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1 Introduction

Graham Higman wrote two immensely important and in
uential papers on enumer-
ating p-groups in the late 1950s. The papers were entitled Enumerating p-groups I
and II, and were published in the Proceedings of the London Mathematical Society
in 1960 (see [2] and [3]). In the �rst of these papers Higman proves that if we let
f(pn) be the number of p-groups of order pn, then

p
2
27
n2(n�6) � f(pn) � p( 215+"n)n3 ;

where "n tends to zero as n tends to in�nity. In the second of the two papers Higman
formulated his famous PORC conjecture concerning the form of the function f(pn).
He conjectured that for each n there is an integer N (depending on n) such that for
p in a �xed residue class modulo N the function f(pn) is a polynomial in p. For
example, for p � 5 the number of groups of order p6 is

3p2 + 39p+ 344 + 24 gcd(p� 1; 3) + 11 gcd(p� 1; 4) + 2 gcd(p� 1; 5):

(See [5].) So for p � 5, f(p6) is one of 8 polynomials in p, with the choice of
polynomial depending on the residue class of p modulo 60. The number of groups
of order p6 is Polynomial On Residue Classes. In the same paper Higman proved
that, for any given n, the function enumerating the number of p-class 2 groups of
order pn is a PORC function of p. He obtained this result as a corollary to a very
general theorem about vector spaces acted on by the general linear group. As another
corollary to this general theorem, he also proved that for any given n the function
enumerating the number of algebras of dimension n over the �eld of q elements is
a PORC function of q. In this note we give the PORC formulae for the numbers
of algebras of dimensions 2, 3 and 4 over GF(q), and we give an outline of how
Higman's methods can be used to compute these formulae. I have written a survey
article [7] entitled Graham Higman's PORC conjecture, and this article contains a
detailed calculation of the formulae for the number of algebras of dimension 2 over
GF(q). It must be said that the formulae themselves tell you very little apart from
the fact that they can be very complicated. In particular the formulae for the number
of algebras of dimension 4 might be considered to be some sort of weird joke in rather
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poor taste. But nevertheless I had good fun obtaining them. A complete description
of the algebras of dimension 2 over a �nite �eld is given by Petersson and Scherer [6].
They also give formulae for the number of algebras of dimension 2 over GF(q), which
agree with the formulae given here.
We give the formulae for the numbers of algebras of dimensions 2, 3 and 4 in

Section 2. In Section 3 we give a broad outline of how the formulae can be obtained
and in Section 4 we draw some quite precise conclusions about the asymptotic form
of the formulae for general n.

2 The numbers of algebras of dimensions 2, 3, 4

By an algebra over GF(q) we mean a vector space over GF(q) with a bilinear product.
There is no requirement for the product to satisfy any further conditions such as
associativity or commutativity. Such general algebras are often called non-associative
algebras.
Let g(n; q) denote the number of algebras of dimension n over GF(q) . For n = 2,

g(n; q) is given by one of three polynomials in q of degree 4. If q is a power of 2 then

g(2; q) = q4 + q3 + 4q2 + 3q + 6:

If q is a power of 3 then

g(2; q) = q4 + q3 + 4q2 + 4q + 6:

And if q is a power of p with p > 3 then

g(2; q) = q4 + q3 + 4q2 + 4q + 7:

For n = 3, g(n; q) is again given by one of three formulae depending on whether q
is a power of 2, or a power of 3, or a power of p for some p > 3. But now the formulae
are not straightforward polynomials. If q is a power of 2 then

g(3; q) = q18 + q17 + 2q16 + 3q15 + 4q14 + 5q13 + 7q12 + 8q11 + 10q10 + 13q9

+17q8 + 19q7 + 24q6 + 26q5 + 31q4 + 28q3 + 24q2 + 20q + 20

+(q5 + 2q4 + 2q3 + 2q2 + 3q + 3) gcd(q � 1; 3)
+(q + 1) gcd(q � 1; 5):

If q is a power of 3 then

g(3; q) = q18 + q17 + 2q16 + 3q15 + 4q14 + 5q13 + 7q12 + 8q11 + 10q10 + 13q9

+19q8 + 23q7 + 31q6 + 37q5 + 43q4 + 44q3 + 38q2 + 31q + 25

+(q4 + q3 + 2q2 + 3q + 2) gcd(q � 1; 4)
+(q + 1) gcd(q � 1; 5) + (gcd(q3 � 1; 7) + 2)=3:
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And if q is a power of p with p > 3 then

g(3; q) = q18 + q17 + 2q16 + 3q15 + 4q14 + 5q13 + 7q12 + 8q11 + 10q10 + 13q9

+19q8 + 23q7 + 31q6 + 36q5 + 42q4 + 43q3 + 37q2 + 29q + 23

+(q5 + 2q4 + 2q3 + 2q2 + 3q + 4) gcd(q � 1; 3)
+(q4 + q3 + 2q2 + 3q + 2)(q � 1; 4)
+(q + 1) gcd(q � 1; 5) + (gcd(q3 � 1; 7) + 2)=3:

For n = 4, g(n; q) is given by one of four formulae, depending on whether q is a
power of 2 or 3 or 5, or a power of p with p > 5. As mentioned above, the formulae
are horrendous! If q is a power of 2 then g(4; q) equals

q48 + q47 + 2q46 + 3q45 + 5q44 + 6q43 + 9q42 + 11q41 + 15q40 + 18q39 + 23q38

+27q37 + 34q36 + 39q35 + 47q34 + 54q33 + 64q32 + 72q31 + 84q30 + 94q29

+108q28 + 120q27 + 137q26 + 152q25 + 175q24 + 192q23 + 217q22 + 238q21

+265q20 + 287q19 + 317q18 + 341q17 + 372q16 + 397q15 + 424q14 + 446q13

+469q12 + 477q11 + 485q10 + 480q9 + 474q8 + 450q7 + 422q6 + 362q5

+301q4 + 229q3 + 168q2 + 131q + 91

+gcd(q � 1; 3)(2q15 + 5q14 + 11q13 + 19q12 + 30q11 + 44q10 + 60q9

+78q8 + 97q7 + 109q6 + 111q5 + 111q4 + 114q3 + 111q2 + 91q + 43)

+ gcd(q � 1; 5)(q9 + 3q8 + 7q7 + 21
2
q6 + 13q5 +

35

2
q4 + 25q3 +

63

2
q2 + 36q + 18)

+
1

2
gcd(q + 1; 5)(q6 + q4 + q2 � 2)

+ gcd(q � 1; 7)(q4 + 4q3 + 9q2 + 13q + 8)
+gcd(q � 1; 9)(q2 + 4q + 3)
+gcd(q � 1; 11)(q + 1)

+
1

2
gcd(q � 1; 3)(gcd(q � 1; 5) + gcd(q + 1; 5)):
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When q is a power of 3 then g(4; q) equals

q48 + q47 + 2q46 + 3q45 + 5q44 + 6q43 + 9q42 + 11q41 + 15q40 + 18q39 + 23q38

+27q37 + 34q36 + 39q35 + 47q34 + 54q33 + 64q32 + 72q31 + 84q30 + 94q29

+108q28 + 120q27 + 137q26 + 153q25 + 177q24 + 197q23 + 226q22 + 253q21

+288q20 + 320q19 + 364q18 + 404q17 + 456q16 + 507q15 + 564q14 + 621q13

+686q12 + 736q11 + 787q10 + 819q9 + 846q8 + 846q7 + 815q6 + 731q5

+626q4 + 506q3 + 383q2 + 277q + 146

+gcd(q � 1; 4)(q13 + 2q12 + 5q11 + 11q10 + 20q9 + 32q8 + 45q7 + 57q6

+64q5 + 70q4 + 82q3 + 86q2 + 72q + 35)

+ gcd(q � 1; 8)(q6 + q5 + q4 + 2q3 + 15
2
q2 + 12q +

13

2
) +

1

2
gcd(q � 3; 8)(q2 + 1)

+gcd(q � 1; 5)(q9 + 3q8 + 7q7 + 21
2
q6 + 13q5 +

35

2
q4 + 25q3 +

63

2
q2 + 40q + 23)

+
1

2
gcd(q + 1; 5)(q6 + q4 + q2)

+ gcd(q � 1; 7)(q4 + 4q3 + 9q2 + 13q + 9)

+
1

3
(gcd(q3 � 1; 7) + 2)(q6 + q5 + q4 + q3 + q2 + q + 2)

+gcd(q � 1; 11)(q + 1):

When q is a power of 5 then g(4; q) equals

q48 + q47 + 2q46 + 3q45 + 5q44 + 6q43 + 9q42 + 11q41 + 15q40 + 18q39 + 23q38

+27q37 + 34q36 + 39q35 + 47q34 + 54q33 + 64q32 + 72q31 + 84q30 + 94q29

+108q28 + 120q27 + 137q26 + 153q25 + 177q24 + 197q23 + 226q22 + 253q21

+288q20 + 320q19 + 364q18 + 404q17 + 456q16 + 504q15 + 559q14 + 610q13

+668q12 + 707q11 + 745q10 + 763q9 + 773q8 + 756q7 + 717q6 + 628q5

+524q4 + 394q3 + 266q2 + 183q + 101

+gcd(q � 1; 3)(2q15 + 5q14 + 11q13 + 19q12 + 30q11 + 44q10 + 60q9

+79q8 + 101q7 + 117q6 + 122q5 + 128q4 + 143q3 + 153q2 + 135q + 70)

+ gcd(q � 1; 9)(q2 + 4q + 3)
+gcd(q � 1; 4)(q13 + 2q12 + 5q11 + 11q10 + 20q9 + 32q8 + 45q7 + 57q6

+64q5 + 70q4 + 82q3 + 86q2 + 72q + 34)

+ gcd(q � 1; 8)(q6 + q5 + q4 + 2q3 + 15
2
q2 + 12q +

13

2
) +

1

2
gcd(q � 3; 8)(q2 + 1)

+gcd(q � 1; 7)(q4 + 4q3 + 9q2 + 13q + 9)

+
1

3
(gcd(q3 � 1; 7) + 2)(q6 + q5 + q4 + q3 + q2 + q + 2)

+gcd(q � 1; 11)(q + 1)
+gcd(q � 1; 3) gcd(q � 1; 4):
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And �nally, when q is a power of p with p > 5 then g(4; q) equals

q48 + q47 + 2q46 + 3q45 + 5q44 + 6q43 + 9q42 + 11q41 + 15q40 + 18q39 + 23q38

+27q37 + 34q36 + 39q35 + 47q34 + 54q33 + 64q32 + 72q31 + 84q30 + 94q29

+108q28 + 120q27 + 137q26 + 153q25 + 177q24 + 197q23 + 226q22 + 253q21

+288q20 + 320q19 + 364q18 + 404q17 + 456q16 + 504q15 + 559q14 + 610q13

+668q12 + 707q11 + 745q10 + 761q9 + 771q8 + 749q7 + 706q6 + 615q5

+507q4 + 369q3 + 234q2 + 143q + 84

+gcd(q � 1; 3)(2q15 + 5q14 + 11q13 + 19q12 + 30q11 + 44q10 + 60q9

+79q8 + 101q7 + 117q6 + 122q5 + 128q4 + 143q3 + 153q2 + 135q + 68)

+ gcd(q � 1; 9)(q2 + 4q + 3)
+gcd(q � 1; 4)(q13 + 2q12 + 5q11 + 11q10 + 20q9 + 32q8 + 45q7 + 57q6

+64q5 + 70q4 + 82q3 + 86q2 + 72q + 34)

+ gcd(q � 1; 8)(q6 + q5 + q4 + 2q3 + 15
2
q2 + 12q +

13

2
) +

1

2
gcd(q � 3; 8)(q2 + 1)

+gcd(q � 1; 5)(q9 + 3q8 + 7q7 + 21
2
q6 + 13q5 +

35

2
q4 + 25q3 +

63

2
q2 + 40q + 22)

+
1

2
gcd(q + 1; 5)(q6 + q4 + q2 � 2)

+ gcd(q � 1; 7)(q4 + 4q3 + 9q2 + 13q + 9)

+
1

3
(gcd(q3 � 1; 7) + 2)(q6 + q5 + q4 + q3 + q2 + q + 2)

+gcd(q � 1; 11)(q + 1)

+
1

2
gcd(q � 1; 3)(2 gcd(q � 1; 4) + gcd(q � 1; 5) + gcd(q + 1; 5)):

3 The method

Let A be an n-dimensional algebra over GF(q), and let a1; a2; : : : ; an be a basis for
A as a vector space over GF(q). For each pair of basis elements ai; aj we can express
the product aiaj as a linear combination

aiaj =
X
1�k�n

�ijkak

for some scalars �ijk 2GF(q). These scalars are structure constants for the algebra A,
and completely determine the product on A. So there are at most qn

3
n-dimensional

algebras over GF(q). However if we pick a di�erent vector space basis for A then
we may get a di�erent set of structure constants, so that di�erent sets of structure
constants can give the same algebra A.
We investigate how a change of basis a�ects the structure constants. Let A be

an algebra of dimension n over GF(q), and let a1; a2; : : : ; an and b1; b2; : : : ; bn be two
bases for A as a vector space over GF(q). Let the sets of structure constants for these
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two bases be f�ijk j 1 � i; j; k � ng and f�ijk j 1 � i; j; k � ng. We can express the
elements of the second basis as linear combinations of elements of the �rst basis, and
vice versa:

bi =
nX
j=1

�jiaj (1 � i � n);

aj =
nX
k=1

�kjbk (1 � j � n);

where [�ji] and
�
�kj
�
are n� n matrices over GF(q) which are inverse to each other.

So

bibj =
nX

r;s=1

�ri�sjaras

=
nX

r;s;t=1

�ri�sj�rstat

=
nX

r;s;t;k=1

�ri�sj�rst�ktbk:

It follows that

�ijk =
nX

r;s;t=1

�ri�sj�rst�kt:

Each set of structure constants consists of n3 elements of GF(q), and we can think
of these sets of structure constants as elements in an n3-dimensional vector space V
over GF(q). The formula above de�nes an action of GL(n; q) on V , and if g 2GL(n; q)
then g acts as a linear transformation Tg : V ! V . In addition, Higman's methods
rely critically on the fact that the entries in the matrix for Tg are rational functions
in the entries in the matrix for g.
The number of algebras of dimension n over GF(q) is the number of orbits in this

action of GL(n; q) on V . This number is given by the Cauchy-Frobenius counting
formula

1

jGL(n; q)j

0@ X
g2GL(n;q)

j �x(g)j

1A ;
where �x(g) = fv 2 V j vg = vg. Here, �x(g) is the eigenspace of Tg corresponding
to eigenvalue 1.
The dimension of the eigenspace Tg corresponding to eigenvalue 1 depends only on

the conjugacy class of g in GL(n; q), in other words on the rational canonical form of
g. However Graham Higman [3] introduces of property of matrices called type, which
he attributes to Green [1]. The type of a matrix is coarser than the rational canonical
form, and records the degree of the irreducible polynomials occurring in the rational
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canonical form, together with further information. The rational canonical form of a
matrix A is the matrix26664

C(p1(x)
e1) 0 0 0

0 C(p2(x)
e2) 0 0

0 0
. . . 0

0 0 0 C(pk(x)
ek)

37775 ;
with k blocks down the diagonal denoting the companion matrices of the primary
invariant factors of A. These invariant factors are powers peii of monic irreducible
polynomials pi(x). Let the distinct irreducible polynomials which occur in the rational
canonical form of A be q1; q2; : : : ; qm (with m � k), and for i = 1; 2; : : : ;m let Si
denote the multiset of exponents e such that qei is an invariant factor of A. Then the
type of A is the multiset of ordered pairs

f(deg q1; S1); (deg q2; S2); : : : ; (deg qm; Sm)g:

For example, if the primary invariant factors of A are p1(x)
2, p1(x)

3, p2(x), p2(x),
p2(x)

4 where p1(x) and p2(x) are distinct monic irreducible polynomials, then the
type of A is

f(deg p1; f2; 3g); (deg p2; f1; 1; 4g)g:
(Note that repeated entries in these multisets are signi�cant.) If A 2GL(n; q) then
the number of conjugacy classes in GL(n; q) with the same type as A is a polynomial
in q. Green [1] proves that the size of the conjugacy class of A is also a polynomial in q,
with the polynomial depending only on the type of A. A formula for this polynomial
is given on page 181 of [4]. There are only �nitely many possible types for n � n
matrices. For example if n = 3 then the possible types are

f(3; f1g)g; f(2; f1g); (1; f1g)g; f(1; f1g); (1; f1g); (1; f1g)g;
f(1; f1g); (1; f1; 1g)g; f(1; f1g); (1; f2g)g;
f(1; f1; 1; 1g)g; f(1; f1; 2g)g; f(1; f3g)g:

The rational canonical forms over a �eld F for each of these 8 types are

[C(a(x))] ;

�
C(b(x)) 0
0 �

�
;

24 � 0 0
0 � 0
0 0 �

35 ;
24 � 0 0
0 � 0
0 0 �

35 ; � � 0
0 C((x� �)2)

�
;

24 � 0 0
0 � 0
0 0 �

35 ; � � 0
0 C((x� �)2)

�
;
�
C((x� �)3)

�
;
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where a is an irreducible cubic over F , b is an irreducible quadratic, and where �; �; �
are distinct elements of F . As mentioned above, the number of conjugacy classes
in GL(3; q) of each type is given by a polynomial in q. For example the number of
conjugacy classes of type f(1; f1g); (1; f1g); (1; f1g)g is (q � 1)(q � 2)(q � 3)=6. Note
that this polynomial evaluates to 0 if q � 3. The dimension of �x(g) in its action
on V is not altered if we extend the ground �eld to include the eigenvalues of g, and
we can write down the Jordan canonical form of each of these 8 types in a suitable
extension �eld. For example if g has type f(3; f1g)g then its Jordan canonical form
is 24 � 0 0

0 �q 0

0 0 �q
2

35
for some � 2GF(q3) satisfying �q3�1 = 1, �q�1 6= 1. Note that g is similar to a matrix
of this form with �q

3�1 = 1, �q�1 6= 1 if and only if g has type f(3; f1g)g. Similarly
if g has type f(2; f1g); (1; f1g)g then its Jordan canonical form is24 � 0 0

0 �q 0
0 0 �

35
with �q

2�1 = 1, �q�1 6= 1, �q�1 = 1. Again, these equations and non-equations
characterize elements of type f(2; f1g); (1; f1g)g. To take one �nal example, g has
type f(1; f1g); (1; f1; 1g)g if and only if it has Jordan canonical form24 � 0 0

0 � 0
0 0 �

35
with �q�1 = 1, �q�1 = 1, ���1 6= 1.
For each of these Jordan canonical forms we can pick a basis for V and compute

the matrix for the action Tg of g on V . For example, suppose that g has type
f(1; f1g); (1; f1; 1g)g and Jordan canonical form24 � 0 0

0 � 0
0 0 �

35 :
Then the matrix of Tg is a diagonal matrix with eigenvalues �, �

2��1, �2��1, �, �, �,
�, �, �, �, �, �, ��1�2, �, �, ��1�2, �, �, �, �, �, ��1�2, �, �, ��1�2, �, �. So we see
that the dimension of �x(g) is the number of 1's in this sequence of 27 eigenvalues.
As another example, suppose that g has type f(1; f2g)g and Jordan canonical form�

� �
0 �

�
:
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(Following Higman we take our Jordan blocks to have a rather unusual form, with
eigenvalues on the superdiagonal rather than 1's. This is possible since the eigen-
values are non-zero.) If we take a basis for V which expresses f�ijkg as an 8-vector
(�112; �111; �122; �121; �212; �211; �222; �221), then Tg has matrix

�

266666666664

1 �1 1 �1 1 �1 1 �1
0 1 0 1 0 1 0 1
0 0 1 �1 0 0 1 �1
0 0 0 1 0 0 0 1
0 0 0 0 1 �1 1 �1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 �1
0 0 0 0 0 0 0 1

377777777775
:

Now we have a slight problem. The Jordan canonical form of this matrix depends on
the characteristic of the underlying �eld and is

�

266666666664

1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

377777777775
in characteristic 2,

�

266666666664

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

377777777775
in characteristic 3, and

�

266666666664

1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1

377777777775
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if the characteristic is greater than 3. To see this we proceed as follows. First, we
think of the matrix for Tg as a matrix with entries in the rational function �eld Q(�),
and compute its Jordan canonical form. This is the same as the Jordan canonical
form given above for characteristic greater than 3. We keep track of the transforming
matrix, which has determinant �108�8. We also need to inspect the denominators
of the coe�cients in the transforming matrix, but in this case they are all 1. So this
computation of the Jordan canonical form of Tg is valid in all characteristics greater
than 3. To compute the Jordan canonical form of Tg over �elds of characteristic 2 and
3 we think of the matrix for Tg as a matrix with entries in the rational function �eld
GF(2)(�) and in GF(3)(�). In this way we see that �x(g) has dimension 0 if � 6= 1.
If � = 1 then we see that �x(g) has dimension 4 in characteristic 2 and dimension 3
if the characteristic is greater than 2.
More generally, for any given n there are a �nite number of types of n�n matrices.

For each type t we can write down the Jordan canonical form of a matrix of type t ,
and we can write down a set of monomial equations and non-equations which the
eigenvalues in the Jordan canonical form must satisfy. We can characterize matrices
in GL(n; q) of type t as matrices with the given Jordan canonical form, where the
eigenvalues satisfy the given set of equations and non-equations. As Green [1] proved,
there is a polynomial in q, ft(q), depending on t, such that the conjugacy classes of
all elements in GL(n; q) of type t have ft(q) elements. Take g 2GL(n; q) in Jordan
canonical form, and pick a basis for V so that it represents a set f�ijkg of struc-
ture constants as an n3-vector with the entries indexed lexicographically on the triple
(i; j;�k). Then the matrix for Tg will be an upper triangular matrix with diagonal
entries (eigenvalues) of the form ����1, where �; �; � are eigenvalues of g. The Jordan
canonical form of Tg may depend on the characteristic of GF(q). But there will be
some prime p such that the Jordan canonical form is identical for all characteristics
greater than p. For each of the eigenvalues ����1 of Tg we can compute the dimension
of the corresponding eigenspace (though this dimension will depend on the charac-
teristic of GF(q), as described above). Thus far the calculations only depend on the
type of g and on the characteristic, and not on the particular choices of eigenvalues
for g. For a given choices of eigenvalues of g, the dimension of �x(g) is obtained by
adding up the dimensions of the eigenspaces of Tg corresponding to eigenvalues ���

�1

such that ����1 = 1. So if the distinct eigenvalues of g are �1; �2; : : : ; �m, then the
dimension of �x(g) is determined by which of the monomial equations �i�j�

�1
k = 1

(1 � i; j; k � m) are satis�ed, and which are not satis�ed. Let S be the set of all these
equations �i�j�

�1
k = 1. Then for each subset T � S we can compute the dimension

of �x(g) for those g of type t which satisfy the equations in T and fail to satisfy
the equations in SnT . Recall that there is also a set U of monomial equations and
non-equations which the eigenvalues of g must satisfy to guarantee that g has type
t. The number of choices of eigenvalues of g of type t which satisfy the equations
in T and fail to satisfy the equations in SnT is given by the number of choices of
�1; �2; : : : ; �m which satisfy the equations and non-equations in T [ U , and fail to
satisfy the equations in SnT . Higman [3] proves that the number of solutions in a
�nite �eld to a �nite set of monomial equations and non-equations is PORC. A proof
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of this can also be found in [8]. Furthermore the proof in [8] shows that the number of
solutions can be expressed as a polynomial in q and in various gcds, like the formulae
in Section 2. Each choice of eigenvalues for g of type t determines its conjugacy class,
and the size of this conjugacy class is given by the polynomial ft(q) mentioned above.
It follows that for any given dimension d, the number of g 2GL(n; q) of type t with
�x(g) of dimension d is PORC. It follows thatX

g has type t

j �x(g)j

is PORC. Since there are only �nitely many possible types t for n � n matrices we
see that X

g2GL(n;q)

j �x(g)j

is PORC, and hence that g(n; q) is PORC.
As we saw above, some of our calculations depend on the characteristic of GF(q).

Speci�cally, for any given type t the computation of the Jordan canonical form for Tg
when g has type t depends on the characteristic. We showed that there will be a prime
p such that the Jordan canonical form is the same for all characteristics greater than
p. Let P be the largest prime which arises in this way as we run through all possible
types for n � n matrices. (For n = 2 and 3 we have P = 3 and for n = 4 we have
P = 5.) Then we get a single PORC formula for g(n; q) valid in all characteristics
greater than P , and it can be expressed using gcds in a way similar to the formulae
from Section 2. For each separate characteristic p � P we similarly obtain a single
PORC formula for g(n; q).

4 Conclusions

As we have seen, for any given n there will be a number of di�erent formulae for
g(n; q) depending on the characteristic of GF(q). Speci�cally, there will be a prime
P and one formula for each characteristic p � P , and one further formula for all
characteristics greater than P . The individual formulae will be polynomials in q and
in a number of gcds of the kind we have seen in Section 2. There does not seem to be
a canonical way of writing formulae involving gcds, since there are relations between
them. For example

gcd(q � 1; 4) + gcd(q + 1; 4) + 2 = 4 gcd(q � 1; 2)

and
gcd(q3 � 1; 7) + 2 = gcd(q � 1; 7) + gcd(q � 2; 7) + gcd(q � 4; 7):

It is possible to show that it is su�cient to use gcds of the form gcd(q � a; pk) for
prime powers pk and 0 < a < pk. Some of the formulae in Section 2 involve products
of gcds, such as gcd(q � 1; 3) gcd(q � 1; 4), which could of course be replaced by
gcd(q � 1; 12). In fact it is not hard to see that products of gcds of this form can
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always be replaced by linear combinations of gcds, though now we need to allow gcds
of the form gcd(q � a;m) for arbitrary integers m, with 0 < a < m.
Perhaps more interesting is the asymptotic form of g(n; q), and in fact we can say

something about this. Clearly qn
3

jGL(n;q)j is a lower bound for g(n; q), but it is relatively
easy to provide quite a reasonable upper bound. To see this consider the formula

1

jGL(n; q)j

0@ X
g2GL(n;q)

j �x(g)j

1A
for g(n; q). If g is the identity element then j�x(g)j = qn3 . If g 6= 1 then the maximum
dimension of �x(g) is n3�3n2+6n�4, which is attained when g is a diagonal matrix
with all eigenvalues equal to 1, except for one eigenvalue equal to �1. It follows that

qn
3

jGL(n; q)j < g(n; q) <
qn

3

jGL(n; q)j + q
n3�3n2+6n�4:

Perhaps a better way of expressing this, using the fact that jGL(n; q)j < qn2 , is

qn
3

jGL(n; q)j < g(n; q) <
qn

3
+ qn

3�2n2+6n�4

jGL(n; q)j :

For n = 4, for example this gives

q64

jGL(4; q)j < g(4; q) <
q64 + q52

jGL(4; q)j :

We can push this argument further if we note that the conjugacy class of the diagonal
matrix with n � 1 eigenvalues 1 and one eigenvalue �1 has size jGL(n;q)j

jGL(n�1;q)j(q�1) , so

that this conjugacy class only contributes qn
3�3n2+6n�4

jGL(n�1;q)j(q�1) to g(n; q). The next largest

possibility for the dimension of �x(g) is n3 � 3n2 + 5n � 3 which arises when g is
conjugate to a diagonal matrix with n� 1 eigenvalues 1 and one eigenvalue which is
di�erent from 1 and �1. There are q�3 of these conjugacy classes, and they all have
size jGL(n;q)j

jGL(n�1;q)j(q�1) . So these conjugacy classes contribute
qn
3�3n2+5n�3(q�3)
jGL(n�1;q)j(q�1) to g(n; q).

We could push this argument even further, but the law of diminishing returns takes
over pretty quickly.
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