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Summary: Garrett & Cummins derived a limit to the energy that may be extracted from an idealised 
tidal channel. In this note we show that this limit may be exceeded if the drag coefficient of a turbine 
is allowed to vary with time. We also consider how the limiting energy may be practically extracted 
using actuator disc theory and again find increased energy is available than previously reported. 
 

Introduction 
 
 Garrett & Cummins [1] used a simple model for the flow in a tidal channel connecting two basins. 
Whilst the model involves a major simplification of the tidal dynamics of a real channel, it is 
nevertheless valuable for gaining understanding of the problem of extracting energy from a tidal 
stream. The model assumes a tidal channel linking two bodies of water whose water levels are 
independent of the flow in the channel. The flow in the channel is then dependent on the difference in 
the water level (assumed sinusoidal), the drag in the channel due to bed friction and turbines, and the 
inertia of the water. After non-dimensionalisation (see [1]) this gives the equation 
dQ '
dt '

= cos t '( )− λ0 +λ1( )Q 'Q '              (1) 

where Q` is the non-dimensional flow rate, t` non-dimensional time, and λ0 and λ1 the non-dimensional 
drag components due to the channel friction and the presence of turbines. Realistic values for λ0 are 
roughly between 0.4 and 4. Garrett & Cummins found the limit for the maximum power that may be 
extracted from such a channel to be remarkably insensitive to the channel properties (λ0), when the 
power output was normalised by density, driving amplitude, the naturally occurring peak flow rate, 
and gravitational acceleration (all results in this note are presented normalised by these variables). The 
Garrett & Cummins limit represents the maximum power that may be extracted by a channel. In 
reality, the amount of power that can be utilised for useful work is rather smaller than the limiting 
value due to mixing behind the turbine, viscous turbine losses, generator losses, etc. The mixing losses 
may be captured using an actuator disc model, with the wake induction factor “tuned” so that 
maximum useful work is extracted [2]. 
 

Power extracted from the flow 
 

The Garrett & Cummins analysis assumed that the drag coefficient, and hence λ1 was constant. In 
practice, this could vary as, say, a turbine is operated at different tip-speed-ratios. We therefore allow 
λ1 to vary with time. As the model is periodic we assume that the optimum form of λ1 can be 
decomposed into harmonics of the driving frequency allowing us to write 

λ1 t '( ) = Λn
n=0

N

∑ cos nt '+φn( )              (2) 

where Λ and ϕ are unknown coefficients and N the number of components used in the analysis. We 
search for the values of these which will give maximum power extraction using an optimisation 
routine, imposing the condition that at all times λ1 must be positive (i.e. the turbines cannot be 
switched to act as a pump). Equation 1 is solved using a 4th order Runge-Kutta time-stepping scheme. 
Due to the symmetric nature of the flow, odd harmonics in Equation 2 do not lead to an increase in the 
maximum power output. However, even harmonics do lead to an increase in the available power. This 
is small for channels where λ0 is large — the analysis of these is quasi-steady and so introducing a 
time varying component would not be expected to yield increased energy. However, for channels with 
small λ0 a substantial increase in power extracted is possible. This is shown in Figure 1 for a different 
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numbers of harmonics. It can be seen that the solution appears to be converging as more components 
are used.  
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Figure 1 Energy that may be extracted from a channel with different numbers of components. 
 

Useful energy available 
 
An upper limit for the useful energy available may be derived by using an actuator disc model in the 
channel to calculate λ1 and the power output. To maximise power output, the wake induction factor of 
the turbines needs to be “tuned” [2]. In this analysis we use the turbine model of Garrett & Cummins 
[3]. Whilst this is valid only for small Froude number, for realistic channels we find negligibly 
different results when the finite Froude number model [4] is used. We assume the optimum wake 
induction factor has sinusoidal components in the same manner as Equation 2 and a routine is run to 
find these. We consider only one row of turbines — multiple rows may be accounted for by dividing 
λ0 by the number of rows. Figure 2 shows the available power for two different blockage ratios. N=0 
corresponds to the analysis of Vennel (see his Fig. 7b). 
 

Conclusions 
 

We have shown that it is possible to extract more power from an idealised channel than the limit 
introduced by Garrett & Cummins and also that more of this may be utilised than given in the anlaysis 
by Vennel. 
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Figure 2 Useful power available. (a) blockage=0.4; (b) blockage=0.8. Thick line — N=0; dash — 

N=2; dots — N=4 


