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Abstract

We prove that the number of immediate descendants of order p10

of Gp is not PORC (Polynomial On Residue Classes) where Gp is the
p-group of order p9 de�ned by du Sautoy's nilpotent group encoding
the elliptic curve y2 = x3 � x. This has important implications for
Higman's PORC conjecture.
Mathematics Subject Classi�cations: 20D15, 11G20

1 Introduction

In [4] the �rst author introduced the following nilpotent group G given by
the presentation:

G =

�
x1; x2; x3; x4; x5; x6; y1; y2; y3 : [x1; x4] = y3; [x1; x5] = y1; [x1; x6] = y2

[x2; x4] = y1; [x2; x5] = y3; [x3; x4] = y2; [x3; x6] = y1

�
where all other commutators are de�ned to be 1.

�The second author was partially supported by CIRM-FBK, Trento
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The group G is a Hirsch length 9, class two nilpotent group. This group
turned out to have some fascinating properties especially in its local be-
haviour with respect to varying the prime p. In particular it was key to
revealing that zeta functions that can be associated with nilpotent groups
have a behaviour that mimics the arithmetic geometry of elliptic curves.
Given that this group has the arithmetic of the elliptic curve

E = Y 2 �X3 +X

embedded into its structure it is interesting to explore other group theoretic
features which re
ect this arithmetic. The presentation can be re�ned to
de�ne a group Gp which is a �nite p-group of exponent p and order p

9. It
turns out that the automorphism group of Gp depends very irregularly on p,
again re
ecting the arithmetic of the underlying elliptic curve. This impacts
very interestingly on the number of immediate descendants of Gp. (These are
the class 3 groups K such that K=
3(K) is isomorphic to Gp.) Immediate
descendants of Gp are either of order p

10 or p11. For p > 3 the number of
descendants of exponent p with order p10 is described by the following:

Theorem 1. Let Dp be the number of descendants of Gp of order p
10 and

exponent p. Let Vp be the number of solutions (x; y) in Fp that satisfy x4 +
6x2 � 3 = 0 and y2 = x3 � x.

1. If p = 5mod 12 then Dp = (p+ 1)
2=4 + 3.

2. If p = 7mod 12 then Dp = (p+ 1)
2=2 + 2.

3. If p = 11mod 12 then Dp = (p+ 1)
2=6 + (p+ 1)=3 + 2.

4. If p = 1mod 12 and Vp = 0 then Dp = (p+ 1)
2=4 + 3.

5. If p = 1mod 12 and Vp 6= 0 then Dp = (p� 1)2=36 + (p� 1)=3 + 4.

Theorem 2. There are in�nitely many primes p = 1mod 12 for which Vp >
0. However there is no sub-congruence of p = 1mod 12 for which Vp > 0 for
all p in that sub-congruence class.

This theorem has an impact on Higman's PORC conjecture, which relates
to the form of the function f(p; n) giving the number of non-isomorphic p-
groups of order pn. (We will give a full statement of the conjecture and some
of its history in Section 2.)
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Corollary 1. The number of immediate descendants of Gp of order p
10 and

exponent p is not PORC.

Corollary 2. The number of immediate descendants of Gp of order p
10 is

not PORC.

Proof. Let Ep be the number of descendants of Gp of order p
10 which do

not have exponent p. Then the total number of descendants of order p10 is
Dp + Ep. When p = 1mod 12 and Vp 6= 0 then Dp has a lower value than
when p = 1mod 12 and Vp = 0. Similarly, the value of Ep is either the same
when Vp 6= 0 as it is when Vp = 0, or (more likely) it is also lower. So,
either way, the total number of descendants of Gp of order p

10 is lower when
p = 1mod 12 and Vp 6= 0 than it is when p = 1mod 12 and Vp = 0.

The authors are very grateful to Jan Denef, Noam Elkies, Roger Heath-
Brown and Hans Opolka for a number of helpful conversations about number
theory.

2 Impact on Higman's PORC conjecture

Higman's PORC conjecture [10] asserts that for �xed n, the number f(p; n)
of �nite p-groups of order pn is given by a polynomial in p whose coe�cients
depend on the residue class of p modulo some �xed integer N , (Polynomial
On Residue Classes). Another way of putting this is to say that for �xed
n there is a �nite set of polynomials in p, g1(p); g2(p); : : : ; gk(p), and a �xed
integer N , such that for each prime p f(p; n) = gi(p) for some i (1 � i � k),
with the choice of i depending on the residue class of pmodN .
Higman [10] proves that for each p and n the number of groups of order

pn which have Frattini subgroups which are central and elementary abelian
is PORC. A. Evseev [7] has extended Higman's result to groups where the
Frattini subgroup is central (and not necessarily elementary abelian). For
n � 7 Higman's conjecture is known to hold true (see [13] and [14]). For
n � 8 the conjecture is open.
The classi�cations of the groups of order p6 and p7 in [13] and [14] make

use of the lower exponent-p-central series of a group. If G is any group then
the lower exponent-p-central series of G,

G = G1 � G2 � : : : � Gi � : : : ;
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is de�ned by setting G1 = G, G2 = G0Gp, and in general setting Gi+1 =
[Gi; G]G

p
i . If G is a �nite p-group then Gc+1 = f1g for some c, and we say

that G has p-class c if Gc 6= f1g, Gc+1 = f1g. If G is a �nite p-group of
p-class c > 1 then we say that G is an immediate descendant of G=Gc. Apart
from the elementary abelian group of order pn, every group of order pn is
an immediate descendant of a group of order pk for some k < n. To list the
groups of order pn, �rst list the groups of order pk for all k < n. Then for
each group G of order pk for k < n, �nd all the immediate descendants of G
which have order pn.
So (for example) the formula

3p2 + 39p+ 344 + 24 gcd(p� 1; 3) + 11 gcd(p� 1; 4) + 2 gcd(p� 1; 5)
given in [13] for the number of p-groups of order p6 (p � 5) can be obtained
as follows. It turns out that for p � 5 there are 42 groups of order at most
p5 which have immediate descendants of order p6. Each of these 42 groups
is given by a presentation involving the prime p symbolically | for example
one of the 42 groups has presentation

ha; b j ap = [b; a; a]; bp = 1; class 3i:
For each of these 42 groups we compute the number of immediate descendants
of order p6, and the formula given above is obtained by adding together
each of these individual contributions. For example, the group above has
p + gcd(p � 1; 3) + 1 descendants of order p6. Finally, we have to add one
to this total to account for the elementary abelian group of order p6. Each
of the individual contributions is PORC, and as a consequence the formula
above is PORC.
Higman does not use the term immediate descendant, and does not ex-

plicitly mention the lower exponent-p-central series. But nevertheless his
theorem can be expressed in these terms. Higman's theorem is that the
number of groups of p-class 2 and order pn is PORC. (Higman uses the term
�-class 2.) Every group of order pn and p-class 2 is an immediate descendant
of the elementary abelian group of order pr for some r < n. If G has order
pr+s, and if G is an immediate descendant of the elementary abelian group of
order pr then in Higman's terminology we say that G has �-complexion (r; s).
Higman de�nes g(r; s; p) to be the number of groups with �-complexion (r; s).
So the number of p-class 2 groups of order pn isX

r+s=n

g(r; s; p):
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Higman shows that g(r; s; p) is PORC for all r and s, and it follows that the
total number of p-class 2 groups of order pn is PORC.
If we were to follow the same scheme for computing the number of groups

of order p10 then we would compute the number of immediate descendants
of order p10 of each group of order less than p10. By adding up all these in-
dividual contributions, and �nally adding one to account for the elementary
abelian group of order p10, we would obtain f(p; 10). The group Gp shows
that at least one of the individual summands is not PORC. It seems likely
that there are other groups of order p9 with a non-PORC number of imme-
diate descandants of order p10, and so it is possible that the grand total is
PORC, even though not all of the summands are PORC. The authors' own
view is that this is extremely unlikely. But we see no way to settle this ques-
tion without a complete classi�cation of the groups of order p10, and there
is no immediate prospect of achieving this. Certainly our example shows
that it is not possible to extend Higman's methods directly to show that the
number of p-class 3 groups of order pn is PORC. His proof that the number
of p-class 2 groups of order pn is PORC relies on the fact that the grand total
is made up of a sum of functions each of which is PORC.

3 Further background

In [8] Grunewald, Segal and Smith introduced the notion of the zeta function
of a group G:

��G(s) =
X
H�G

jG : Hj�s =
1X
n=1

a�n (G)n
�s

where a�n (G) denotes the number of subgroups of index n in G: The de�nition
of this zeta function as a sum over subgroups makes it look like a non-
commutative version of the Dedekind zeta function of a number �eld. They
proved that for �nitely generated, torsion-free nilpotent groups the global
zeta function can be written as an Euler product of local factors which are
rational functions in p�s :

��G(s) =
Y

p prime

��G;p(s)

=
Y

p prime

Z�p (p; p
�s)
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where for each prime p; ��G;p(s) =
P1

n=0 a
�
pn(G)p

�ns and Z�p (X; Y ) 2 Q(X; Y ):
Similar de�nitions and results were also obtained for the zeta function

�/G(s) counting normal subgroups.
One of the major questions raised in the paper [8] is the variation with

p of these local factors Z�p (X;Y ): Many of the examples showed a uniform
behaviour as the prime varied. For example, if G is the discrete Heisenberg
group

G =

0@ 1 Z Z
0 1 Z
0 0 1

1A
then for all primes p

��G;p =
(1� p3�3s)

(1� p�s)(1� p1�s)(1� p2�2s)(1� p3�2s) :

However, if one takes the Heisenberg group with entries now from some
quadratic number �eld then it was shown in [8] that the local factors Z/p(X; Y )
counting normal subgroups depend on how the prime p behaves in the quadratic
number �eld. The authors of [8] were led by such examples and the analogy
with the Dedekind zeta function of a number �eld to ask whether the local
factors always demonstrated a Chebotarev density type behaviour, depend-
ing on the behaviour of primes in number �elds. In particular they speculated
in [8] that it was `plausible' that the following question has a positive answer:
Question Let G be a �nitely generated nilpotent group and � 2 f�; /g.

Do there exist �nitely many rational functions W1(X; Y ); : : : ;Wr(X;Y ) 2
Q(X; Y ) such that for each prime p there is an i for which

��G;p(s) =Wi(p; p
�s)?

If the answer is `yes' we say that the local zeta functions ��G;p(s) of G
are �nitely uniform. If there is one rational function W (X; Y ) such that
��G;p(s) = W (p; p�s) for almost all primes then we say that the local zeta
functions ��G;p(s) of G are uniform.
Grunewald, Segal and Smith elevated this question to a conjecture in the

case that G is a free nilpotent group. In [8] they con�rmed the conjecture in
the case that G is a free nilpotent group of class 2.
The question of the behaviour of these local factors has gained extra

signi�cance in the light of recent work of the �rst author on counting the
number f(p; n) of non-isomorphic �nite p-groups that exist of order pn. In
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[2] and [3] it is explained how Higman's PORC conjecture is directly related
to whether certain local zeta functions attached to free nilpotent groups are
�nitely uniform.
The examples of Grunewald, Segal and Smith hinted that the behaviour of

the local factors as one varied the prime would be related to the behaviour of
primes in number �elds. However the work of the �rst author with Grunewald
[5] and [6] shows that this �rst impression is misplaced. The behaviour is
rather governed by a di�erent question, namely how the number of points
mod p on a variety varies with p.
In [5] and [6], the �rst author and Grunewald show that for each �nitely

generated nilpotent group G there exists an explicit system of subvarieties
Ei (i 2 T; T �nite) of a variety Y de�ned over Z and, for each subset I of T;
a rational function WI(X;Y ) 2 Q(X;Y ) such that for almost all primes p

��G;p(s) =
X
I�T

cI(p)WI(p; p
�s)

where

cI(p) = cardfa 2 Y (Fp) : a 2 Ei(Fp) if and only if i 2 Ig:

So the analogy with the Dedekind zeta function of a number �eld is too
simplistic, rather it is the Weil zeta function of an algebraic variety over Z
that o�ers a better analogy.
In contrast to the behaviour of primes in number �elds, the number of

points mod p on a variety can vary wildly with the prime p and certainly
does not have a �nitely uniform description.

Example 1. ([11], 18.4) Let E be the elliptic curve E = Y 2�X3 +X. Put

jE(Fp)j =
���(x; y) 2 F2p : y2 � x3 + x = 0	�� :

If p = 3mod 4 then jE(Fp)j = p: However if p = 1mod 4 then

jE(Fp)j = p� 2e;

where p = e2 + f 2 and e+ if = 1mod (2 + 2i).

(Note that jE(Fp)j is one less than the value Np given in [11], 18.4 since
Np counts the number of points on the projective version of E. This includes
one extra point at in�nity not counted in the a�ne coordinates.)
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However, despite this theoretical advance which moves the problem into
the behaviour of varieties mod p, it was not clear still whether exotic varieties
like elliptic curves could arise in the setting of zeta functions of groups. It
might be that the question of Grunewald, Segal and Smith would still have
a positive answer since the varieties that arise out of the analysis of the
�rst author and Grunewald were always rational where the number of points
mod p is uniform in p.
The group de�ned at the beginning of this paper turned out to be the �rst

example of a nilpotent groupG whose zeta function depends on the behaviour
mod p of the number of points on the elliptic curve E = Y 2�X3+X. To see
where the elliptic curve is hiding in this presentation, take the determinant
of the 3�3 matrix (aij) with entries aij = [xi; xj+3]. In [4] the group is shown
to provide a negative answer to the question of Grunewald, Segal and Smith:

Theorem 3. The local zeta functions ��G;p(s) and �
/
G;p(s) are not �nitely

uniform.

4 Number Theory

In this section we prove Theorem 2. For the whole of this section we assume
p is a prime with p = 1mod 12.

Lemma 1. There exists x; y in Fp such that x4+6x2�3 = 0 and y2 = x3�x
if and only if there exists y 2 Fp satisfying y8 + 360y4 � 48 = 0.

Proof. Let x; y 2 Fp satisfy x4 + 6x2 � 3 = 0 and y2 = x3 � x. Substitute
x3 � x for y2 in y8 + 360y4 � 48 and use the identity x4 + 6x2 � 3 = 0 to see
that y8+360y4� 48 = 0. Conversely, let y be a root of y8+360y4� 48 in Fp
and let x = � 1

208
(y6 + 388y2). Substituting this value for x in x4 + 6x2 � 3

we see that x4+6x2� 3 = 0, and substituting this value for x in y2� x3+ x
we see that y2 = x3 � x.
Note that although the prime 13 divides 208, this does not a�ect the

proof of Lemma 1, since neither x4 + 6x2 � 3 nor y8 + 360y4 � 48 have roots
in F13.

So we are interested in for which p does y8+360y4�48 = 0 have a solution
in Fp. The splitting �eld of y8+360y4�48 over Q has degree 16, so adjoining
one root of y8 + 360y4 � 48 to Q gives a �eld which is not even Galois let
alone abelian. But if we adjoin a root of y8+360y4� 48 to Q(i;

p
3) then we
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obtain the full splitting �eld. This splitting �eld has degree 4 over Q(i;
p
3),

with Galois group isomorphic to C4. This will be helpful in our analysis.
Since p = 1mod 12, 3 is a quadratic residue of p. Also p can be written

as p = a2 � 12b2 with a; b > 0. We can now establish the following:

Theorem 4. z4 + 360z2 � 48 = 0 has a solution in Fp if and only if a =
1mod 3.

Proof. We use quadratic reciprocity in the number �eld Q(
p
3). We have

p = � � �0 in Q(
p
3) with � = a + 2b

p
3 (where �0 denotes the conjugate of

�).
z4 + 360z2 � 48 = (z2 � r)(z2 � s)

where r = 4
p
3(2 �

p
3)3 and s = r0. So the question is whether r or s can

be a square mod �. Since p = 1mod 12, �48 is a square mod p, and hence
rs is a square mod p. So r is a square mod � if and only if s is a square mod
�.
The condition for r to be a square mod � is given by the Law of Quadratic

Reciprocity for quadratic �elds (see [12]). If � and � are coprime elements
of Z[

p
3] with odd norm, and if � is irreducible, then the quadratic Legendre

symbol
h
�
�

i
is de�ned to be +1 or �1 depending on whether or not � is a

square mod �. Eisenstein's quadratic reciprocity law states that if �, �, 
, �
are irreducible elements with odd norm and if they satisfy (�; �) = (
; �) =
(1) and � � 
; � � �mod 41, then�

�

�

� �
�

�

�
=
h

�

i � �



�
:

The notation � � 
mod 41 means that � = 
mod 4 and that � and 
 have
the same signature, i.e. (sign�;sign�0) = (sign
;sign
0). We want to know
when 4

p
3(2�

p
3)3, or equivalently

p
3(2�

p
3), is a square mod �. So we

take � = � and � =
p
3(2�

p
3). Note that � and � are irreducible elements

of Z[
p
3] with norms p and �3. It follows that Z[

p
3]=(�) �= F3 and thath

�
�

i
= 1 if and only if a = 1mod 3. We establish Theorem 4 by showing thath

�
�

i
=
�
�
�

�
.

If b is even, then � = �2mod 4, where � = 1 or
p
3. So (by de�nition) �

is primary with signature (+1;+1) and
h
�
�

i
=
�
�
�

�
by Corollary 12.9 of [12].
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So suppose that b is odd. Then, depending on whether a = 1 or 3mod 4,
we have � = 5 + 2

p
3mod 4 or � = 11 + 2

p
3mod 4. Accordingly, we take


 = 5 + 2
p
3 or 
 = 11 + 2

p
3 and take � = �. Note that 5 + 2

p
3 and

11 + 2
p
3 are irreducible elements with norms 13 and 109, and that both

have signature (+1;+1). It is straightforward to check that in both cases�


�

�
=
h
�



i
= �1, and so Eisenstein's quadratic reciprocity law implies thath

�
�

i
=
�
�
�

�
.

We can now use the previous theorem to prove the following:

Theorem 5. There is no congruence class p = cmod 12d with c = 1mod 12
and (c; d) = 1 for which y8 + 360y4 � 48 always has a root.

Proof. This follows provided we can show that there are primes p = a2 �
12b2 = cmod 12d with a > 0 and a = 2mod 3. By Dirichlet's Theorem,
the arithmetic progression c + 12nd (n = 1; 2; : : :) contains in�nitely many
primes. Let p be one of these primes, and write p = a2 � 12b2 with a > 0.
If a = 2mod 3 we are done. If not, consider the \arithmetic progression"
�a + 2b

p
3 + 12d(m + n

p
3) with m;n 2 Z. From the Q(

p
3) version of

Dirichlet's theorem (see Rademacher [15]), there is an irreducible element

� = �a+ 2b
p
3 + 12d(m+ n

p
3)

for some m;n 2 Z, with � > 0 and �0 > 0. Then

��0 =
�
�a+ 12dm+ (2b+ 12dn)

p
3
��
�a+ 12dm� (2b+ 12dn)

p
3
�

is a rational prime

p = (�a+ 12dm)2 � 12(b+ 6dn)2 = cmod 12d;

with �a+ 12dm > 0 and (�a+ 12dm) = 2mod 3.

The �nal piece of the jigsaw is the following:

Theorem 6. There are in�nitely primes p = 1mod 12 for which the equation
y8 + 360y4 � 48 = 0 has a solution in Fp.

Proof. The splitting �eld of this polynomial has degree 16 over Q, and so by
Chebotarev's density theorem the set of primes p for which the polynomial
splits over Fp has Dirichlet density 1

16
. In particular, there are in�nitely many

such primes and they must all be equal to 1mod 12.
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5 Counting the descendants of Gp

We use the Lazard correspondence [1] to count the immediate descendants
of Gp of exponent p. This method was used in the classi�cation of groups of
order p6 [13] and p7 [14], and is explained in [13]. The Lazard correspondence
provides an isomorphism between the category of nilpotent Lie rings of order
pn and nilpotency class at most p� 1 and the category of p-groups of order
pn and class at most p � 1. In particular, it gives an isomorphism between
the category of nilpotent Lie algebras of dimension n over the �eld Fp and
class at most p� 1 and the category of groups of exponent p of order pn and
class at most p� 1. The Lie algebra Lp over Fp corresponding to the group
Gp has a presentation on generators x1; x2; : : : ; x6; y1; y2; y 3 with relations

[x1; x4] = y3; [x1; x5] = y1; [x1; x6] = y2;

[x2; x4] = y1; [x2; x5] = y3; [x3; x4] = y2; [x3; x6] = y1;

and with all other Lie commutators trivial. Note that in this particular
case the presentation for the Lie algebra corresponding to Gp is identical to
the presentation for Gp, though of course the commutators have to be read
as Lie commutators rather than as group commutators. This Lie algebra
is nilpotent of class 2 and of dimension 9, with [Lp; Lp] having dimension
3 and vector space basis [x1; x4], [x1; x5], [x1; x6]. (Note that these basis
elements for [Lp; Lp] are equal to the de�ning generators y3; y1; y2, but to
avoid notational con
ict we will not use these three de�ning generators in the
following discussion.) For p > 3 the immediate descendants of Lp correspond
under the Lazard correspondence to the immediate descendants of Gp of
exponent p.
It turns out that Lp has immediate descendants of dimension 10 and 11,

and Theorem 1 is obtained by counting the immediate descendants of Lp
of dimension 10. A Lie algebra A over Fp is (by de�nition) an immediate
descendant of Lp if A is nilpotent of class 3 and if A=[A;A;A] �= Lp. We
compute the immediate descendants as follows. First we �nd the covering
algebra for Lp. This is the largest Lie algebra M which is nilpotent of class
3 and contains an ideal I satisfying the following properties:

1. M=I �= Lp;

2. I � [M;M ];
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3. I is contained in the centre of M:

The immediate descendants of Lp are Lie algebras M=J , where J is an
ideal of M with J < I and J + [M;M;M ] = I. The trickiest part of classi-
fying the immediate descendants of Lp is determining when two immediate
descendants M=J and M=K are isomorphic, and to solve this problem we
need to know the automorphism group of Lp.

6 The automorphism group of Lp

Let V be the vector subspace of Lp spanned by x1; x2; x3; x4; x5; x6. It is
su�cient to compute the subgroup G of the automorphism group of Lp which

maps V onto V . We claim that if

�
� �

 �

�
2GL(2; p) then there is an

automorphism in G de�ned as follows:

x1 ! �x1 + �x4;

x2 ! �x2 + �x5;

x3 ! �x3 + �x6;

x4 ! 
x1 + �x4;

x5 ! 
x2 + �x5;

x6 ! 
x3 + �x6:

Let yi be the image of xi under this map, for i = 1; 2; 3; 4; 5; 6. We show that
y1; y2; : : : ; y6 satisfy the de�ning relations of Lp. An important and useful
property of Lp is the following: if 1 � i; j � 3 then

[x3+i; xj] = [x3+j; xi]:

We will regularly make use of this property without comment.
First consider [y2; y1].

[y2; y1]

= [�x2 + �x5; �x1 + �x4]

= ��[x2; x4] + ��[x5; x1]

= 0:
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The proofs that [y3; y1] = [y3; y2] = 0 and that [yi; yj] = 0 for i; j 2
f4; 5; 6g, are similar.
Now let 1 � i; j � 3. Then

[y3+i; yj]

= [
xi + �x3+i; �xj + �x3+j]

= (�� � �
)[x3+i; xj]:

It follows immediately from this that

[y4; y1] = [y5; y2];

[y4; y3] = [y6; y1];

[y5; y1] = [y4; y2] = [y6; y3];

[y5; y3] = [y6; y2] = 0:

So this map does de�ne an automorphism of Lp.
The subspace of V spanned by x1; x2; x3 generates an abelian subalgebra

of Lp of dimension 3, and it is fairly easy to check that every three dimensional
subspace of V which generates an abelian subalgebra of Lp is the image of
Sphx1; x2; x3i under one of the automorphisms described above. (See Section
7 below.) So, modulo these automorphisms, it is su�cient to consider the
subgroup H � G consisting of automorphisms which map Sphx1; x2; x3i to
itself, and also map Sphx4; x5; x6i to itself. So from now on we will look for
automorphisms in H.
The action of GL(2; p) described above gives automorphisms in H of the

form

x1 ! �x1;

x2 ! �x2;

x3 ! �x3;

x4 ! �x4;

x5 ! �x5;

x6 ! �x6:
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In addition there are automorphisms in H de�ned by

x1 ! �x1;
x2 ! �x2;
x3 ! x3;

x4 ! �x4;
x5 ! �x5;
x6 ! x6;

and

x1 ! ux1;

x2 ! �ux2;
x3 ! x3;

x4 ! ux4;

x5 ! �ux5;
x6 ! x6;

where u2 = �1. (Of course the last of these can only occur when p =
1mod 4.)
In addition, for some primes p there are automorphisms of the form24 x1x2

x3

35 7�!
24 a ab ac
df �f �def
1 d e

3524 x1x2
x3

35
and 24 x4x5

x6

35 7�!
24 a ab ac
df �f �def
1 d e

3524 x4x5
x6

35 :
These automorphisms occur when we can solve the two equations

d4 + 6d2 � 3 = 0;

1� d2 + de2 = 0

over Fp. Then we let a be a solution of a2 = � (d2�1)2
4d

, and we set b = 3d+d3

1�d2 ,

c =
e(d2+3)
d2�1 , f =

d2�1
2da
.
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The equation x2+6x� 3 has roots �3�
p
12, and so there is no solution

to the equations unless 3 is a quadratic residue modulo p. Using quadratic
reciprocity we see that 3 is a quadratic residue modulo p if p = �1mod 12.
The case p = �1mod 12 is straightforward. We need to �nd solutions to

d2 = �3�
p
12:

Since
(�3 +

p
12)(�3�

p
12) = �3;

which is not a quadratic residue modulo p, we see that one of these two
equations has a solution and the other does not. So we have two solutions
�d to the quartic equation. We now need to solve the equation

e2 =
d2 � 1
�d ;

and again, one of these equations has two solutions and the other has none.
So the two equations have exactly two solutions d;�e. For each of these
two solutions we obtain two possibilities for a , and then the given values for
d; e; a determine b; c; f . So there are four automorphisms of this form.
The case p = 1mod 12 is much more complicated. In this case

(�3 +
p
12)(�3�

p
12)

is a quadratic residue modulo p, and so either both the equations d2 =
�3 �

p
12 have solutions, or neither equation has a solution. So there are

either 0 or 4 solutions to d4+6d2�3 = 0. Suppose that we have four solutions
�d1;�d2. Then we need to solve the equations

e2 =
d21 � 1
�d1

; e2 =
d22 � 1
�d2

:

Since �1 is a quadratic residue modulo p it is clear that e2 = d21�1
�d1 either has

4 solutions or none, and similarly e2 =
d22�1
�d2 either has 4 solutions or none.

Now
d21 � 1
d1

� d
2
2 � 1
d2

=
(�4 +

p
12)(�4�

p
12)p

�3
=

4p
�3
;

and it turns out that
p
�3 is a square. This is because if u2 = �1 then

(
1

4
(1 + u)(d3 + 5d))4 = �3:
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So the equation d4 + 6d2 � 3 = 0 either has no solutions or four solutions,
and in the case when there are solutions then we either obtain no solutions
to the equations 1 � d2 + de2 = 0, or we obtain a total of 8 solutions. The
experimental evidence from looking at primes less than a million indicates
that the equation d4 + 6d2 � 3 = 0 has solutions for approximately half the
primes p = 1mod 12, and that approximately half of the primes p = 1mod 12
which have solutions to d4+6d2� 3 = 0 also have solutions to the equations
1� d2+ de2 = 0. (Of course, from the proof of Theorem 2 we see that this is
as predicted by Chebotarev's density theorem.) Note that d; e is a solution to
these two equations in Fp if and only if (x; y) = (d; de) is a solution to the two
equations x4+6x2� 3 = 0 and y2 = x3�x. So, from Theorem 2 we see that
there are in�nitely many primes p = 1mod 12 for which the two equations
have solutions, but that there is no sub-congruence of p = 1mod 12 such
that there are solutions to the two equations for all p in that sub-congruence
class.
For each solution d; e there are 4 solutions for a with a2 = � (d2�1)2

4d
. To

see this note that to �nd 4 solutions for a it is su�cient that �d be a square.
Since �d = 1�d2

e2
we need 1 � d2 to be a square, and this is indeed the case

since

4(1� d2) = 4(1� d2) + (d4 + 6d2 � 3) = d4 + 2d2 + 1 = (d2 + 1)2:

So the four solutions for a are u (d
2+1)e
4

where u4 = 1. The values of b; c; f are
determined by d; e; a. So there are 0 or 32 automorphisms of this form.
We give proofs that these are the only automorphisms in H in Section 8.

7 Abelian subalgebras of dimension 3

As above we let V be the vector subspace of Lp spanned by x1; x2; x3; x4; x5; x6.
In this section we justify our claim made above that any 3 dimensional
subspace of V which generates an abelian subalgebra of Lp has the form
Sph�x1 + �x4; �x2 + �x5; �x3 + �x6i for some �; �. So let W be such a
subspace of V . Let U =Sphx1; x2; x3i.
First assume that U\W 6= f0g, and let u 2 U\Wnf0g. ThenW must be

a subspace of the centralizer of u in V , CV (u). We consider the possibilities
for CV (u). First note that

CV (x2) = Sphx1; x2; x3; x6i;
CV (x3) = Sphx1; x2; x3; x5i;
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and that if � 6= 0 then
CV (x2 + �x3) = U:

Next consider CV (x1 + dx2 + ex3). We have

[x4; x1 + dx2 + ex3] = [x4; x1] + d[x5; x1] + e[x6; x1];

[x5; x1 + dx2 + ex3] = d[x4; x1] + [x5; x1];

[x6; x1 + dx2 + ex3] = e[x5; x1] + [x6; x1]:

It follows that CV (x1 + ax2 + bx3) = U unless

det

24 1 d e
d 1 0
0 e 1

35 = 1� d2 + de2 = 0;
in which case CV (x1 + dx2 + ex3) =Sphx1; x2; x3; dx4 � x5 � dex6i. Since
W � CV (u) we see that either W = U , or W is a subspace of one of
Sphx1; x2; x3; x6i, Sphx1; x2; x3; x5i, Sphx1; x2; x3; dx4 � x5 � dex6i. It follows
that W has non-trivial intersection with Sphx1; x3i. Now CV (x1 + �x3) = U
(for any �), and so if W 6= U we must have x3 2 W . Similarly, using the fact
that W has non-trivial intersection with Sphx1; x2i, we see that if W 6= U
then one of x1 + x2, x1 � x2, x2 lies in W . But this implies that one of
x1 + x2 + x3, x1 � x2 + x3, x2 + x3 lies in W . These three elements all have
centralizers equal to U , and so W = U .
Now assume the U \W = f0g. Then W =Sphu1 + x4; u2 + x5; u3 + x6i

for some u1; u2; u3 2 U . Since W is abelian we have

[x4; u2] = [x5; u1];

[x4; u3] = [x6; u1];

[x5; u3] = [x6; u2];

and it is straightforward to show that this implies that for some � we have
u1 = �x1, u2 = �x2, u3 = �x3.
This establishes our claim.
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8 Automorphisms in H

We consider automorphisms of Lp which map Sphx1; x2; x3i to itself, and also
map Sphx4; x5; x6i to itself. These automorphisms take the form24 x1

x2
x3

35! A

24 x1
x2
x3

35 ;
24 x4
x5
x6

35! B

24 x4
x5
x6

35
where A and B are non-singular 3� 3 matrices over Fp.
First we show that for automorphisms of this form we must have A = �B

for some scalar �.
So let � be an automorphism of this form. Recall that

CV (x2) = Sphx1; x2; x3; x6i;

and so �x2 must also be an element with centralizer of dimension 4. As we
saw in Section 7, the elements in Sphx1; x2; x3i with centralizers of dimension
4 are scalar multiples of x2 and x3, and scalar multiples of elements of the
form x1+dx2+ ex3 where 1�d2+de2 = 0. So �x2 must be a scalar multiple
of one of x2, x3 or x1 + dx2 + ex3. This implies that [�x2; Lp] is one of the
following:

[x2; Lp] = Sph[x4; x1]; [x5; x1]i;
[x3; Lp] = Sph[x5; x1]; [x6; x1]i;

[x1 + dx2 + ex3; Lp] = Sph[x4; x1] + d[x5; x1] + e[x6; x1]; e[x5; x1] + [x6; x1]i:

Note that these 2 dimensional subspaces are all di�erent. In particular, dif-
ferent solutions to the equation 1�d2+de2 give di�erent subspaces. Similarly
�x5 must be a scalar multiple of one of x5, x6 or x4+dx5+ex6, and so [�x5; Lp]
is one of the following:

[x5; Lp] = Sph[x4; x1]; [x5; x1]i;
[x6; Lp] = Sph[x5; x1]; [x6; x1]i;

[x4 + dx5 + [ex6; Lp] = Sph[x4; x1] + d[x5; x1] + e[x6; x1]; e[x5; x1] + [x6; x1]i:

Now [x2; Lp] = [x5; Lp], and so [�x2; Lp] = [�x5; Lp]. This implies that one of
three possibilities must arise:

1. �x2 is a scalar multiple of x2 and �x5 is a scalar multiple of x5,
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2. �x2 is a scalar multiple of x3 and �x5 is a scalar multiple of x6,

3. �x2 is a scalar multiple of x1 + dx2 + ex3 and �x5 is a scalar multiple
of x4 + dx4 + ex6 (with the same d; e).

In other words, the second row of the matrix A is a scalar multiple of
the second row of B. Similarly, the third row of A is a scalar multiple of the
third row of B.
Now let

A =

24 a11 a12 a13
a21 a22 a23
a31 a32 a33

35 ; B =
24 b11 b12 b13
b21 b22 b23
b31 b32 b33

35 :
The second and third rows of B are scalar multiples of the second and third
rows of A, and so we can express [b11; b12; b13] in the form

� [a11; a12; a13] + � [b21; b22; b23] + � [b31; b32; b33]

for some �; �; �. It is a property of the algebra Lp that for any scalars
a; b; c; d; e; f ,

[ax4 + bx5 + cx6; dx1 + ex2 + fx3] = [dx4 + ex5 + fx6; ax1 + bx2 + cx3]:

It follows that

[�x4; �x2]

= �[a11x4 + a12x5 + a13x6; �x2] + �[�x5; �x2] + �[�x6; �x2]

= �[a11x4 + a12x5 + a13x6; a21x1 + a22x2 + a23x3] + �[�x5; �x2] since [x6; x2] = 0

= �[a21x4 + a22x5 + a23x6; a11x1 + a12x2 + a13x3] + �[�x5; �x2]:

Now a21x4 + a22x5 + a23x6 is a scalar multiple of �x5, and so

�[a21x4 + a22x5 + a23x6; a11x1 + a12x2 + a13x3]

is a non-trivial scalar multiple of [�x5; �x1] = [�x4; �x2]. On the other hand,
[�x5; �x2] and [�x4; �x2] are linearly independent, and so we must have � = 0.
Similarly considering [�x4; �x3] we see that � = 0. So the rows of B are all
scalar multiples of the rows of A.
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We may now assume that

[b11; b12; b13] = �[a11; a12; a13];

[b21; b22; b23] = �[a21; a22; a23];

[b31; b32; b33] = �[a31; a32; a33]

for some �; �; �. But then the relation [x5; x1] = [x4; x2] implies that � = �,
and the relation [x6; x1] = [x4; x3] implies that � = �. So B = �A, as claimed.
Composing � with an automorphism of the form

x1 ! �x1;

x2 ! �x2;

x3 ! �x3;

x4 ! �x4;

x5 ! �x5;

x6 ! �x6;

we may assume that A = B, and that �x3 equals x2 or x3 or x1 + dx2 + ex3
for some solution of 1� d2 + de2 = 0.
First, we show that the possibility �x3 = x2 never arises. Suppose, to the

contrary, that �x3 = x2. The relation [x5; x3] = 0 implies that �x5 = �x6
for some �. The condition A = B implies that �x2 = �x3, �x6 = x5. Let
�x1 = ax1 + bx2 + cx3. Then

[�x5; �x1] = �c[x5; x1] + �a[x6; x1]

and
[�x6; �x3] = [x5; x2] = [x4; x1]:

However this con
icts with the relation [x5; x1] = [x6; x3], and so �x3 = x2
cannot arise.
Next consider the possibility that �x3 = x3. Then we must have �x2 = �x2

for some �. This gives �x5 = �x5, �x6 = x6. Let �x1 = ax1+bx2+cx3. Then

[�x5; �x1] = �b[x4; x1] + �a[x5; x1]

and
[�x6; �x3] = [x6; x3] = [x5; x1]:
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So the relation [x5; x1] = [x6; x3] implies that a = �
�1, b = 0. This gives

[�x4; �x1] = �
�2[x4; x1] + c

2[x5; x1] + 2�
�1c[x6; x1]

and
[�x5; �x2] = �

2[x5; x2] = �
2[x4; x1]:

So the relation [x4; x1] = [x5; x2] gives �
4 = 1 and c = 0. So we have

A = B =

24 ��1 0 0
0 � 0
0 0 1

35
where �4 = 1.
Finally consider the possibility that �x3 = x1 + dx2 + ex3 for some d; e

satisfying 1 � d2 + de2 = 0. The relation [x5; x3] = 0 implies that �x5 =
dfx4�fx5�defx6 for some non-zero f . The assumption that A = B implies
that �x2 = dfx1�fx2�defx3, �x6 = x4+dx5+ex6. Let �x1 = ax1+bx2+cx3.
We �rst show that a 6= 0. Suppose to the contrary that a = 0, so that

�x1 = bx2+cx3 and �x4 = bx5+cx6. Then computing [�x4; �x1] and [�x5; �x2]
we see that the relation [x4; x1] = [x5; x2] gives d

2ef = 0. Since f 6= 0 and
d cannot equal 0, this implies that e = 0, and hence that d = �1. But now
computing [�x5; �x1] and [�x6; �x3] we see that the relation [x5; x1] = [x6; x3]
gives �fb = 1 + d2 = 2, dfb = 2d, dfc = 0. However the �rst two of these
three relations are incompatible, and so a = 0 is impossible.
This means that we can take �x1 = ax1+abx2+acx3, �x4 = ax4+abx5+

acx6 for some a; b; c with a 6= 0. Thus

A = B =

24 a ab ac
df �f �def
1 d e

35 :
The relations [x4; x1] = [x5; x2] and [x5; x1] = [x6; x3] now give six equations
which a; b; c; d; e must satisfy:

a2(1 + b2) = f 2(1 + d2); (1)

a2(2b+ c2) = f 2(d2e2 � 2d);
a2c = �d2ef 2;

af(d� b) = 1 + d2;

af(bd� cde� 1) = 2d+ e2;

adf(c� e) = 2e:
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Since af 6= 0, the last three equations above give

(1 + d2)(bd� cde� 1)� (d� b)(2d+ e2) = 0;

(1 + d2)d(c� e)� (d� b)2e = 0:

Multiplying the second of these two equations by e, and then adding to the
�rst, we obtain

(1 + d2)(bd� 1� de2)� (d� b)(2d+ 3e2) = 0:

Multiplying this equation by d, and then using the relation 1� d2 + de2 = 0
to eliminate de2 we obtain

(b� d)
�
d4 + 6d2 � 3

�
= 0:

Now b = d is impossible, because if b = d then the equation af(d�b) = 1+d2
gives d2 = �1, which would imply that A is singular. So we must have

d4 + 6d2 � 3 = 0:

The equation (1 + d2)d(c� e)� (d� b)2e = 0 gives c = d3e�2be+3de
d(1+d2)

. Since

a and f are both non-zero, the �rst and third equations from (1) give

(1 + d2)c+ (1 + b2)d2e = 0:

Substituting d3e�2be+3de
d(1+d2)

for c in this equation we obtain

e
�
b2d3 � 2b+ 2d3 + 3d

�
= 0:

Now e 6= 0, for if e = 0 then the equation 1 � d2 + de2 = 0 implies that
d = �1, which is incompatible with the equation d4 + 6d2 � 3 = 0. So

b2d3 � 2b+ 2d3 + 3d = 0: (2)

The second and third equations from (1) give

(d2e2 � 2d)c+ (2b+ c2)d2e = 0

Substituting d3e�2be+3de
d(1+d2)

for c, and then substituting d2�1
d
for e2 we obtain�

�b+ 3d+ bd2 + d3
� �
2b� 3d+ d5

�
= 0:
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This gives b = 3d�d5
2

or b = d3+3d
1�d2 . However, if we substitute

3d�d5
2

for b in
(2) we obtain

d3
�
d2 + 1

�2 ��d6 + 2d4 + 3d2 � 8� = 0
Now we know that d 6= 0, d2+1 6= 0, d4+6d2�3 = 0. The greatest common
divisor of d4+6d2� 3 and �d6+2d4+3d2� 8 is 1, and so this is impossible.
So b = d3+3d

1�d2 .

Substituting this value for b into our expression for c we obtain c = e(d2+3)
d2�1 .

Also, substituting this value of b into the fourth equation from (1), we obtain
f = d2�1

2da
. Substituting these values for b and f into the �rst equation from

(1) we obtain

a4 =
(d2 � 1)4

4d2 (d4 + 6d2 + 1)
=
(d2 � 1)4

16d2
:

So, as we showed in Section 6, the solutions for a are a = u (d
2+1)e
4

for any u
with u4 = 1.
It is straightforward to verify that with these values of a; b; c; d; e; f then

�x1, �x2, : : : ; �x6; satisfy the de�ning relations of Lp provided 1�d2+de2 = 0
and d4 + 6d2 � 3 = 0. To see this note that the property that
[�x4 + �x5 + 
x6; �x1 + "x2 + �x3] = [�x4 + "x5 + �x6; �x1 + �x2 + 
x3]

for all �; �; 
; �; "; � implies that

[�x4; �x1] = [�x5; �x2];

[�x4; �x3] = [�x6; �x1];

[�x5; �x1] = [�x4; �x2]:

Also, �x2 and �x5 were chosen so that

[�x5; �x3] = [�x6; �x2] = 0;

and the relations
[�xi; �xj] = 0 for i; j 2 f1; 2; 3g;
[�xi; �xj] = 0 for i; j 2 f4; 5; 6g

follow from the fact that �x1; �x2; �x3 2 Sphx1; x2; x3i and �x4; �x5; �x6 2
Sphx4; x5; x6i. So we only need to check the relations [�x4; �x1] = [�x5; �x2]
and [�x5; �x1] = [�x6; �x3], and the six equations (1) ensure that these are
satis�ed. So we only need to check that a; b; c; d; e; f satisfy the equations
(1), and this is straightforward.
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9 The covering algebra

To obtain the covering algebra for Lp we need the following de�ning relations
for Lp as a 9 dimensional Lie algebra with vector space basis x1; x2; : : : ; x9.

[x2; x1] = 0;

[x3; x1] = 0;

[x3; x2] = 0;

[x4; x1] = x7;

[x4; x2] = x8;

[x4; x3] = x9;

[x5; x1] = x8;

[x5; x2] = x7;

[x5; x3] = 0;

[x5; x4] = 0;

[x6; x1] = x9;

[x6; x2] = 0;

[x6; x3] = x8;

[x6; x4] = 0;

[x6; x5] = 0;

[x7; x1] = 0;

[x7; x2] = 0;

[x7; x3] = 0;

[x7; x4] = 0;

[x7; x5] = 0;

[x7; x6] = 0;

[x8; x1] = 0;

[x8; x2] = 0;
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[x8; x3] = 0;

[x8; x4] = 0;

[x8; x5] = 0;

[x8; x6] = 0;

[x9; x1] = 0;

[x9; x2] = 0;

[x9; x3] = 0;

[x9; x4] = 0;

[x9; x5] = 0;

[x9; x6] = 0:

This presentation has 33 relations, but the relations [x4; x1] = x7, [x4; x2] =
x8, [x4; x3] = x9 are taken to be the de�nitions of x7; x8; x9. We introduce
30 additional generators x10; x11; : : : ; x39 corresponding to the 30 relations
which are not de�nitions, and add them as \tails" to these relations. This
gives the following presentation for the covering algebra:

[x2; x1] = x28;

[x3; x1] = x29;

[x3; x2] = x30;

[x4; x1] = x7;

[x4; x2] = x8;

[x4; x3] = x9;

[x5; x1] = x8 + x31;

[x5; x2] = x7 + x32;

[x5; x3] = x33;

[x5; x4] = x34;

[x6; x1] = x9 + x35;

[x6; x2] = x36;
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[x6; x3] = x8 + x37;

[x6; x4] = x38;

[x6; x5] = x39;

[x7; x1] = x10;

[x7; x2] = x11;

[x7; x3] = x12;

[x7; x4] = x13;

[x7; x5] = x14;

[x7; x6] = x15;

[x8; x1] = x16;

[x8; x2] = x17;

[x8; x3] = x18;

[x8; x4] = x19;

[x8; x5] = x20;

[x8; x6] = x21;

[x9; x1] = x22;

[x9; x2] = x23;

[x9; x3] = x24;

[x9; x4] = x25;

[x9; x5] = x26;

[x9; x6] = x27;

where in addition we also have relations implying that the tails are all central.
We now need to enforce the Jacobi identity

[xi; xj; xk] + [xj; xk; xi] + [xk; xi; xj] = 0

for all i; j; k with 1 � k < j < i � 6. This gives 20 Jacobi relations, and we
evaluate [xi; xj; xk] + [xj; xk; xi] + [xk; xi; xj] in each case.

[x3; x2; x1] + [x2; x1; x3] + [x1; x3; x2] = 0
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[x4; x2; x1] + [x2; x1; x4] + [x1; x4; x2] = x16 � x11
[x4; x3; x1] + [x3; x1; x4] + [x1; x4; x3] = x22 � x12
[x4; x3; x2] + [x3; x2; x4] + [x2; x4; x3] = x23 � x18
[x5; x2; x1] + [x2; x1; x5] + [x1; x5; x2] = x10 � x17
[x5; x3; x1] + [x3; x1; x5] + [x1; x5; x3] = �x18
[x5; x3; x2] + [x3; x2; x5] + [x2; x5; x3] = �x12

[x5; x4; x1] + [x4; x1; x5] + [x1; x5; x4] = x14 � x19
[x5; x4; x2] + [x4; x2; x5] + [x2; x5; x4] = x20 � x13
[x5; x4; x3] + [x4; x3; x5] + [x3; x5; x4] = x26

[x6; x2; x1] + [x2; x1; x6] + [x1; x6; x2] = �x23
[x6; x3; x1] + [x3; x1; x6] + [x1; x6; x3] = x16 � x24
[x6; x3; x2] + [x3; x2; x6] + [x2; x6; x3] = x17

[x6; x4; x1] + [x4; x1; x6] + [x1; x6; x4] = x15 � x25
[x6; x4; x2] + [x4; x2; x6] + [x2; x6; x4] = x21

[x6; x4; x3] + [x4; x3; x6] + [x3; x6; x4] = x27 � x19
[x6; x5; x1] + [x5; x1; x6] + [x1; x6; x5] = x21 � x26
[x6; x5; x2] + [x5; x2; x6] + [x2; x6; x5] = x15

[x6; x5; x3] + [x5; x3; x6] + [x3; x6; x5] = �x20
[x6; x5; x4] + [x5; x4; x6] + [x4; x6; x5] = 0

So the Jacobi relations give the following:

x10 = x12 = x13 = x15 = x17 = x18 = x20 = x21 = x22 = x23 = x25 = x26 = 0;

x11 = x16 = x24;

x14 = x19 = x27:

If we enforce these relations, and relabel the generators, then we obtain the
following presentation for the covering algebra.

[x2; x1] = x12;
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[x3; x1] = x13;

[x3; x2] = x14;

[x4; x1] = x7;

[x4; x2] = x8;

[x4; x3] = x9;

[x5; x1] = x8 + x15;

[x5; x2] = x7 + x16;

[x5; x3] = x17;

[x5; x4] = x18;

[x6; x1] = x9 + x19;

[x6; x2] = x20;

[x6; x3] = x8 + x21;

[x6; x4] = x22;

[x6; x5] = x23;

[x7; x1] = 0;

[x7; x2] = x10;

[x7; x3] = 0;

[x7; x4] = 0;

[x7; x5] = x11;

[x7; x6] = 0;

[x8; x1] = x10;

[x8; x2] = 0;

[x8; x3] = 0;

[x8; x4] = x11;

[x8; x5] = 0;

[x8; x6] = 0;

[x9; x1] = 0;
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[x9; x2] = 0;

[x9; x3] = x10;

[x9; x4] = 0;

[x9; x5] = 0;

[x9; x6] = x11;

together with relations which imply that x10; x11; : : : :x23 are central. Call
this covering algebra M . Then M has dimension 23, and the nucleus of M
is [M;M;M ] which has dimension 2 and is spanned by x10 and x11 (with
x10 = [x4; x1; x2] and x11 = [x4; x1; x5]). The immediate descendants of Lp
are algebras M=I, where I is a proper subspace of Sphx10; x11; : : : ; x23i such
that

I + Sphx10; x11i = Sphx10; x11; : : : ; x23i:
Thus Lp has immediate descendants of dimension 10 and 11.

10 Descendants of Lp of dimension 10

Let

�
� �

 �

�
2GL(2; p), and let

y1 = �x1 + �x4;

y2 = �x2 + �x5;

y3 = �x3 + �x6;

y4 = 
x1 + �x4;

y5 = 
x2 + �x5;

y6 = 
x3 + �x6:

Then, [y4; y1] = (�� � �
)[x4; x1], and

[y4; y1; y2] = �(�� � �
)x10 + �(�� � �
)x11;
[y4; y1; y5] = 
(�� � �
)x10 + �(�� � �
)x11:

This means that if M=I is an immediate descendant of Lp of dimension 10,

then we can choose

�
� �

 �

�
so that [y4; y1; y2]+I generates Sphx10; x11; : : : ; x23i=I,
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and so that [y4; y1; y5] 2 I. Note that if we let J =Sphx10; x11; : : : ; x23i then
M=J is isomorphic to Lp and the map xi + J 7! yi + J for i = 1; 2; : : : ; 6
extends to an automorphism of Lp. So every immediate descendant of Lp of
dimension 10 has a presentation on generators x1; x2; : : : ; x10 with relations

[x2; x1] = "x10; (3)

[x3; x1] = �x10;

[x3; x2] = �x10;

[x4; x1] = x7;

[x4; x2] = x8;

[x4; x3] = x9;

[x5; x1] = x8 + �x10;

[x5; x2] = x7 + �x10;

[x5; x3] = �x10;

[x5; x4] = �x10;

[x6; x1] = x9 + �x10;

[x6; x2] = �x10;

[x6; x3] = x8 + �x10;

[x6; x4] = �x10;

[x6; x5] = �x10;

[x7; x1] = 0;

[x7; x2] = x10;

[x7; x3] = 0;

[x7; x4] = 0;

[x7; x5] = 0;

[x7; x6] = 0;

[x8; x1] = x10;

[x8; x2] = 0;
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[x8; x3] = 0;

[x8; x4] = 0;

[x8; x5] = 0;

[x8; x6] = 0;

[x9; x1] = 0;

[x9; x2] = 0;

[x9; x3] = x10;

[x9; x4] = 0;

[x9; x5] = 0;

[x9; x6] = 0;

[x10; x1] = 0;

[x10; x2] = 0;

[x10; x3] = 0;

[x10; x4] = 0;

[x10; x5] = 0;

[x10; x6] = 0;

for some scalars "; �; : : : ; �.
If we take this presentation, and let

y1 = x1;

y2 = x2 � "x8;
y3 = x3 � �x7 � �x8;
y4 = x4;

y5 = x5 � �x7 � �x8 � �x9;
y6 = x6 � �x7 � �x8 � �x9;

then
[y2; y1] = [x2; x1]� "[x8; x1] = 0;

[y3; y1] = [x3; x1]� �[x7; x1]� �[x8; x1] = 0;
[y3; y2] = [x3; x2]� �[x7; x2]� �[x8; x2] + "[x8; x3] = 0;
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[y4; y1] = [x4; x1] = x7;

[y4; y2] = [x4; x2] + "[x8; x4] = x8;

[y4; y3] = [x4; x3] + �[x7; x4] + �[x8; x4] = x9;

[y5; y1] = [x5; x1]� �[x7; x1]� �[x8; x1]� �[x9; x1] = x8;
[y5; y2] = [x5; x2]� �[x7; x2]� �[x8; x2]� �[x9; x2] + "[x8; x5] = x7;

[y5; y3] = [x5; x3]� �[x7; x3]� �[x8; x3]� �[x9; x3] + �[x7; x5] + �[x8; x5] = 0;
[y5; y4] = [x5; x4]� �[x7; x4]� �[x8; x4]� �[x9; x4] = �x10;
[y6; y1] = [x6; x1]� �[x7; x1]� �[x8; x1]� �[x9; x1] = x9;

[y6; y2] = [x6; x2]� �[x7; x2]� �[x8; x2]� �[x9; x2] + "[x8; x6] = 0;
[y6; y3] = [x6; x3]��[x7; x3]��[x8; x3]��[x9; x3]+�[x7; x6]+�[x8; x6]+�[x9; x6] = x8;

[y6; y4] = [x6; x4]� �[x7; x4]� �[x8; x4]� �[x9; x4] = �x10;
[y6; y5] = [x6; x5]��[x7; x5]��[x8; x5]��[x9; x5]+�[x7; x6]+�[x8; x6]+�[x9; x6] = �x10:
And if we de�ne y7 = x7, y8 = x8, y9 = x9, y10 = x10 then we obtain the
relations

[y7; y1] = 0;

[y7; y2] = y10;

[y7; y3] = 0;

[y7; y4] = 0;

[y7; y5] = 0;

[y7; y6] = 0;

[y8; y1] = y10;

[y8; y2] = 0;

[y8; y3] = 0;

[y8; y4] = 0;

[y8; y5] = 0;

[y8; y6] = 0;

[y9; y1] = 0;
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[y9; y2] = 0;

[y9; y3] = y10;

[y9; y4] = 0;

[y9; y5] = 0;

[y9; y6] = 0;

[y10; y1] = 0;

[y10; y2] = 0;

[y10; y3] = 0;

[y10; y4] = 0;

[y10; y5] = 0;

[y10; y6] = 0:

It follows that every immediate descendant of Lp of dimension 10 has a
presentation on generators x1; x2; : : : ; x10 with relations

[x4; x1] = x7;

[x4; x2] = x8;

[x4; x3] = x9;

[x5; x1] = x8;

[x5; x2] = x7;

[x5; x4] = �x10;

[x6; x1] = x9;

[x6; x3] = x8;

[x6; x4] = �x10;

[x6; x5] = �x10;

[x7; x2] = x10;

[x8; x1] = x10;

[x9; x3] = x10;

for some scalars �; �; �, and with all other commutators [xi; xj] with i > j
trivial.
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11 Counting the descendants of dimension 10

As we showed above, every immediate descendant of Lp of dimension 10 has
a presentation on generators x1; x2; : : : ; x10 with relations

[x4; x1] = x7;

[x4; x2] = x8;

[x4; x3] = x9;

[x5; x1] = x8;

[x5; x2] = x7;

[x5; x4] = �x10;

[x6; x1] = x9;

[x6; x3] = x8;

[x6; x4] = �x10;

[x6; x5] = �x10;

[x7; x2] = x10;

[x8; x1] = x10;

[x9; x3] = x10;

for some scalars �; �; �, and with all other commutators [xi; xj] with i > j
trivial. Denote this algebra by A(�;�;�). The isomorphism type of A(�;�;�) is
determined by the triple (�; �; �), but we still need to solve the problem of
when two di�erent triples give isomorphic algebras. Suppose that A(�;�;�) is
isomorphic to A(�0;�0;�0), and let � : A(�0;�0;�0) ! A(�;�;�) be an isomorphism.
Let y1; y2; : : : ; y6 be the images in A(�;�;�) under � of the de�ning generators
of A(�0;�0;�0). Note that A(�;�;�)=hx10i is isomorphic to Lp, and that the map
xi + hx10i 7! yi + hx10i (i = 1; 2; : : : ; 6) extends to an automorphism of Lp.
Note also that

CA(�;�;�)([A(�;�;�); A(�;�;�)])

= [A(�;�;�); A(�;�;�)] + Sphx4; x5; x6i
= [A(�;�;�); A(�;�;�)] + Sphy4; y5; y6i:
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It follows that A(�;�;�) is isomorphic to A(�0;�0;�0) if and only if A(�;�;�) has a set
of generators y1; y2; : : : ; y6 satisfying the de�ning relations of A(�0;�0;�0), and
that this can only happen if the map xi + hx10i 7! yi + hx10i (i = 1; 2; : : : ; 6)
extends to an automorphism of Lp, and if

[A(�;�;�); A(�;�;�)] + Sphx4; x5; x6i = [A(�;�;�); A(�;�;�)] + Sphy4; y5; y6i: (4)

The �rst thing to observe is that if we let y1 = x1, y2 = x2, y3 = x3,
y4 = �x4, y5 = �x5, y6 = �x6 in A(�;�;�), then y1; y2; : : : ; y6 satisfy the de�ning
relations of A(��;��;��). (This is easy to check.) So the triples (�; �; �) and
(��; ��; ��) de�ne isomorphic algebras, and the isomorphism type of A(�;�;�)
depends only on the ratios � : �, � : �, � : �. The next thing to note is that
if y1; y2; : : : ; y6 2 A(�;�;�) satisfy the de�ning relations of A(�0;�0;�0) then the
ratios �0 : �0, �0 : � 0, �0 : � 0 depend only on the values of y4; y5; y6, and not on
the values of y1; y2; y3. The calculations in Section 8, together with equation
(4) and the fact that the map xi+ hx10i 7! yi+ hx10i (i = 1; 2; : : : ; 6) extends
to an automorphism of Lp, imply that24 y4

y5
y6

35 = �A
24 x4
x5
x6

35+
24 b1
b2
b3

35
where b1; b2; b3 2 [A(�;�;�); A(�;�;�)], where � 6= 0, and where

A =

24 u 0 0
0 u�1 0
0 0 1

35
with u4 = 1, or

A =

24 a ab ac
df �f �def
1 d e

35 ;
as described in Section 8. Furthermore, since x4; x5; x6 centralize [A(�;�;�); A(�;�;�)]
the values of [y5; y4], [y6; y4], [y6; y5] depend only on �A, and not on b1; b2; b3.
We now show that 24 y4

y5
y6

35 = �A
24 x4
x5
x6

35
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can arise for all �A of the form just described. Speci�cally, we show that if
we set 24 y1

y2
y3

35 = �A
24 x1
x2
x3

35 ;
24 y4
y5
y6

35 = �A
24 x4
x5
x6

35
where �; � 6= 0, and where A is as just described, then y1; y2; : : : ; y6 do satisfy
the de�ning relations of the algebra A(�0;�0;�0), for some (�

0; �0; � 0) which we
will determine below. One possible way of checking this is to compute [yi; yj]
in terms of x7; x8; x9; x10 for all i > j, and check all the relations one by
one. But there is a shortcut. We know that the map xi + hx10i 7! yi + hx10i
(i = 1; 2; : : : ; 6) extends to an automorphism of Lp. We also know that
y4; y5; y6 centralize [A(�;�;�); A(�;�;�)]. In particular [y4; y1; y5] = 0. So if we set
y7 = [y4; y1], y8 = [y4; y2], y9 = [y4; y3], y10 = [y4; y1; y2], then y1; y2; : : : ; y10
must satisfy relations of the form (3) for some scalars "; �; : : : ; �. However
we must have " = � = � = 0 since the linear span of y1; y2; y3 is the same as
the linear span of x1; x2; x3, and

[x2; x1] = [x3; x1] = [x3; x2] = 0:

We must also have � = � = � = � = � = � = 0 since if 4 � r � 6 and
1 � s � 3 then

[yr; ys] 2 Sph[xi; xj] j i 2 f4; 5; 6g; j 2 f1; 2; 3gg = Sphx7; x8; x9i:

It remains to compute [y5; y4], [y6; y4], [y6; y5].
First consider the case when

A =

24 u 0 0
0 u�1 0
0 0 1

35 :
Then

[y5; y4] = �2[x5; x4] = �
2�x10;

[y6; y4] = �2u[x6; x4] = �
2u�x10;

[y6; y5] = �2u�1[x6; x5] = �
2u�1�x10:

Now
y10 = [y4; y1; y2] = �

2�u[x4; x1; x2] = �
2�ux10;
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and so y1; y2; : : : ; y10 satsify the de�ning relations of A(k�;ku�;ku�1�) where
k = ��2�u�1. Note that as � and � take on all possible non-zero values, k
takes on all possible non-zero values.
Next consider the case when

A =

24 a ab ac
df �f �def
1 d e

35 :
Then

[y5; y4] = �2 (�(af + abdf)[x5; x4]� (adef + acdf)[x6; x4]� (abdef � acf)[x6; x5]) ;
[y6; y4] = �2 ((ad� ab)[x5; x4] + (ae� ac)[x6; x4] + (abe� acd)[x6; x5]) ;
[y6; y5] = �2

�
(d2f + f)[x5; x4] + 2def [x6; x4]� (ef � d2ef)[x6; x5]

�
:

So y1; y2; : : : ; y10 satsify the de�ning relations of A(�0;�0;�0) where24 �0

�0

� 0

35 = k
24 �abdf � af �acdf � adef �abdef + acf

�ab+ ad �ac+ ae abe� acd
d2f + f 2def d2ef � ef

3524 �
�
�

35 ;
for some non-zero scalar k which takes on all possible values as � and � take
on all possible values. Substituting the solutions for a; c; d; f in terms of d
and e, and using the fact that e2 = d2�1

d
, we obtain24 �0

�0

� 0

35 = k
264

1
2d
(d2 + 1)

2 �e (d2 + 1) 1
2d
e (d4 + 4d2 + 3)

1
2
du e

d2�1 (d
2 + 1)

2 �u
d
(d2 + 1) �1

2
u (d4 + 4d2 + 3)

2u�1e 4u�1 d
2�1
d2+1

2u�1

d

(d2�1)
2

d2+1

375
24 �
�
�

35 :
So we have an action on F3p of the form24 �

�
�

35! kB

24 �
�
�

35 ; (5)

where k is an arbitrary non-zero scalar, and where B is a matrix of the form

B =

24 1 0 0
0 u 0
0 0 u�1

35 (6)
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(with u4 = 1) or a matrix of the form

B =

264
1
2d
(d2 + 1)

2 �e (d2 + 1) 1
2d
e (d4 + 4d2 + 3)

1
2
du e

d2�1 (d
2 + 1)

2 �u
d
(d2 + 1) �1

2
u (d4 + 4d2 + 3)

2u�1e 4u�1 d
2�1
d2+1

2u�1

d

(d2�1)
2

d2+1

375 (7)

(with d and e solutions of d4 + 6d2 � 3 = 0 and 1 � d2 + de2 = 0 and with
u4 = 1). The actual matrices that occur depend on the residue class of p
modulo 12. If p = 1mod 12 then we have 4 matrices of the form (6) and
either 0 or 32 matrices of the form (7). So when p = 1mod 12 we either have
a group of order 4(p� 1) acting on F3p, or we have a group of order 36(p� 1).
If p = 5mod 12 then we have 4 matrices of the form (6) and none of the form
(7). So we have a group of order 4(p� 1) acting on F3p. If p = 7mod 12 then
there are 2 matrices of the form (6) and none of the form (7), so we have a
group of order 2(p� 1) acting on F3p. Finally, if p = 11mod 12 then we have
2 matrices of the form (6) and 4 matrices of the form (7), so that we have a
group of order 6(p� 1) acting on F3p.
The number of isomorphism classes of algebras A(�;�;�) is the number

of orbits in the action of these groups on F3p. We compute the number of
orbits in each case by computing the number of vectors in F3p �xed by each
transformation of the form (5). First note that all the transformations �x24 0
0
0

35. On the other hand, a non-zero vector
24 �
�
�

35 can only be �xed by a
transformation of the form (5) if it is an eigenvector of B, and in that case
it is �xed if and only if k is the multiplicative inverse of the eigenvalue. So
we need to count the (non-zero) eigenvectors for each of the matrices B. A
matrix of the form (6) has p3�1 eigenvectors if u = 1, p2+p�2 eigenvectors
if u = �1, and 3p� 3 eigenvectors if u2 = �1. If u = 1 then a matrix of the
form (7) has characteristic polynomial x3 � 256

3
(d3 � d), and an eigenvalue

�4
3
(d3 + 3d). So if p = 11mod 12 then the matrix has a single eigenvalue of

multiplicity 1, and p � 1 eigenvectors. But if p = 1mod 12 then the matrix
has 3 distinct eigenvalues and 3p� 3 eigenvectors. If u = �1 then a matrix
of the form (7) is diagonalizable with eigenvalues 4

3
(d3 + 3d), 4

3
(d3 + 3d),

�4
3
(d3+3d), and p2+p�2 eigenvectors. Finally, if u2 = �1 then a matrix of

the form (7) has 3 distinct eigenvalues �4du+ 2
3
(d3 + 3d), 4d+ 2

3
(d3 + 3d)u,

�4d� 2
3
(d3 + 3d)u, and so has 3p� 3 eigenvectors.

It follows that if p = 1mod 12 and if there are no solutions to the equations
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d4 + 6d2 � 3 = 0 and 1� d2 + de2 = 0, or if p = 5mod 12, then the number
of orbits (i.e. the number of descendants of Lp of dimension 10) is

4(p� 1) + (p3 � 1) + (p2 + p� 2) + 2(3p� 3)
4(p� 1) =

(p+ 1)2

4
+ 3:

If p = 1mod 12 and if there are solutions to the equations d4 + 6d2 � 3 = 0
and 1� d2 + de2 = 0, then the number of orbits is

36(p� 1) + (p3 � 1) + (p2 + p� 2) + 2(3p� 3) + 8(p2 + p� 2) + 24(3p� 3)
36(p� 1)

=
(p� 1)2
36

+
p� 1
3

+ 4:

If p = 7mod 12 then the number of orbits is

2(p� 1) + (p3 � 1) + (p2 + p� 2)
2(p� 1) =

(p+ 1)2

2
+ 2:

And �nally if p = 11mod 12 then the number of orbits is

6(p� 1) + (p3 � 1) + 3(p2 + p� 2) + 2(p� 1)
6(p� 1) =

(p+ 1)2

6
+
p+ 1

3
+ 2:

This completes the proof of Theorem 1.
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