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1 Introduction

Graham Higman wrote two immensely important and in
uential papers on enumer-
ating p-groups in the late 1950s. The papers were entitled Enumerating p-groups I
and II, and were published in the Proceedings of the London Mathematical Society
in 1960 (see [1] and [2]). In these two papers Higman proved that for any given n,
the function f(pn) enumerating the number of p-groups of order pn is bounded by
a polynomial in p, and he formulated his famous PORC conjecture concerning the
form of the function f(pn). He conjectured that for each n there is an integer N
(depending on n) such that for p in a �xed residue class modulo N the function f(pn)
is a polynomial in p. For example, for p � 5 the number of groups of order p6 is

3p2 + 39p+ 344 + 24 gcd(p� 1; 3) + 11 gcd(p� 1; 4) + 2 gcd(p� 1; 5):

(See [3].) So for p � 5, f(p6) is one of 8 polynomials in p, with the choice of polynomial
depending on the residue class of p modulo 60. The number of groups of order p6

is Polynomial On Residue Classes. As evidence in support of his PORC conjecture
Higman proved that, for any given n, the function enumerating the number of p-class
2 groups of order pn is a PORC function of p. He obtained this result as a corollary
to a very general theorem about vector spaces acted on by the general linear group.
As another corollary to this general theorem, he also proved that for any given n
the function enumerating the number of algebras of dimension n over the �eld of q
elements is a PORC function of q. A key step in Higman's proof of these results is
Theorem 2.2.2 from [2].

Theorem 1 (Higman [2]) The number of ways of choosing a �nite number of el-
ements from Fqn subject to a �nite number of monomial equations and inequalities
between them and their conjugates over Fq, considered as a function of q, is PORC.

The statement of this theorem probably requires some explanation! Here we are
choosing elements x1; x2; : : : ; xk (say) from the �nite �eld Fqn (where q is a prime
power) subject to a �nite set of equations and non-equations of the form

xn11 x
n2
2 : : : x

nk
k = 1

1



and
xn11 x

n2
2 : : : x

nk
k 6= 1;

where n1; n2; : : : ; nk are integer polynomials in the Frobenius automorphism x 7! xq

of Fqn . Higman calls these equations and non-equations monomial. For example,
suppose we want to choose x1; x2 2 Fqn such that x1 is the root of an irreducible
quadratic over Fq and such that x22 is the product of the roots of this quadratic.
Then we require that x1 and x2 satisfy

xq
2�1
1 = 1; xq�11 6= 1; xq+11 x�22 = 1: (1)

The equation xq
2�1
1 = 1 guarantees that x1 is the root of a quadratic over Fq, and the

non-equation xq�11 6= 1 guarantees that x1 =2 Fq so that the quadratic is irreducible.
The other root of the quadratic is then xq1, so the last equation guarantees that
x22 is the product of the roots. To make sure that x1; x2 2 Fqn , we also require that
xq

n�1
1 = 1, xq

n�1
2 = 1. Higman's theorem is that the function enumerating the number

of solutions to (1) in Fqn is a PORC function of q.
In this note we give very precise information about the exact form of the PORC

functions needed to enumerate the number of solutions to a set of monomial equations.
Higman's proof of his Theorem 2.2.2 involves �ve pages of homological algebra.

A shorter more elementary proof can be found in [4]. The proof in [4] shows that one
way to calculate the number of solutions to a set of monomial equations is to write
the equations as the rows of a matrix. So we represent the equations

xq
2�1
1 = 1; xq+11 x�22 = 1; xq

n�1
1 = 1; xq

n�1
2 = 1

by the matrix 2664
q2 � 1 0
q + 1 �2
qn � 1 0
0 qn � 1

3775 :
For any given value of q the matrix becomes an integer matrix, and it is shown in [4]
that the number of solutions is the product of the elementary divisors in the Smith
normal form of this integer matrix. To obtain the number of solutions to (1) in Fqn
we subtract the number of solutions to the equations

xq�11 = 1; xq+11 x�22 = 1; xq
n�1
1 = 1; xq

n�1
2 = 1:

The number of solutions to these equations is just the product of the elementary
divisors in the Smith normal form of the matrix2664

q � 1 0
q + 1 �2
qn � 1 0
0 qn � 1

3775 :
(In [4] q is assumed to be prime, but the proof is still valid when q is a prime power.)
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Matrices used in this way to represent a set of monomial equations have entries
which are integer polynomials in q. The columns correspond to the unknowns we are
solving for, and since there will always be rows (qn�1; 0; 0; : : : ; 0), (0; qn�1; 0; : : : ; 0),
. . . , (0; : : : ; 0; qn�1) corresponding the requirement that the unknowns are elements in
Fqn , it follows that the rank of one of these matrices is the number of columns. So the
product of the elementary divisors in the Smith normal form of one of these matrices
is the greatest common divisor of the k�k minors, where k is the number of columns.
These k�k minors are integer polynomials in q, and it is proved in [4] that the greatest
common divisor of a set of integer polynomials in q is a PORC function of q. There
is some ambiguity about what \the greatest common divisor of a set of polynomials"
means here. Suppose we have some integer polynomials f1(q); f2(q); : : : ; fs(q). For
any given value of q these polynomials evaluate to integers, and by \greatest common
divisor of the polynomials" we actually mean \greatest common divisor of the values
of the polynomials at q". It is this integer valued function of q which we claim is
PORC, and it turns out that we can be quite precise about the form that this PORC
function takes.

Theorem 2 The greatest common divisor of a set of integer polynomials in q can be
expressed in the form df where f is an integer polynomial in q and where

d = �+
rX
i=1

�i gcd(q � ni;mi)

for some rational numbers �; �1; �2; : : : ; �r, some integersm1;m2; : : : ;mr withmi > 1
for all i, and some integers n1; n2; : : : ; nr with 0 < ni < mi for all i.

Corollary 3 The number of ways of choosing a �nite number of elements from Fqn
subject to a �nite number of monomial equations and inequalities between them and
their conjugates over Fq can be expressed as a linear combination of terms of the form
df , where f and d are as described in Theorem 2.

2 Choosing �eld elements

To make this note self contained, we give a proof here that we can use a matrix
to represent a set of monomial equations over a �nite �eld, and that the number
of solutions to the equations is the product of the elementary divisors in the Smith
normal form of the matrix.
So suppose we have a set of monomial equations in unknowns x1; x2; : : : ; xk, and

suppose that we want to �nd the number of solutions to these equations in the
�eld Fqn . We represent the equations in a matrix A with k columns, with a row
(n1; n2; : : : ; nk) for each monomial equation x

n1
1 x

n2
2 : : : x

nk
k = 1. We also add in rows

(qn � 1; 0; 0; : : : ; 0); (0; qn � 1; 0; : : : ; 0); : : : ; (0; 0; : : : ; 0; qn � 1)

3



corresponding to the requirement that x1; x2; : : : ; xk 2 Fqn . Note that the entries in
the matrix A are integer polynomials in q. We now take a particular value for q so
that the matrix becomes a matrix with integer entries.
Let ! be a primitive element in Fqn , and write xi = !mi for i = 1; 2; : : : ; k , taking

the exponents mi as elements in Zqn�1. Then a row (�1; �2; : : : ; �k) in the matrix
A corresponds to a relation �1m1 + �2m2 + : : : + �kmk = 0 which we require the
exponents mi to satisfy. The matrix A can be reduced to Smith normal form over
Z by elementary row and column operations. As we apply these operations, the
relations encoded in the matrix change. But we show that at each step the number
of solutions to the relations stays constant.
This is clear for elementary row operations, since an elementary row operation

replaces the relations by an equivalent set of relations. So we need to consider the ef-
fect of elementary column operations. We can consider the k-tuples (m1;m2; : : : ;mk)
as elements in the additive group G = Zqn�1 � Zqn�1 � : : :� Zqn�1. Let A be one of
these relation matrices, and let B be the matrix obtained from A after applying an
elementary column operation. For each such operation we de�ne an automorphism
� of G with the property that g 2 G satis�es the relations given by the rows of A
if and only if g� satis�es the relations given by the rows of B. This shows that the
number of elements in G satisfying the relations given by A is the same as the num-
ber of elements in G satisfying the relations given by B. If the elementary column
operation swaps two columns of A then we let � be the automorphism which swaps
the corresponding entries in (m1;m2; : : : ;mk), and if the elementary column opera-
tion multiplies a column by �1 we let � be the automorphism which multiplies the
corresponding entry in (m1;m2; : : : ;mk) by �1. Finally, if the elementary column
operation subtracts � times column j from column i, then we let � be the automor-
phism which leaves all the entries in (m1;m2; : : : ;mk) �xed except for the j-th entry,
which it replaces by mj + �mi.
The argument above shows that the number of g 2 G satisfying the original set

of relations given by the rows of A is the same as the number of g 2 G satisfying the
relations given by the Smith normal form A. If the elementary divisors in the Smith
normal form are d1; d2; : : : ; dk, then (m1;m2; : : : ;mk) is a solution to these equations
if and only if

d1m1 = d2m2 = : : : = dkmk = 0:

Provided we can show that dijqn� 1 for all i, this shows that the number of solutions
is d1d2 : : : dk, as claimed.
If A is one of these relation matrices with k columns, then the rows of A are

elements in the free Z-module F = Zk. We let R(A) denote the Z-submodule of F
generated by the rows of A. Our claim that dijqn � 1 for all i amounts to the claim
that (qn � 1)F � R(S), where S is the Smith normal form of our initial relation
matrix. The Smith normal form is obtained from the initial matrix by a sequence of
elementary row and column operations, and we show that (qn � 1)F � R(B) for all
the matrices B generated in this sequence.
Let A be the starting matrix. Then it contains rows

(qn � 1; 0; 0; : : : ; 0); (0; qn � 1; 0; : : : ; 0); : : : ; (0; 0; : : : ; 0; qn � 1);
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so it is clear that (qn � 1)F � R(A). Suppose that at some intermediate stage in
the reduction of A to Smith normal form we have two matrices B and C, where C is
obtained from B by an elementary row operation or an elementary column operation.
We assume by induction that (qn � 1)F � R(B), and we show that this implies that
(qn � 1)F � R(C). This is clear if C is obtained from B by an elementary row
operation, since then R(B) = R(C). So consider the case when C is obtained from
B by an elementary column operation. This column operation corresponds to an
automorphism � of F , and if r is a row of B then the corresponding row of C is r�.
So R(C) = R(B)�, and the fact that (qn � 1)F is a characteristic submodule of F
implies that (qn � 1)F � R(C).
This completes the proof that the number of solutions to the relations given by

the rows of the matrix is equal to the product of the elementary divisors in the
Smith normal form. As mentioned in the introduction, the product of the elementary
divisors in the Smith normal form of an integer matrix with k columns and rank k is
the greatest common divisor of the k � k minors. In the situation we are concerned
with, these minors are integer polynomials in q. So the number of solutions to our
monomial equations is the greatest common divisor of a set of integer polynomials
in q. More precisely, we have a set of integer polynomials in q, and for any given
value of q the number of solutions to our monomial equations is the greatest common
divisor over Z of the values of these polynomials at q.

3 Proof of Theorem 2

Let f1(q), f2(q), . . . , fs(q) be a set of integer polynomials in q. We want to compute
the function whose value at q is the greatest common divisor of the integers f1(q),
f2(q), . . . , fs(q). In this section there is no requirement that q be a prime power, and
to make this clear we de�ne a function h : Z! Z by setting

h(x) = gcd(f1(x); f2(x); : : : ; fs(x)) for x 2 Z:

It is the function h we want to compute. As mentioned above, there is some ambiguity
about what we mean by \the greatest common divisor of f1(x), f2(x), . . . , fs(x)". We
now exploit this ambiguity, and treat x as an indeterminate and treat f1(x), f2(x),
. . . , fs(x) as elements of the Euclidean domain Q[x].
We can use the Euclidean algorithm to compute the greatest common divisor f(x)

of f1(x), f2(x), . . . , fs(x) in Q[x] and we can take f(x) to be a primitive polynomial
in Z[x]. We then obtain polynomials g1; g2; : : : ; gs 2 Q[x] such that

f1g1 + f2g2 + : : :+ fsgs = f:

Let m be the least common multiple of the denominators of the coe�cients in
g1; g2; : : : ; gs. Then for any given value of x in Z, the greatest common divisor of
the integers f1(x), f2(x), . . . , fn(x) is df(x) for some d dividing m. Furthermore, as
a function of x, the value of d at x depends only on the residue class of x modulo m.
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We show that we can express d(x) in the form

�+
rX
i=1

�i gcd(x� ni;mi)

described in the statement of Theorem 2. Furthermore we show that we can take the
integers mi to be of the form

m
di
for some square free divisors di of m with di < m.

This shows that h(x) = d(x)f(x) has the form described in Theorem 2.
If m = 1 then d = 1 for all x, and we are done. So suppose that m > 1 and let S

be the set of prime factors of m. For each subset T � S let

dT =
Y
p2T

p;

and consider the function k : Z! Z de�ned by

k(x) =
X
T�S

(�1)jT j gcd(x; m
dT
):

Clearly the value of k at any given value of x depends only on the residue class of x
modulo m. First consider the case when x = m.

k(m) =
X
T�S

(�1)jT jm
dT
= m

Y
p2S
(1� 1

p
) 6= 0:

Next suppose that 1 � x < m. Then there is at least one p 2 S with the property
that the power of p dividing x is less than the power of p dividing m. Pick one such
p and let U = Snfpg. Then

k(x) =
X
T�U

(�1)jT j
�
gcd(x;

m

dT
)� gcd(x; m

pdT
)

�
= 0;

since gcd(x; m
dT
) = gcd(x; m

pdT
) for all T � U . So if we let c = k(m) then 1

c
k(x)

takes values 0; 0; : : : ; 0; 1 as x takes values 1; 2; : : : ;m modulo m. It follows that if
0 < a < m then 1

c
k(x�a) takes values 0; : : : ; 0; 1; 0; : : : ; 0 as x takes values 1; 2; : : : ;m

modulo m (with the 1 in the ath place). So we can express d(x) as a rational linear
combination of the functions k(x � a) for 0 � a < m. This implies that we can
express d(x) as a rational linear combination of functions of the form gcd(x� ni;mi)
where mi =

m
dT
for some T � S. If mi = 1 then we can replace gcd(x�ni;mi) by the

constant 1. Also, we can assume 0 � ni < mi. Finally, using the fact that

mi�1X
a=0

gcd(x� a;mi)

is a constant function, we can assume that 0 < ni < mi, provided we add a constant
term into our expression for d(x). This completes the proof of Theorem 2. Note that
the proof shows that we can assume that the denominators of the rational coe�cients
which appear in the expression for d(x) divide the constant k(m).
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