . The direc-
tional frequency spectrum, F(ω,θ), has thus been defined as the
product of two Gaussian functions so the surface elevation of the
focused linear event assumes an approximate form expressed in
terms of the spatial bandwidths Sx and Sy:

η(x,y) = Ae−
1
2 S2

x x2
e−

1
2 S2

y y2
cos(kpx), (6)

which represents a close approximation to the form of a linearly-
focused NewWave group.
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Phase Separation Technique
A system of bound harmonics associated with each free har-

monic can be described with a Stokes regular wave expansion,
shown here to the fourth-order for a single amplitude component,
ai, with phase ϑi(t):

ηi(t) =+ai cosϑi(t)

+C22a2
i cos2ϑi(t)+C20a2

i

+C31a3
i cosϑi(t)+C33a3

i cos3ϑi(t)

+C42a4
i cos2ϑi(t)+C44a4

i cos4ϑi(t),

(7)

where ϑi(t) = ki xcosθi + ki ysinθi−ωi t +ϕ0. The initial phase
ϕ0 is defined relative to a 0◦ baseline and the coefficients, C,
determine depth sensitivity, as listed by Walker et al. [17]. The
method of phase separation, e.g. Fitzgerald et al. [18], allows
particular terms of the Stokes expansion to be isolated by per-
forming simulations with an offset in the initial phase, ϕ0, fol-
lowed by addition/subtraction of the results. Performing simu-
lations with 0◦ , 90◦ , 180◦ and 270◦ phase-shifts for the initial
phase allows for isolation of the first-order free harmonic and the
third-order principle harmonic (generally considered negligible)
to obtain the linearised surface elevation (ηL):

ηL(t) = ai cosϑi(t)+C31a3
i cosϑi(t), (8)

Linearisation of the wave spectrum has, thus, been performed
with the four-phase separation technique in this study.

Approximate Third-Order Correction
An exact description of the third-order bound harmonics has

been presented by Madsen & Fuhrman [19]. However, an ap-
proximate description may be sufficient for the present study
since the third-order harmonics are small for the initially dis-
persed group. An approximation has been proposed by Walker
et al. [17] based on the Stokes-type expansion in Eq. (7) with use
of the Hilbert transform, denoted by H, which introduces a 90◦

phase-shift into the operand. The third-order principle harmonic
of surface elevation (η31) can, thus, be approximated as:

η31 =
−3(1+3B+3B2 +2B3)

8(1−B)3 k2
0ηL(η

2
L +[H{ηL}]2), (9)

and the third-order superharmonic of surface elevation (η33) as:

η33 =
3(1+3B+3B2 +2B3)

8(1−B)3 k2
0ηL(η

2
L−3[H{ηL}]2), (10)

where B = sech(2k0d) and k0 is the characteristic wavenumber.

The corresponding velocity potential associated with the
third-order surface elevation has been approximated in this study
with a scaling argument. Noting the scaling relation between ve-
locity potential and surface elevation φ ∼ gη/ω (described by
Lannes [20]) and the 90◦ phase-shift expected between surface
elevation and velocity potential, an approximation can, thus, be
obtained for the third-order superharmonic:

φ33 = K33
g

ω0
H{η33}, (11)

where ω0 is the characteristic frequency and the coefficient K33 is
a proportionality constant. A similar expression can be obtained
for the third-order principle harmonic and both sets of third-order
terms have been assessed in this study as a proposed method
for correction of the initial conditions, with the proportionality
constants set to unity. Simplified expressions for the bound har-
monics can also be found in Adcock & Taylor [11] with detailed
comparisons against fully-nonlinear simulation results.

SIMULATION FIDELITY
A convergence study based upon grid resolution (h-

adaptivity) has been performed with the use of grid-halving in all
three dimensions to assess grid-independence across two resolu-
tion levels, termed “intermediate” and “fine”, both listed in Table
2 with the height of the first grid at the free-surface (∆z∗) and
the grid resolution of Gibbs & Taylor [8], denoted as G&T’05,
also listed. A convergence study based upon p-adaptivity has
also been performed by altering the order of the finite differ-
ence scheme used for the spatial derivatives in the governing
equations. Time integration of the governing equations is per-
formed with the classic fourth-order Runge–Kutta scheme and
sensitivity to time step size (∆t) has been assessed with the
Courant-Friedrichs-Lewy (CFL) condition calculated from the
phase-speed associated with the initial peak of the wavenum-
ber spectrum. All simulations have been performed with exact
second-order correction of the initial conditions; approximate
third-order correction has been implemented where stated. The
validity of the “deep” water assumption has also been assessed
together with the modelling error of the proposed third-order cor-
rection scheme for the initial conditions.

TABLE 2. Discretization Parameters.

Grid Nx Ny Nz ∆x ∆y ∆z∗

Fine 1025 257 17 7.5m 10m 0.25m

Inter. 513 129 9 15m 20m 1m

G&T’05 255 127 - 14.1m 22.7m -
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TABLE 3. Average Number of GMRES Iterations.

Grid CFLx nx ny FD4 FD6 FD8

Fine 0.5 30 22.5 19.34 21.10 23.19

Inter. 0.5 15 11.3 13.69 15.64 23.15

Order of Finite Differencing
OceanWave3D utilises centered stencils for the finite differ-

ence discretization of spatial derivatives in the governing equa-
tion, except near the structural boundaries where off-center sten-
cils must be used. Thus, only even-numbered orders can be im-
plemented and the current study has performed simulations with
fourth, sixth and eighth-order finite difference schemes on both
the intermediate and fine grids. The maximum number of multi-
grid levels (NMG) has been used for preconditioning on both the
fine grid, NMG = 10, and the intermediate grid, NMG = 9. A
CFL of 0.5 has previously been shown to be adequate for steep
waves [13] and has also been used here. Increasing the order
of the finite difference scheme has also been shown to improve
dispersion error without significantly influencing diffusion error
[15]. Since OceanWave3D is anticipated to be dispersion-error
dominant, p-adaptivity is, thus, a particularly effective method of
improving simulation fidelity. A key feature of OceanWave3D is
the grid-independent iteration count for the GMRES algorithm,
with multi-grid preconditioning, which ensures optimal scaling
of the solution effort. The average number of GMRES iterations
required for convergence at each time step, with a tolerance of
10−6 (see Table I of [21]), has been recorded over the entirety of
each simulation, from −20Tp to +20Tp, and listed in Table 3 for
both the intermediate and fine grid resolutions. The number of
grid points per characteristic wavelength in the direction of wave
group propagation, nx = λp/∆x, and the direction transverse to
propagation, ny = λp/∆y, has also been listed for both grid reso-
lutions. As can be seen, a grid-independent iteration count arises
for eighth-order finite differencing but not for the sixth-order and
fourth-order schemes. Simulations of steep waves with Ocean-
Wave3D have been previously shown to require a grid resolu-
tion of at least nx ≈ 32 with sixth-order finite differencing [13].
The low number of GMRES iterations on the intermediate grid
with sixth and fourth-order schemes may, thus, be a result of in-
adequate spatial resolution for the given discretization schemes.
Eighth-order finite difference schemes have, thus, been used for
the present study on both the intermediate and fine grids.

Grid Convergence and CFL
The peak surface elevation (ηpeak) occurring at any point in

the simulation has been recorded for both grid levels, intermedi-
ate and fine, for CFL conditions of 0.5 and 1.0. Similarly, the
peak vertical velocity (w̃peak) and the peak horizontal velocity

(ũpeak) have also been recorded to assess convergence of the kine-
matics. Refinement of the grid resolution has been shown to sup-
press both diffusion and dispersion errors [15]; thus, h-adaptivity
offers an effective convergence strategy for OceanWave3D. Re-
finement of the time step to reduce the CFL condition, for a
given grid resolution, has been shown to suppress diffusion er-
ror but not dispersion error. Since, by definition, kinematics are
expressed in terms of derivatives of the velocity potential, the
order of convergence for the kinematics is expected to be lower
than that of the velocity potential and surface elevation. The re-
sults of the convergence study are listed in Table. 4 and com-
pared with the results of Gibbs & Taylor [8] for the same test
case. The fine grid simulation performed with a CFL of 0.5 using
OceanWave3D is expected to be converged since the CFL con-
dition and the horizontal resolution of nx = 30 meets the recom-
mendation for steep, nonlinear waves [13]—this case has, thus,
been compared with the results of Gibbs & Taylor [8] using the
time-history of surface elevation at the location of nonlinear fo-
cus plotted in Fig. 2. Nonlinear focus occurs at t = 1.3Tp, relative
to the linear focus time of t = 0Tp, indicating a slight delay in the
focusing event due to nonlinear wave-wave interactions. Cubic
spline interpolation has been used on both curves to improve the
plotting resolution. Good agreement between the time-histories
can be seen, although a slight lead by OceanWave3D is observed
before focus and a slight lead by the HOS code is observed after
focus. Table 4 indicates a 0.3% discrepancy in ηpeak between
Gibbs & Taylor [8] and the fine-grid result with a CFL of 0.5
which further supports the conclusion of convergence. In con-
trast, diffusion error seems apparent on the intermediate grid with
a CFL condition of 1.0 since all the convergence parameters are
substantially lower than the converged fine grid result with a CFL
of 0.5. The intermediate grid with a CFL of 0.5, however, indi-
cates an deviation of -2.6% for ηpeak, -2.3% for w̃peak and -10.1%
for ũpeak which may be seen as an unexpectedly good result since

TABLE 4. Convergence study based on grid resolution (h-adaptivity)
and CFL with eighth-order finite differencing (FD8).

Grid CFLx nx ny ηpeak w̃peak ũpeak

[-] [-] [-] [m] [m/s] [m/s]

Inter. 1.0 15 11.3 11.725 5.435 7.405

Inter. 0.5 15 11.3 12.466 5.689 8.075

Fine 1.0 30 22.5 12.702 5.767 8.837

Fine 0.5 30 22.5 12.801 5.820 8.980

Fine, Nz=9 0.5 30 22.5 12.786 5.810 8.954

G&T’05 0.13 16 9.9 12.840 - -
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FIGURE 2. VALIDATION: time-history of surface elevation at non-
linear focus point—comparison between OceanWave3D and Higher-
Order Spectral (HOS) results of Gibbs & Taylor [8].

the total grid size has been reduced by a factor of 8. The fine grid
resolution with a CFL of 1.0 exhibits deviations of -0.8% for
ηpeak, -0.9% for w̃peak and -1.6% for ũpeak which suggests that
the physical parameters are reasonably well resolved on the fine
grid with a CFL of 1.0. However, the diffusivity of the solution
can be assessed with the total energy of the solution (E) at every
time step, including kinetic energy and potential energy contri-
butions. Potential flow is inherently non-diffusive since the com-
bination of the incompressibility condition, ∇ ·u = 0, and the ir-
rotationality condition, ∇×u = 0, identically satisfies ∇2u = 0
while the assumption of an inviscid fluid theoretically eliminates
viscous dissipation. However, discretization of the governing
equations with finite-differencing results in numerical diffusion,
due to truncation error, which can also mimic the effects of dissi-
pation and reduce the total energy of the wave-field. The change
in total energy relative to the initial condition is shown in nor-
malised form in Fig. 3 for the cases in Table. 4. As can be seen,
the fine grid resolution with a CFL of 0.5 exhibits a change in to-
tal energy of -0.024% over the complete simulation. The change
in total energy occurs predominantly during the nonlinear focus
event, from 0Tp to 10Tp, when the wave group is steepest and
numerical diffusion likely to be most severe. A decline in total
energy is also expected as a result of the Savitzky-Golay filters
which prevent the accumulation of high-frequency aliasing errors
in OceanWave3D. In contrast, the fine grid solution with a CFL
of 1.0 exhibits a total energy change of -0.63% which is more
than an order of magnitude greater and even exceeds the -0.46%
change in total energy for the intermediate grid with a CFL of
0.5. Combining the intermediate grid with a CFL condition of

FIGURE 3. ENERGY CONSERVATION: change in total energy dur-
ing simulation for various grid resolutions and CFL conditions.

1.0 further exacerbates diffusivity with a change in total energy
of -9.96% over the course of the simulation. The sensitivity of
diffusion error to the CFL condition is, thus, apparent and a CFL
of 0.5 has been selected for all further simulations and the results
which form the basis of the discussion. A further assessment
of the necessary grid resolution in the vertical (z) direction has
also been performed by retaining the “fine” grid resolution in the
horizontal directions (Nx = 1025, Ny = 257) while reducing the
number of grid points in the vertical direction to Nz = 9, with the
results listed in Table. 4. As can be seen, halving the number
of vertical grid points has negligibly influenced the results of the
fine grid resolution with discrepancies of -0.12%, -0.17%, and
-0.29% in ηpeak, w̃peak and ũpeak, respectively, compared against
the fine grid resolution with Nz = 17. Thus, the reduced vertical
resolution offers an attractive alternative and the implications for
dispersion error are considered in the next section.
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FIGURE 4. DISPERSION ERROR: linear analysis of dispersion er-
ror due to discretization of governing equations.

Linear Dispersion Error
Grid points have been clustered near the free surface using

the symmetric half of a Chebyshev-Gauss-Lobatto distribution:
σ j = sin((π[ j−1])/(2[Nz−1])), which offers a compromise be-
tween the accuracy of dispersion and the accuracy of internal
kinematics [13]. Here, j denotes the index of the grid point with
j = 1 at the bottom and j = Nz at the free surface. A linear anal-
ysis of dispersion error has been performed for the fine grid res-
olution in the horizontal directions (Nx = 1025, Ny = 257) while
varying the the number of grid points in the vertical direction,
following the method of [13] and [15], for Nz = 9 and Nz = 17
with a depth (d) of 200 m. The dispersion error is estimated with
the unidirectional travelling-wave solution, formulated in a peri-
odic domain in x with uniform transverse grid spacing ∆x. The
known non-dimensional dispersion operator for this solution:

w̃
kφ̃

= tanhkh, (12)

can be evaluated numerically on the left-hand side by applying
the prescribed velocity potential at the free surface (φ̃ ) followed
by numerical solution for the vertical velocity at the free surface
(w̃) using the eighth-order numerical scheme of OceanWave3D
with linearised free surface boundary conditions. The difference
between the numerically-evaluated left-hand side of Eq. (12) and
the exact right-hand side of Eq. (12) yields the relative disper-
sion error (ε), with the results shown in Fig. 4. As can be seen,
both vertical resolutions exhibit negligible dispersion error for
the spectral peak (k/kp = 1). Comparatively larger errors are ob-
served for higher wavenumbers with an error of 1% for Nz = 9
at k/kp = 5. However, for the narrow-banded simulations in this
study, negligible energy is associated with wavenumbers higher
than k/kp = 3 suggesting than the vertical resolutions of Nz = 9
and Nz = 17 result in maximum dispersion errors of 0.15% and
0.001%, respectively. A vertical resolution of Nz = 17 has been

used for the fine grid in this study, but the resolution of Nz = 9 is
also likely to be adequate for many engineering applications.

Symmetry Plane
A symmetry plane has been utilised along the center-plane

of the focusing wave group to reduce the size of the numerical
domain. The boundary conditions of the symmetry plane are the
same as all other sidewalls: no flow normal to the boundary en-
forced with a Neumann-type boundary condition in terms of the
velocity potential. OceanWave3D incorporates a single layer of
ghost-nodes, outside the domain of interest, along all sidewalls
and the bottom of the domain. Consequently, the stencils used
at the sidewalls and bottom must be asymmetric for any finite-
difference scheme higher than second-order. The current study
utilises fourth, sixth and eighth-order finite difference schemes.
Thus, asymmetric stencils are required along all boundaries (with
the exception of the free-surface) including the symmetry plane.
Since asymmetric stencils are known to aggravate numerical dif-
fusion, we have analysed the influence of the symmetry plane
using the resolution of the intermediate grid with an eighth-order
finite-difference scheme—stencil asymmetry is most severe for
the case of an eighth-order finite difference scheme and the lower
spatial resolution of the intermediate grid is anticipated to fur-
ther exacerbate numerical diffusion. Simulations have been com-
pleted with and without a symmetry plane followed by a compar-
ison of the surface elevation across the entire numerical domain
at every time step. A maximum discrepancy of 0.13(10−3) m has
been observed at a node on the symmetry plane coinciding with
a crest of height 11.79 m—the percentage error of 0.001%, thus,
confirms the negligible influence of the symmetry plane.

Reversibility Check
Aliasing error due to discretization is known to accumulate

amongst high frequency components. To ensure that the evolu-
tion of the amplitude spectrum (see Fig. 5) is solely the result of
physical processes, a reversibility check has been performed with
the enumerated steps:

1. Prescribe initial conditions at t =−20Tp
2. Run simulation forwards in time for 32Tp
3. Halt simulation at t = 12Tp
4. Reverse sign of time step
5. Run simulation backwards in time for 32Tp
6. Halt simulation at t =−20Tp
7. Compare forwards & backwards simulation results

The amplitude spectrum has been calculated with a Discrete
Fourier Transform (DFT) of the surface elevation, extracted from
the simulation at every time step and linearised using four-phase
separation. The linearised wavenumber amplitude spectrum is
shown in Fig. 5 for the initial condition, t = −20Tp, as well
as the time of nonlinear focus, t = 1.3Tp, and the final con-

7 Copyright c© 2019 by ASME



Prescribed Initial Condition, t =−20Tp

(a)

Recovered Initial Condition, t =−20Tp

(e)

Nonlinear Focus of Forwards Run, t = 1.3Tp
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Nonlinear Focus of Backwards Run, t = 1.3Tp
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FIGURE 5. AMPLITUDE SPECTRA OF SURFACE ELEVATION: (a–c) forwards run with positive time step; (c–e) subsequent backwards run
with negative time step to recover initial condition.

dition, t = 12Tp. The initial amplitude spectrum, Fig. 5(a),
depicts the prescribed Gaussian unidirectional spectrum with
wrapped-normal directional-spreading (ς ) of 15◦ . At nonlin-
ear focus, Fig. 5(b), the amplitude spectrum exhibits minor
sidelobes—symmetrically located about the spectral peak with
a discernible preferential excitation of higher wavenumbers. Af-
ter nonlinear focus, Fig. 5(c), the spectral sidelobes have be-
come markedly more pronounced, with an obvious bias towards
high-wavenumber components. An appreciable downshift in
wavenumber for the spectral peak can also be seen. The spec-
tral evolution of the amplitude spectrum, thus, closely matches
the observations of Gibbs & Taylor [8] for the forwards run, in-
dicating consistent results between the code of Bateman, Swan
& Taylor [10] and OceanWave3D. The backwards simulation de-
picts close agreement at nonlinear focus, Fig. 5(d), with the for-
wards simulation and eventually recovers the initial condition,
Fig. 5(e), with a complete reversal of the spectral changes ob-
served in the forwards simulation. Thus, the spectral changes are
attributed entirely to physical processes of wave-wave interaction
rather than the accumulation of high-frequency aliasing errors.

Deep Water Assumption
The potential flow solver OceanWave3D requires a numer-

ical domain of finite extent and, thus, cannot simulate surface
waves in infinitely deep water. Dalzell [16] provides a finite-
depth version of second-order theory that considers two inter-
secting wave trains (denoted with subscripts 1 and 2) and pro-
vides expressions for both surface elevation and velocity poten-
tial. The expressions of Dalzell [16] include second-order su-
perharmonics and subharmonics neither of which adhere to the
dispersion relation and both of which propagate with a dynamic
slaved to the free wave components. The superharmonics man-
ifest with an effective wavenumber of k1 + k2 and, thus, appear
as a short-wavelength modification to the free harmonics. Con-
versely, the subharmonics manifest with an effective wavenum-
ber of k1− k2 and, thus, appear as a long-wavelength modifica-
tion to the free harmonics. The larger length-scale of the sub-
harmonics results in greater depth sensitivity than observed for
the superharmonics or free harmonics influencing the evolution
of the wave group (Fig. 6). The second-order subharmonics are
also associated with the formation of a return current, depicted
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FIGURE 6. DEPTH EFFECT: surface elevation along center-plane of
wave-group at a time (t = 1Tp) soon before nonlinear focus for domain
depths of 200 m (kpd = 5.6) and 800 m (kpd = 22.4).

in Fig. 7, beneath the wave group which counteracts the Stokes
transport occurring at the free-surface and forms a localised de-
pression in surface elevation known as a set down [22]. The re-
turn current and set down scale with the dimensions of the wave
group and, thus, may be influenced by finite-depth effects even
in water typically approximated to be “deep” [22]. The current
study has utilised a domain depth of 200 m which corresponds
to a dimensionless depth of kpd = 5.6. To assess the significance
of the finite-depth effect, a simulation has also been performed
with a domain depth of 800 m, corresponding to a dimension-

Page 1 of 1

11/12/2018file:///C:/Users/scro3385/Desktop/Stokes_transport.svg

FIGURE 7. RETURN CURRENT: Stokes transport at free-surface
counteracted by return current underneath wave group [22].

less depth of kpd = 22.4, with a comparison of surface elevation
along the center-plane of the wave group at a time, t = 1Tp, soon
before nonlinear focus. Cubic-spline interpolation of the curves
in Fig. 6 has been implemented for clarity. The amplitude of
the largest crest is 0.9% smaller for kpd = 5.6 which is expected
because the set down should be more prevalent for kpd = 5.6.
The largest crest in the kpd = 5.6 solution also appears to lag
behind the largest crest in the kpd = 22.4 solution which is the
net result of counteracting effects influencing the group velocity
and return current. The group velocity is expected to be greater
for kpd = 5.6, however, the velocity of the return current is also
expected to be greater for kpd = 5.6 and serves to retard the
propagation of the group since the direction of the return cur-
rent opposes the direction of wave group propagation. Figure 6
confirms that the effect of the return current prevails causing the
wave group to lag behind in the kpd = 5.6 solution. Based on
Fig. 6, the depth effect is, however, considered to be negligible
and kpd = 5.6 a reasonable approximation for deep water.

Third-Order Error Waves
An approximation for the third-order bound harmonics has

been proposed for correction of the initial conditions, based on a
Stokes-type expansion for surface elevation and a scaling argu-
ment for velocity potential. Third-order correction of the initial
conditions may improve the accuracy of the solution and elim-
inate third-order error waves which manifest as superharmonics
and principle harmonics, described by the Stokes expansion in
Eq. (7). The efficacy of the third-order correction has been anal-
ysed with the third-order superharmonic error waves. If no third-
order correction is performed, the third-order bound harmonics
will be generated during the course of the simulation accompa-
nied by the generation of third-order free harmonics, known as
error waves, required to satisfy the governing equations. The
third-order superharmonic error waves possess a wavenumber
substantially higher than the free harmonics comprising the wave
group. Thus, the third-order superharmonic error waves will
eventually lag behind and separate out from the main group as a
result of the lower phase velocity. Figure 8 depicts the surface
elevation along the center-plane of the wave group after non-
linear focus, t = 12Tp, for a solution with exact second-order
correction of the initial conditions and another solution with ex-
act second-order correction and approximate third-order correc-
tion of the initial conditions using the proposed scheme. As can
be seen, the third-order superharmonic error waves have sepa-
rated out from the main group for the case of second-order initial
conditions. In contrast, the solution with approximately third-
order initial conditions exhibits no discernible third-order super-
harmonic error waves confirming the efficacy of the proposed
correction. Note, however, that a similar assessment of the third-
order principle harmonic error waves cannot be performed since
these error waves propagate with the wave group and do not sep-
arate out during the course of the simulation.
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FIGURE 8. APPROXIMATE THIRD-ORDER CORRECTION: sur-
face elevation along center-plane of wave group at time t = 12Tp con-
firms that third-order superharmonic error waves have been eliminated.

DISCUSSION
The spectral evolution depicted in Fig. 5 has been attributed

to resonant third-order interactions, based on the simulations of
Gibbs & Taylor [8] which utilised an expanded form of Dirichlet-
Neumann operator (the G-operator) to capture various orders of
nonlinear wave-wave interactions. The third-order version of the
G-operator produced results similar to Fig. 5 confirming reso-
nant third-order wave-wave interactions as the cause of the spec-
tral evolution. A notable feature of the spectral evolution in Fig.
5 is the development of low-wavenumber and high-wavenumber
sidelobes in the initially narrow-banded wavenumber spectrum,
with an obvious bias in energy transfer to high-wavenumber
components. The high-wavenumber sidelobe initially develops
at an angle of ±35◦ to the spectral peak up until the time of non-
linear focus, corresponding to the arctan(1/

√
2) resonance an-

gle identified by Longuet-Higgins [12] for the spectral-peak of a
narrow-banded three-dimensional wave packet and the resonance
angle predicted by the Phillips “figure-of-eight” loop [23] for
the narrow-banded interactions of a degenerate quartet. Agree-
ment with the narrow-banded results of Longuet-Higgins [12]
and Phillips [23] may be expected in the pre-focus regime since
the wavenumber spectrum remains narrow-banded up until non-
linear focus (Fig. 5(b)). However, after focus, the wavenumber
spectrum broadens and the high-wavenumber sidelobe shifts, ul-
timately forming an angle of ±55◦ with the spectral peak. En-
ergy transfer to high-wavenumber components propagating at
an oblique angle to the spectral peak has, thus, been confirmed
by the present study and may be responsible for the formation

of obliquely propagating wing-waves observed during the sim-
ulated extreme wave event. Contour plots of surface elevation
are shown in Fig. 9 in the post focus regime (t > 1.3Tp); only
crests are shown since the contour levels are evenly distributed
between 1 m and 11 m in intervals of 1 m. The surface eleva-
tion is shown on both sides of the symmetry plane for clarity
and the results are plotted in a reference frame that moves with
the group velocity in the direction of group propagation. Crest
C0 leads the group at t = 5.1Tp, shown in Figure 9(a), and ex-
hibits the highest surface elevation of all the crests—the position
of the largest crest at the front of the wave group is consistent
with the observations of Adcock & Taylor [11] as well as Gibbs
& Taylor [8]. Figure 9(a) also depicts crest C1 trailing behind
the leading crest and a wing-wave W1 appears at the periphery
of the wave group. A gradual merger of the trailing crest C1 with
the wing-wave W1 is depicted at t = 5.5Tp in Fig. 9(b) and at
t = 5.9Tp in Fig. 9(c). The merger process occurs as crest C1
moves towards the front of the wave group, gradually overtaking
the wing-waveW1, while the the leading crest C0 diminishes in
amplitude. The wing-wave W1 can, thus, be seen to propagate
slower than the crest C1 in the mean direction of wave group
propagation—an expected result since the formation of wing-
waves is associated with energy transfer to high-wavenumber
components propagating at an oblique angle to the spectral peak.
Crest C1 has overtaken the wing wave W1 at t = 6.3Tp, shown
in Fig. 9(d), and another wing wave W2 appears at the periph-
ery of the wave group at t = 6.7Tp, shown in Fig. 9(e). The
distance between the wing-waves W1 and W2 is smaller than
the distance between the central crests, consistent with the high-
wavenumber components thought to comprise the wing-waves.
Complete merger of the wing-waveW1 with the central crest C1
can be seen at t = 7.1Tp in Fig. 9(f ) forming a single, crescent-
shaped, broad crest at the front of the wave-group while crest
C0, which initially led the group, has completely receded and
no longer appears in the plot. The present study has, thus, nu-
merically simulated a narrow-banded extreme wave event and
observed energy transfer to high-wavenumber components prop-
agating at an oblique angle to the spectral peak. The preferential
energy transfers have been attributed to third-order resonant in-
teractions and associated with the formation of wing-waves at the
periphery of the wave group. Constructive interference between
the wing-waves and central crests contributes to the formation of
broad, crescent-shaped crests at the front of the wave group—
previously termed “walls of water” [8]. Thus, directional energy
transfer due to third-order interactions has influenced the shape
of the narrow-banded extreme wave event simulated in this study.

CONCLUSION
The current study has investigated the spectral evolution of

a steep, focusing wave group using the fully-nonlinear potential
flow solver OceanWave3D with a detailed assessment of simu-
lation fidelity. A combination of eighth-order finite differencing
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(a) (b) (c)

(d) (e) (f)

FIGURE 9. Contour plots of surface elevation evenly distributed between 1 m and 11 m in intervals of 1 m—only crests are shown: (a) t /Tp = 5.1;
(b) t /Tp = 5.5; (c) t /Tp = 5.9; (d) t /Tp = 6.3; (e) t /Tp = 6.7; (f) t /Tp = 7.1.

with a spatial resolution of 30 grid points per characteristic wave-
length, in the the direction of group propagation, and a Courant-
Friedrichs-Lewy (CFL) condition of 0.5 has been used to validate
the simulations against a Higher-Order Spectral (HOS) code and
achieve energy conservation within 0.024%. A symmetry plane
located along the center-plane of the wave group has proved ef-
fective in reducing the size of the numerical domain, with negli-
gible aggravation of the numerical diffusion, and the finite-depth
domain with kpd = 5.6 has been found to be a reasonable ap-
proximation for infinitely deep water. A novel approximate third-
order correction scheme for the initial conditions has been pro-
posed and shown to eliminate the third-order superharmonic er-
ror waves. Negligible aliasing error has also been confirmed by
running simulations forwards in time, with a positive time step,
and backwards in time, with a negative time step, to recover the
initial condition and ensure that all spectral evolution is the result
of physical processes. Energy transfer to high-wavenumber com-
ponents propagating at an angle of approximately ±35◦ to the
spectral peak has been confirmed, up until the time of nonlinear
focus, which may be responsible for the obliquely propagating
“wing-waves” observed in the simulated extreme wave event.
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Appendix A: Pseudo-Second-Order Error Waves
The exact second-order theory of Dalzell [16] provides a

finite-depth expression for the first-order velocity potential, φ (1),
resulting from two interacting wave trains ( j = 1 and j = 2):

φ
(1) =

2

∑
j=1

a j
g

ω j

cosh{|k j|(z+d)}
cosh{|k j|d}

sinψ j, (13)

where a j, ω j, k j and ψ j denote the component amplitude, radian
frequency, wavenumber and phase respectively.

Reformulation of the hyperbolic functions followed by a first
order Taylor series expansion about z = 0 and invocation of the
linear dispersion relation, ω2

j = g|k j| tanh{|k j|d}, yields:

φ
(1)
∣∣∣∣
z=η

= φ
(1)
∣∣∣∣
z=0

+
2

∑
j=1

2

∑
k=1

1
2

a jakω j sin{ψ j+ψk}

+
2

∑
j=1

2

∑
k=1

1
2

a jakω j sin{ψ j−ψk}

(14)

Calculation of the first order initial conditions at the mean-water-
level (z = 0) rather than the free surface (z = η), thus, results
in spurious terms which resemble second-order superharmonics
and subharmonics in form—manifesting as pseudo-second-order
error waves in the OceanWave3D simulations.
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