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Abstract

We prove that for p > 7 there are

p4 + 2p3 + 20p2 + 147p+ (3p+ 29) gcd(p� 1; 3) + 5 gcd(p� 1; 4) + 1246

groups of order p8 with exponent p. If P is a group of order p8 and exponent
p, and if P has class c > 1 then P is a descendant of P=
c(P ). For each group
of exponent p with order less than p8 we calculate the number of descendants
of order p8 with exponent p. In all but one case we are able to obtain a
complete and irredundant list of the descendants. But in the case of the three
generator class two group of order p6 and exponent p (p > 3), while we are
able to calculate the number of descendants of order p8, we have not been
able to obtain a list of the descendants. Most of the calculations were carried
out in nilpotent Lie algebras over GF(p), and the group results and group
presentations are obtained with the Lazard correspondence.

1 Introduction

The classi�cation of groups of order pk for small k has a long history dating back to the
end of the nineteenth century. The groups of order p2 were classi�ed by Netto [13] in
1882. The groups of order p3 were independently determined by Cole and Glover [4],
H�older [12] and Young [20] in 1893. The groups of order p4 were determined by H�older
[12] and Young [20]. The groups of order p5 were classi�ed by Bagnera [1] in 1898.
However it was not until 2004 that Newman, O'Brien and Vaughan-Lee [14] classi�ed
the groups of order p6. (There were several attempts at classifying the groups of
order p6 during the 20th century, but they all su�ered from errors.) The groups of
order p7 were classi�ed by O'Brien and Vaughan-Lee [17] in 2005. The 56,092 groups
of order 28 were determined by O'Brien [16], and the 10,494,213 groups of order 29

were determined by Besche, Eick and O'Brien [7]. They also proved that there are
49,487,365,422 groups of order 210. Databases of the groups of order pk (k � 7) and
of the groups of order 28 and 29 are included in the \Small Groups" libraries in the
algebraic computation systems GAP [9] and Magma [3]. The classi�cation of the
groups of order p7 is based on a classi�cation of the nilpotent Lie rings of order p7,
and a database of the nilpotent Lie rings of order pk for k � 7 is available in a GAP
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package [19]. I have recently computed a list of all 1,396,077 groups of order 38, and
the intention is to make these groups available through a GAP package.
The table below gives the number of groups of order pn for n � 5.

p = 2 p = 3 p � 5
p 1 1 1
p2 2 2 2
p3 5 5 5
p4 14 15 15
p5 51 67 2p+ 61 + 2 gcd(p� 1; 3) + gcd(p� 1; 4)

There are 267 groups of order 26 and 504 groups of order 36. For p � 5 the number
of groups of order p6 is

3p2 + 39p+ 344 + 24 gcd(p� 1; 3) + 11 gcd(p� 1; 4) + 2 gcd(p� 1; 5):

The numbers of groups of order 27, 37, 57 are respectively 2328, 9310, 34297. For
p > 5 the number of groups of order p7 is

3p5 + 12p4 + 44p3 + 170p2 + 707p+ 2455

+(4p2 + 44p+ 291) gcd(p� 1; 3) + (p2 + 19p+ 135) gcd(p� 1; 4)
+(3p+ 31) gcd(p� 1; 5) + 4 gcd(p� 1; 7) + 5 gcd(p� 1; 8)
+ gcd(p� 1; 9):

The functions giving the numbers of groups of order pk for k � 7 are polynomial
on residue classes (PORC). (A function f(p) is PORC if there is a �nite set of
polynomials in p, g1(p), g2(p), . . . , gk(p), and a positive integer N , such that for any
prime p

f(p) = gi(p)

for some i (1 � i � k), with the choice of i depending on the residue class of p modulo
N .) Graham Higman [10] proved that for �xed n the number of groups of order pn,
f(pn), is bounded by a polynomial in p, and he conjectured that (for �xed n) f(pn)
is PORC | this is his famous PORC conjecture. So Higman's conjecture has been
proved correct for n � 7. However du Sautoy and Vaughan-Lee [6] give an example
which throws some doubt on whether Higman's conjecture holds for n = 10.
The classi�cation of groups of order p8 appears to be an extraordinarily di�cult

problem, but we are able to make some progress with the groups of order p8 and
exponent p.

Theorem 1 For p > 7 the number of groups of order p8 and exponent p is

p4 + 2p3 + 20p2 + 147p+ (3p+ 29) gcd(p� 1; 3) + 5 gcd(p� 1; 4) + 1246:
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Note that this function is also PORC. Our proof of this result uses the methods
described in [14] and [17].
I will give details of the methods of proof below, but comment here that all

the proofs are traditional \hand" proofs, albeit with machine assistance with linear
algebra and with adding, multiplying, and factoring polynomials. However the proofs
involve a case by case analysis of hundreds of di�erent cases, and although most of the
cases are straightforward enough it is virtually impossible to avoid the occasional slip
or transcription error. So as far as possible the results and the group presentations
have been computer checked for small primes to eliminate errors. For example, I was
able to use Eamonn O'Brien's p-group generation algorithm [15] in Magma to check
the numbers of two generator groups of order p8 and exponent p for 11 � p � 31,
and I was able to use the StandardPresentation function in Magma to check that
my group presentations generated the right number of groups. (Since there are two
generator groups of order p8 and class 7, the Lazard correspondence only applies for
p > 7.)
Finally, I would like to record my thanks to Roger Heath-Brown and to Tony

Scholl. The calculations threw up several problems in number theory, most of which
I was able to solve myself. But two of the problems were beyond my competence,
and I am very grateful to Roger and Tony for providing me with solutions.

2 The Lie algebra generation algorithm

The main tool used in calculating the nilpotent Lie algebras of dimension 8 is the
Lie algebra generation algorithm, which is an adaptation to Lie algebras of Eamonn
O'Brien's p-group generation algorithm [15].
Let P be a p-group. The p-group generation algorithm uses the lower p-central

series, de�ned recursively by P1(P ) = P and Pi+1(P ) = [Pi(P ); P ]Pi(P )p for i � 1.
The p-class of P is the length of this series. Each p-group P , apart from the elementary
abelian ones, is an immediate descendant of the quotient P=R where R is the last
non-trivial term of the lower p-central series of P . Thus all the groups with order p8,
except the elementary abelian one, are immediate descendants of groups with order pk

for k < 8. All of the immediate descendants of P are quotients of a certain extension
of P ; the isomorphism problem for these descendants is equivalent to the problem
of determining orbits of certain subgroups of this extension under an action of the
automorphism group of P . Not all p-groups have immediate descendants, those that
do are capable.
As described in [17], the classi�cation of the groups of order p7 is based on a clas-

si�cation of the nilpotent Lie rings of order p7. The Lie ring generation algorithm was
developed in analogy with the p-group generation algorithm, and for each nilpotent
Lie ring L of order pk with k < 7, the immediate descendants of L of order p7 were
computed. The groups of order p7 were obtained from the Lie rings of order p7 via
the Lazard correspondence, using the Baker-Campbell-Hausdor� formula.
For groups of exponent p the Lazard correspondence gives a correspondence be-

tween nilpotent Lie algebras over GF(p) and groups of exponent p. IfM is a nilpotent
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Lie algebra of class c > 1 then M is an immediate descendant of M=M c. The Lie al-
gebra generation algorithm gives a method of computing the immediate descendants
of a nilpotent Lie algebra L.
The algorithm is as follows. Let L be a nilpotent Lie algebra of class c, and let

M be the covering algebra of L. Thus M is the largest Lie algebra with an ideal I
satisfying

1. I � �(M) \M2;

2. M=I �= L.

Here, �(M) is the centre of M . We call I the multiplier of L. The condition
I � �(M) ensures that M has class at most c+1, and the condition I �M2 ensures
that dim(M=M2) = dim(L=L2), so that L and M have the same generator number.
The nucleus of M is M c+1, which can be trivial. An allowable subspace of I is a
proper subspace S < I such that S +M c+1 = I. The immediate descendants of L
are the quotients M=S where S is an allowable subspace. Note that if M c+1 = f0g
then there are no allowable subspaces, and hence no immediate descendants. In this
case we say that L is terminal. If L has immediate descendants then we say that L is
capable. The automorphism group of L acts on the subspaces of I, and two quotient
algebrasM=S,M=T are isomorphic if and only if S and T are in the same orbit under
this action. To compute the descendants of L we need to compute the action of the
automorphism group of L on the allowable subspaces of I.
Except in four cases mentioned below, I used the Lie algebra generation algo-

rithm to calculate the immediate descendants of dimension 8 over GF(p) of all the
nilpotent Lie algebras of dimension less than 8. (These calculations are valid for all
p > 3.) I then applied the Baker-Campbell-Hausdor� formula to \translate" these
presentations into group presentations for groups of order p8 and exponent p. The
four cases where I was unable to use the Lie algebra generation algorithm were in
calculating the descendants of the abelian Lie algebras of dimension 4, 5 and 6, and in
computing the immediate descendants of the three generator Lie algebra of class two
and dimension 6. In these four cases I was able to use ideas introduced by Higman
[11] to calculate the number of immediate descendants of dimension 8, and in all but
one case I was also able to obtain a list of the descendants.

3 Graham Higman's PORC theory

Higman [11] proved that the number of groups of order pn with p-class 2 is PORC (for
any �xed n). (Higman uses the term �-class 2.) Evseev [8] has extended Higman's
result to the more general class of p-groups in which the derived group is elementary
abelian and central. Higman and Evseev obtained these results as an application
of a very general theorem of Higman's about the action of the general linear group
on vector spaces. However this theorem takes a page to state, and is given in such
generality that it is hard to see what is going on. So I will just describe the theorem

4



as it applies to computing Lie algebras of class two and to computing the descendants
of the three generator Lie algebra of class 2 and dimension 6.
First consider the computation of class two Lie algebras L over GF(p), where L=L2

has dimension r. If we let M be the free r generator Lie algebra over GF(p) of class

two, thenM=M2 has dimension r, andM2 has dimension r(r�1)
2
. Every Lie algebra L

over GF(p) of class two with dim(L=L2) = r can be expressed in the form L =M=S
for some subspace S � M2. The group GL(r; p) acts on the subspaces of M2 via its
natural action on M=M2, and two Lie algebras M=S and M=T are isomorphic if and
only if S and T are in the same orbit under this action. So we can obtain a complete
and irredundant set of r generator Lie algebras of class two and dimension r + s by
computing a set of orbit representatives for the subspaces of M2 of codimension s.
Note that this is just a special case of the Lie algebra generation algorithm described
above. Higman's general theorem implies that for any given r and s the function
g(r; s) giving the number of orbits of subspaces of M2 of codimension s is PORC.
In [18] I showed how Higman's theory can be turned into a practical algorithm for
computing g(r; s) for moderate values of r, and in that paper I used the algorithm to
compute the number of p-class two groups of order p8. Using the same algorithm it
is easy to compute g(r; s) for r + s = 8. Clearly g(r; 8� r) = 0 for r < 4, and

g(4; 4) = 4; g(5; 3) = 22; g(6; 2) = 14; g(7; 1) = 3:

It is easy enough to write down presentations for the three 7 generator Lie algebras
of class two and dimension 8, as well as for the corresponding groups. I was also able
to write down presentations for the four, �ve and six generator Lie algebras of class
two and dimension 8.
First consider the four generator Lie algebras. As mentioned above, these cor-

respond to orbits of subspaces of M2 of codimension 4 (where M is the free class
two Lie algebra of rank 4). In this case dimM2 = 6, and by duality the orbits of
subspaces of codimension 4 correspond to orbits of subspaces of dimension 4, which
in turn correspond to the 4 four generator Lie algebras of class two and dimension
6. Now the four generator Lie algebras of class two and dimension 6 are known, so
that in e�ect the orbits of subspaces of M2 of dimension 4 are known. Using duality
we can �nd representatives for the orbits of subspaces of codimension 4, and hence
write down presentations for the four generator Lie algebras of class two and dimen-
sion 8. As a �nal check I showed that the four presentations obtained in this way
de�ned di�erent Lie algebras by counting the numbers of elements with centralizers
of dimension 6.
The �ve generator class two Lie algebras of dimension 8 correspond to orbits of

subspaces of codimension 3 in M2, where here M is the free class two Lie algebra of
rank 5. By duality, these orbits correspond to the orbits of subspaces of dimension 3,
and representatives for the 22 orbits were found by Brahana [2]. There is a slightly
di�erent set of representatives for the 22 orbits in Annalisa Copetti's Masters thesis
[5], and I used those orbit representatives to construct the corresponding Lie algebras
of dimension 8. (I am grateful to Mike Newman for drawing my attention to these
two references.)

5



I found presentations for the 14 six generator Lie algebras of class two and di-
mension 8 by more or less randomly generating lots of presentation until I found 14
non-isomorphic Lie algebras. By counting the numbers of elements with breadth 1
(i.e. with centralizers of codimension 1), and by taking the dimension of the centre
into account, I was able to distinguish between these 14 algebras, except for two alge-
bras with p4�p2 elements with breadth 1 and with centres of dimension 2. But these
two algebras cannot be isomorphic since in one of them the elements with breadth 1
all commute, and in the other algebra they do not all commute.
I was able to calculate the number of immediate descendants of dimension 8 of

the three generator Lie algebra L of class two and dimension 6 as follows. The Lie
algebra L is the free class two Lie algebra of rank 3, and its immediate descendants
are quotients M=S of the free class three Lie algebra M of rank 3 by subspaces S of
codimension 2 inM3. As above, there is an action of GL(3; p) on the subspaces ofM3

via its natural action on M=M2, and two quotients M=S and M=T are isomorphic if
and only if S and T are in the same orbit under this action. I proved that the number
of orbits of subspaces of codimension 2 is

p4 + p3 + 10p2 + 82p+ (3p+ 19) gcd(p� 1; 3) + 3 gcd(p� 1; 4) + 522

for all p > 3. However I have made no attempt to �nd a list of the descendants.

4 Two worked examples

There are two important di�erences between applications of the Lie algebra generation
algorithm to calculating the descendants of an abelian Lie algebra L (as described in
the last section) and applications to calculating the descendants of a general nilpotent
Lie algebra L. The �rst di�erence is that in general the automorphism group of
L may be quite hard to compute, but when L is abelian of dimension r then the
automorphism group is just GL(r; p). The second important di�erence is that when
L is abelian all the subspaces of the multiplier I are allowable, whereas this is not
the case for general L.
One of the things that makes the calculation of the nilpotent Lie algebras of di-

mension 8 feasible is that the automorphism groups of the nilpotent Lie algebras of
dimension less than 8 can be described in a uniform way. For example, the automor-
phism group of

L = ha; b; c j ca� bab; cb; class 3i
consists of all maps sending a; b; c to

�a+ �b+ 
c+ d; �b+ �c+ e; �2c+ f

where �; �; 
; �; � 2GF(p), �; � 6= 0, and where d; e 2 L2, f 2 L3. Occasionally the
automorphism group depends on the residue class of p modulo some integer N . For
example the automorphism group of

ha; b; c j cb; bac; caa� bab; cac� baa; class 3i
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consists of all maps sending a; b; c to

�a+ d; ��b+ 
ba+ e; ��2c+ �ca+ f

or to
�a+ d; ��c+ 
ca+ e; ��2b+ �ba+ f

where �; �; 
; � 2GF(p), � 6= 0, �3 = 1, and where d 2 L2, e; f 2 L3. So in this
case the automorphism group depends on pmod 3. Since the number of descendants
depends on the action of the automorphism group, having a uniform description for
the automorphism group makes it more likely that there will be a uniform description
of the descendants. In [6] Marcus du Sautoy and I investigated a class two Lie algebra
of dimension 9 on 6 generators a; b; c; d; e; f satisfying the relations

da = eb; db = ea = fc; dc = fa;

with all other Lie products of the generators zero. It turns out that the automorphism
group of this Lie algebra takes one of two forms (both with a uniform description),
where the choice of automorphism group depends on whether or not the polynomial
y8+360y4�48 has a root in GF(p). Furthermore, the primes for which y8+360y4�48
has a root cannot be described in terms of residue class conditions. The number of
descendants of dimension 10 of this Lie algebra depend on which of the two auto-
morphism groups apply, and so the number of descendants of dimension 10 is not
PORC. Of course there are likely to be other Lie algebras of class 2 and dimension
9 with a non-PORC number of descendants of dimension 10, so that the grand total
of class 3 Lie algebras of dimension 10 may be PORC (with all the bad behaviour
over individual Lie algebras cancelling out). But our example does show that the au-
tomorphism groups of class two Lie algebras of dimension 9 can exhibit non-uniform
behaviour which does not occur in the automorphism groups of nilpotent Lie algebras
of dimension 7 or less.
We illustrate the Lie algebra generation algorithm by applying it to two three

generator Lie algebras of dimension 7 and class 3.
First we consider the Lie algebra

L = ha; b; c j cb; bac; caa� bab; cac� baa; class 3i

with automorphism group depending on pmod 3, as described above. The nucleus of
the covering algebra has dimension 1, and is spanned by babb. So the descendants of
dimension 8 have presentations of the form

ha; b; c j cb� xbabb; bac� ybabb; caa� bab� zbabb; cac� baa� tbabb; class 4i

for some x; y; z; t 2GF(p). If we let c0 = c+�ca+�db, then a; b; c0 satisfy the relations

c0b = (x+ �y + �)babb; bac0 = (y + �)babb; c0aa� bab = zbabb; c0ac0 � baa = tbabb
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so we can assume that x = y = 0. (I prefer to work with presentations rather than
with allowable subspaces, but the two approaches are equivalent.) So we consider
presentations of the form

ha; b; c j cb; bac; caa� bab� zbabb; cac� baa� tbabb; class 4i:

We now restrict ourselves to automorphisms which preserve the relations cb = bac =
0. If we apply the automorphisms, and rewrite the relations in terms of the images of
a; b; c under the automorphisms, then the �rst type of automorphism changes (z; t)
to �

��1�2z; ��1�t
�
;

and the second type changes (z; t) to�
��1�2t; ��1�z

�
:

So we can take (z; t) to be (0; 0), (0; 1), or (1; t) where t ranges over a set of representa-
tives for the equivalence classes of non-zero elements of GF(p) under the equivalence
relation de�ned by t � 1

t
and t � �t for all � such that �3 = 1. Hence there are p+5

2

descendants when p = 2mod 3, and p+17
6
descendants when p = 1mod 3.

As a second example, we consider the algebra

L = ha; b; c j cb; bab; bac; cac; class 3i:

The automorphism group consists of all maps0@ a
b
c

1A!

0@ � � 

0 � �
0 � �

1A0@ a
b
c

1A+
0@ d
e
f

1A (*)

where

0@ � � 

0 � �
0 � �

1A is a non-singular matrix in GL(3; p), and d; e; f 2 L2. If M is

the covering algebra of L, and if I � M is the multiplier, then the descendants of L
of dimension 8 have the form M=S for some allowable subspace S of codimension 1
in I. The nucleus of M has dimension 3, and is spanned by baaa, baac, caaa. So if S
is an allowable subspace of codimension 1 in I, then

dim(S \ hbaaa; baac; caaai) = 2:

The automorphisms described above map0@ baaa
baac
caaa

1A!

0@ �3� ��2��+ �2
� �3�
0 �2�� � �2�� 0
�3� ��2�� + �2
� �3�

1A0@ baaa
baac
caaa

1A ;
and so we see that automorphism group has two orbits on subspaces of the nu-
cleus of dimension 2. Orbit representatives for the two orbits are hbaaa; baaci and
hbaaa; caaai. So we may suppose that hbaaa; baaci � S or that hbaaa; caaai � S.
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First consider the case when hbaaa; baaci � S. Then M=S has a presentation of
the form

ha; b; c j cb� xcaaa; bab� ycaaa; bac� zcaaa; cac� tcaaa; baaa; baac; class 4i;

with x; y; z; t 2GF(p). We now restrict ourselves to automorphisms preserving the
relations baaa = baac = 0. This means that we have to restrict ourselves to automor-
phisms (*) with � = 0. If we apply one of these automorphisms0@ a

b
c

1A!

0@ � � 

0 � 0
0 � �

1A0@ a
b
c

1A+
0@ d
e
f

1A
where e = �ba+�ca modulo L3 and f = �ba+�ca modulo L3 then (x; y; z; t) changes
to

��3��1(x��+y(�����)+z(��������)�t��; y��2; y���+z���; y��2+2z���+t��2):

So we can take y = 0 or 1. If y = 1 then we need � = ��2�2, and we can take
x = z = 0 and take t = 0; 1 or ! where ! is any element of GF(p) which is not a
square. If y = 0 then we can take z = 0 or 1. If y = 0 and z = 1 then we can take
x = t = 0. If y = z = 0 then we can take t = 0 or 1. If y = z = t = 0 then we
can take x = 0 or 1, and if y = z = 0, t = 1 then we can take x = 0. So L has 7
descendants of dimension 8 satisfying the relations baaa = baac = 0.
Similarly, if hbaaa; caaai � S then M=S has a presentation of the form

ha; b; c j cb� xbaac; bab� ybaac; bac� zbaac; cac� tbaac; baaa; caaa; class 4i;

with x; y; z; t 2GF(p). To preserve the relations baaa = caaa = 0 we need to restrict
ourselves to automorphisms (*) with � = 
 = 0. However it is su�cient to consider
automorphisms of the form

a! a; b! b+ �ca; c! c+ "ba+ �ca+ �caa:

Then
(x; y; z; t)! (x+ "y + �z � �t� �"� �; y � 2�; z � �; t+ 2");

and so we can take x = y = z = t = 0. So L has just one descendant of dimension 8
satisfying the relations baaa = caaa = 0.
Putting these two calculations together we see that L has 8 descendants of dimen-

sion 8.

5 Summary of results

There follows below a complete list of the nilpotent Lie algebras over GF(p) with
immediate descendants of dimension 8, together with the numbers of those descen-
dants. These results are valid for all p > 3. In all except for one algebra we have
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a complete and irredundant list of the descendants. In the case when p is greater
than the class of the descendants, I used the Lazard correspondence and the Baker-
Campbell-Hausdor� formula to produce a complete list of the corresponding groups.
There are Magma programs to generate the groups in a �le named \p8expp.tar" on
my website http://users.ox.ac.uk/~vlee/PORC/ for those who are interested.
The Lie algebra presentations have a standard format with a set of generators, a

set of relators, and a speci�ed nilpotency class. I denote the Lie product of a and b by
ab, rather than the more usual [a; b], and I use a left-normed convention so that baa
denotes (ba)a. Many of the presentations involve a parameter ! denoting a primitive
element in GF(p). For consistency, I assume that for a given value of p the same
value of ! is used throughout. A few of the presentations also involve a parameter �,
and one presentation involves two parameters �; �. These parameters take values in
GF(p). For example

ha; b j baa� babb; babba� �babbbb; class 6i

is a family of p distinct algebras (one for each value of � 2GF(p)), and

ha; b; c j ca+ baa; cb; baab� baaa; babb� �baaa; class 4i (� 6= 0; 1)

is a family of p�2 distinct algebras. In the case of parametrized families of Lie algebras
like this, the number of descendants given is the total number of descendants of all
the algebras in the family.

5.1 Two generator Lie algebras

There are p+21 two generator nilpotent Lie algebras over GF(p) which have immedi-
ate descendants of dimension 8. We list these Lie algebras below, grouping them by
dimension and class. For p > 3 the number of two generator nilpotent Lie algebras
of dimension 8 over GF(p) is

5p2 + 22p+ 2gcd(p� 1; 3) + 76:

Dimension 5, class 3 Descendants of dimension 8
ha; b j class 3i 1

Dimension 6, class 4 Descendants of dimension 8
ha; b j baaa; baab; class 4i 2p+ 7

ha; b j baab; baaa+ babb; class 4i 1
2
(p2 + 3p+ gcd(p� 1; 3) + 11)

ha; b j baab; babb+ !baaa; class 4i 1
2
(p2 + p� gcd(p� 1; 3) + 7)

Dimension 7, class 4 Descendants of dimension 8
ha; b j baaa; class 4i 4p+ 12

ha; b j baaa� babb; class 4i p2 + 3p+ gcd(p� 1; 3) + 9
ha; b j baaa� !babb; class 4i p2 + p+ 5� gcd(p� 1; 3)
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Dimension 7, class 5 Descendants of dimension 8
ha; b j baa; class 5i 3

ha; b j baa� babbb; class 5i 3
ha; b j baa� babb; class 5i 5

ha; b j baaa; baab; babba; class 5i p+ 5
ha; b j baaa; babba; baab� babbb; class 5i p2 + p
ha; b j baab; babba; baaa� babbb; class 5i p2 + p+ 2 + gcd(p� 1; 3)

Dimension 7, class 6 Descendants of dimension 8
ha; b j baa; babba; class 6i 4

ha; b j baa� babbbb; babba; class 6i 4
ha; b j baa; babba� babbbb; class 6i 1
ha; b j baa� babbb; babba; class 6i p+ 1

ha; b j baa� babbb� babbbb; babba; class 6i p+ 1
ha; b j baa� babbb; babba� babbbb; class 6i 1

ha; b j baa� babb; babba� �babbbb; class 6i (� 6= 1) 3p+ 1
ha; b j baa� babb; babba� babbbb; class 6i 2 + gcd(p� 1; 3)

ha; b j baa� babb� babbbb; babba� babbbb; class 6i p
ha; b j baa� babb� !babbbb; babba� babbbb; class 6i p

5.2 Three generator Lie algebras

The total number of three generator nilpotent Lie algebras of dimension 8 over GF(p)
for p > 3 is

p4 + p3 + 10p2 + 82p+ (3p+ 19) gcd(p� 1; 3) + 3 gcd(p� 1; 4) + 522:

There is only one three algebra of dimension 5 or less with immediate descendants
of dimension 8.

Dimension 5, class 2 Descendants of dimension 8
ha; b; c j cb = 0; class 2i 28

There is only one three generator algebra of dimension 6 and class 2, and I was able
to compute the number of immediate descendants of dimension 8 using the method
introduced by Graham Higman in his PORC paper. But I do not have presentations
for the descendants.

Dimension 6, class 2 Descendants of dimension 8
ha; b; c j class 2i p4 + p3 + 5p2 + 13p+ (2p+ 3) gcd(p� 1; 3) + gcd(p� 1; 4) + 26

There are 10 three generator algebras of dimension 6 and class 3, but only 4 have
immediate descendants of dimension 8. These four algebras have a total of 2p + 32
immediate descendants of dimension 8.
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Dimension 6, class 3 Descendants of dimension 8
ha; b; c j ca; cb; class 3i 9

ha; b; c j ca� bab; cb; class 3i 11
ha; b; c j ca� baa; cb; class 3i p+ 8 + (gcd(p� 1; 3)� 1)=2

ha; b; c j ca� bab; cb� !baa; class 3i p+ 4� (gcd(p� 1; 3)� 1)=2

There are 5 three generator algebras of dimension 6 and class 4, but only 4 have
immediate descendants of dimension 8. These four algebras have a total of

2p+ 25 + gcd(p� 1; 3) + gcd(p� 1; 4)

immediate descendants of dimension 8.

Dimension 6, class 4 Descendants of dimension 8
ha; b; c j baa; ca� babb; cb; class 4i 6

ha; b; c j baa� babb; ca� babb; cb; class 4i p+ 2 + gcd(p� 1; 3)
ha; b; c j baa; ca; cb; class 4i 10 + gcd(p� 1; 4)

ha; b; c j baa� babb; ca; cb; class 4i p+ 7

There are p+27+ gcd(p� 1; 3) three generator algebras of dimension 7 and class
3, and 26 of then have immediate descendants of dimension 8, including one which
only arises when p = 1mod 3 and one which only arises when p = 2mod 3. The total
number of descendants of dimension 8 is 3p2 + 27p+ 8gcd(p� 1; 3) + 179.

Dimension 7, class 3 Descendants of dimension 8
ha; b; c j cb; caa; cab; cac; class 3i p+ 23

ha; b; c j cb� baa; caa; cab; cac; class 3i p2 + 4p+ 11 + gcd(p� 1; 3)
ha; b; c j cb; bab; bac; cac; class 3i 8

ha; b; c j cb� baa; bab; bac; cac; class 3i p2 + 5p+ 3
ha; b; c j cb; bac; caa� bab; cac; class 3i p+ 10

ha; b; c j cb� baa; bac; caa� bab; cac; class 3i 2p+ 3
ha; b; c j cb; baa; bac; cac; class 3i 17

ha; b; c j cb� caa; baa; bac; cac; class 3i 5p+ 7 + 3 gcd(p� 1; 3)
ha; b; c j cb; bac; caa; cac� bab; class 3i p+9

2

ha; b; c j cb; bac; caa; cac� !bab; class 3i p+9
2

ha; b; c j cb� baa; bac; caa; cac� bab; class 3i p(p+1)
2

+ 1

ha; b; c j cb� baa; bac; caa; cac� !bab; class 3i p(p+1)
2

+ 1
ha; b; c j cb; bac; caa� baa; cac+ bab; class 3i 9

In the next three tables we save space in the presentations by only specifying the
relators. The generators a; b; c and the class are to be understood.
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Dimension 7, class 3 Descendants of dimension 8
cb� baa; bac; caa� baa; cac+ bab p+ 4

cb; baa; bac; caa p+ 10 + 3 gcd(p� 1; 3)
cb; bac; caa; cac� baa p+ 7

cb; bac; caa� bab; cac� baa (4p� (p� 1) gcd(p� 1; 3) + 14)=6
cb; bac; caa� !bab; cac� baa (p = 1mod 3) p+8

3

cb; baa; caa; cac 14
cb; baa; caa� bab; cac 3 + gcd(p� 1; 3)
cb; bab� baa; caa; cac 10
cb; baa; caa; cac� !bab p+ 8� gcd(p� 1; 3)

cb; baa; caa� bac; cac� !bab (p+1) gcd(p�1;3)+12
6

cb; baa; caa� kbab� bac; cac� !bab (p = 2mod 3) p+4
3

bab; caa; cab; cac; cba; cbb; cbc 2p+ 14
bab� baa; bac; caa� baa; cab; cac+ baa; cbb+ baa; cbc� baa 2

In the second from last of these algebras, k is chosen so that it is not a value of

�(�2 + 3!�2)

�(3�2 + !�2)
:

There are 4p+33 three generator algebras of class 4 and dimension 7, and 3p+28
of these are capable. The total number of descendants of dimension 8 of these algebras
is

2p2 + 31p+ (p+ 5) gcd(p� 1; 3) + gcd(p� 1; 4) + 196:
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Dimension 7, class 4 Descendants of dimension 8
ca; cb; baaa; baab 11
ca; cb; baaa; baab 9 + gcd(p� 1; 3)

ca; cb; baab; babb+ baaa p+ 15
ca; cb; baab; babb+ !baaa p+ 5
ca+ bab; cb; baaa; baab 8
ca+ bab; cb; baab; babb p+ 8

ca+ bab; cb� baaa; baab; babb 2p+ 6

ca+ bab; cb; baab; babb+ 1
2
baaa p+5

2

ca+ bab; cb; baab; babb+ !
2
baaa p+3

2

ca+ bab; cb; baaa; babb 8
ca+ baa; cb; baaa; baab p+ 12 + gcd(p� 1; 3)

ca+ baa� babb; cb; baaa; baab p2 + 4p+ p gcd(p� 1; 3) + 1
ca+ baa; cb; baab� baaa; babb� baaa p+ 5

ca+ baa; cb; baab; babb� baaa p+ 1 + gcd(p� 1; 4)
ca+ baa; cb; baab; babb� !baaa p+ 3

ca+ baa; cb; baaa; babb 3
ca+ baa; cb; baaa; babb� baab p+ 3

ca+ baa; cb; baab� baaa; babb� �baaa (� 6= 0; 1) 1
2
p2 + 1

2
p� 4

ca+ bab; cb+ !baa; baab; babb p+ 5
ca+ bab; cb+ !bab; baab� �baaa; babb� �baaa 1

2
p2 + 3

2
p+ 2

In this last algebra above the parameters (�; �) take the following values:

1. (0;�!),

2. (�; !) where �2�! is a square (all the corresponding algebras are isomorphic),

3. (�; !) where �2 � ! is not a square (all the corresponding algebras are isomor-
phic),

4. (�; 0) where 1 � � � (p� 1)=2 (giving (p� 1)=2 di�erent algebras),

5. (�; �) where �2 � � is not a square, � 6= !, � 6= 0 if � = �!; these parameters
give (p� 3)=2 di�erent algebras with two pairs (�; �), (�0; �0) giving isomorphic
algebras if (�; �) = (�0; �0) or if

(�0; �0) =

�
r2�+ r(! + �) + !�

r2 + 2r�+ �
;
r2�+ 2r!�+ !2

r2 + 2r�+ �

�
for some r 2 GF(p).
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Dimension 7, class 4 Descendants of dimension 8
cb; baa; caa; cab; cac p+ 20

cb; baa� babb; caa; cab; cac p+ 19 + gcd(p� 1; 3)
cb; baa; caa; cab� babb; cac 4p+ 2
cb; baa; caa� babb; cab; cac 4 + 2 gcd(p� 1; 3)

cb; baa; caa� babb; cab� babb; cac p+ 1
cb; bab; bac; caa; cac 12

cb; bab� baaa; bac; caa; cac 8
cb� baaa; bab; bac; caa; cac 2p+ 7

cb� baaa; bab� baaa; bac; caa; cac 2p+ 3
cb; bab; bac� baaa; caa; cac 1

cb� baa; bab; bac� �baaa; caa; cac 2p+ 13
cb� baa; bab� baaa; bac+ 1

2
baaa; caa; cac 1

There are 20 + gcd(p� 1; 3) three generator algebras of class 5 and dimension 7,
and 13 of these algebras are capable and they have a total of

7p+ 36 + 2 gcd(p� 1; 3)

descendants of dimension 8.

Dimension 7, class 5 Descendants of dimension 8
ha; b; c j ca+ babb; cb; baa; babba; class 5i 3

ha; b; c j ca+ babb� babbb; cb; baa; babba; class 5i 3
ha; b; c j ca+ babb; cb; baa� babb; babba; class 5i p+ 2

ha; b; c j ca; cb; baa; babba; class 5i 6
ha; b; c j ca; cb; baa� babbb; babba; class 5i 6
ha; b; c j ca� babbb; cb; baa; babba; class 5i 3

ha; b; c j ca� babbb; cb; baa� babbb; babba; class 5i 3
ha; b; c j ca; cb; baa� babb; babba; class 5i 2p+ 4

ha; b; c j ca� babbb; cb; baa� babb; babba; class 5i 2p
ha; b; c j ca+ bab; cb; baa; class 5i 2 + gcd(p� 1; 3)

ha; b; c j ca+ bab� babbb; cb; baa; class 5i p+3
2

ha; b; c j ca+ bab� !babbb; cb; baa; class 5i p+3
2

ha; b; c j ca+ bab; cb; baa� babbb; class 5i p+ 1 + gcd(p� 1; 3)

5.3 Four generator Lie algebras

The total number of nilpotent four generator Lie algebras over GF(p) of dimension 8
for p > 3 is

p3 + 5p2 + 43p+ 8gcd(p� 1; 3) + 2 gcd(p� 1; 4) + 502
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Dimension 4, class 1 Descendants of dimension 8
ha; b; c; d j class 1i 4

There are 4 four generator Lie algebras of dimension 6 and class 2 and they all
have immediate descendants of dimension 8. The total number of these descendants
is

p3 + 3p2 + 17p+ 5gcd(p� 1; 3) + 2 gcd(p� 1; 4) + 211
In the table below we just give the relators of the Lie algebras to save space, with

the generators a; b; c; d and the class to be understood.

Dimension 6, class 2 Descendants of dimension 8
cb; da; db; dc p3 + 3p2 + 17p+ 4gcd(p� 1; 3) + 2 gcd(p� 1; 4) + 136
ca; cb; da; db 28 + 9

2
(gcd(p� 1; 3)� 1)

cb; da; db� ca; dc 32
cb; da; db� ca; dc� !ba 16� 7

2
(gcd(p� 1; 3)� 1)

There are six 4 generator class 2 Lie algebras of dimension 7 and they are all
capable. The total number of descendants of dimension 8 is 6p+2gcd(p� 1; 3)+ 97.

Dimension 7, class 2 Descendants of dimension 8
ha; b; c; d j da; db; dc; class 2i p+ 9 + gcd(p� 1; 3)
ha; b; c; d j ca; da; db; class 2i p+ 39
ha; b; c; d j ca; da; dc; class 2i 12

ha; b; c; d j ca; da; dc� ba; class 2i p+ 15
ha; b; c; d j ba; da� cb; dc; class 2i 2p+ 15 + gcd(p� 1; 3)

ha; b; c; d j da; db� !ca; dc� ba; class 2i p+ 7

There are 33 four generator class 3 algebras of dimension 7, and 20 of these are
capable. They have a total of 2p2 + 20p+ 152 descendants of dimension 8.

16



Dimension 7, class 3 Descendants of dimension 8
ha; b; c; d j ca; cb; da; db; dc; class 3i 7

ha; b; c; d j ca; cb� baa; da; db; dc; class 3i 13
ha; b; c; d j ca; cb� bab; da; db; dc; class 3i 2p+ 11

ha; b; c; d j ca� bab; cb� !baa; da; db; dc; class 3i 2p+ 5
ha; b; c; d j ca; cb� baa; da; db� bab; dc; class 3i 3p+ 8

ha; b; c; d j ca� bab; cb+ baa; da; db� bab; dc; class 3i p2 + 2p+ 5
ha; b; c; d j ca� bab; cb+ !baa; da; db� bab; dc; class 3i p2 + p+ 2

ha; b; c; d j ca; cb; da; db; dc� baa; class 3i 4
ha; b; c; d j ca� bab; cb; da; db; dc� baa; class 3i p+ 4
ha; b; c; d j cb; da; db; dc; baa; bac; caa; cac; class 3i 18

ha; b; c; d j cb; da� bab; db; dc; baa; bac; caa; cac; class 3i 6
ha; b; c; d j cb; da; db; dc; bab; bac; caa; cac; class 3i 16

ha; b; c; d j cb; da; db� baa; dc; bab; bac; caa; cac; class 3i 6
ha; b; c; d j cb; da; db; dc� baa; bab; bac; caa; cac; class 3i 5
ha; b; c; d j cb� baa; da; db; dc; bab; bac; caa; cac; class 3i 4p+ 4

ha; b; c; d j ca; cb; da; db; baa; dcc; dcd; class 3i 9
ha; b; c; d j ca� bab; cb; da; db; baa; dcc; dcd; class 3i 13

ha; b; c; d j cb; da; db� ca; dc� baa; bab; bac; bad; class 3i 4
ha; b; c; d j cb; da; db� ca; dc; bab; bac; bad; class 3i 2p+ 11

ha; b; c; d j cb� baa; da; db� ca; dc; bab; bac; bad; class 3i 3p+ 1

There are 10 four generator Lie algebras of dimension 7 and class 4 and 6 of these
are capable. They have a total of 42 + gcd(p� 1; 3) descendants of dimension 8.

Dimension 7, class 4 Descendants of dimension 8
ha; b; c; d j ca ; cb; da; db; dc; baa; class 4i 9

ha; b; c; d j ca ; cb; da; db; dc; baa� babb; class 4i 6
ha; b; c; d j ca� babb ; cb; da; db; dc; baa; class 4i 9

ha; b; c; d j ca� babb ; cb; da; db; dc; baa� babb; class 4i 6 + gcd(p� 1; 3)
ha; b; c; d j ca+ bab; cb; da; db; dc; baa; class 4i 10

ha; b; c; d j ca+ bab; cb; da� babb; db; dc; baa; class 4i 2

5.4 Five generator Lie algebras

The total number of nilpotent �ve generator Lie algebras of dimension 8 over GF(p)
for p > 3 is 123.

Dimension 5, class 1 Descendants of dimension 8
ha; b; c; d; e j class 1i 22

There are two �ve generator Lie algebras of dimension 6 and class 2, but only one
is capable.
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Dimension 6, class 2 Descendants of dimension 8
ha; b j class 2i � hci � hdi � hei 23

There are 6 �ve generator nilpotent Lie algebras of class 2 and dimension seven.
They are all capable, and have a total of 64 descendants of dimension 8.

Dimension 7, class 2 Descendants of dimension 8
ha; b; c; d; e j cb; da; db; dc; ea; eb; ec; ed; class 2i 21
ha; b; c; d; e j ca; cb; da; db; ea; eb; ec; ed; class 2i 11

ha; b; c; d; e j cb; da; db� ca; dc; ea; eb; ec; ed; class 2i 12
ha; b; c; d; e j cb; da; db� ca; dc� !ba; ea; eb; ec; ed; class 2i 4
ha; b; c; d; e j cb; da; db; dc; ea; eb; ec; ed� ba; class 2i 12

ha; b; c; d; e j cb; da; db� ca; dc; ea; eb; ec; ed� ba; class 2i 4

There are 4 �ve generator nilpotent Lie algebras of class 3 and dimension seven
and 2 of these are capable. They have 14 descendants of dimension 8.

Dimension 7, class 3 Descendants of dimension 8
ha; b; c; d; e j bab; ca; cb; da; db; dc; ea; eb; ec; ed; class 3i 8

ha; b; c; d; e j bab; ca; cb� baa; da; db; dc; ea; eb; ec; ed; class 3i 6

5.5 Six generator Lie algebras

There are 19 nilpotent six generator Lie algebras of dimension 8 over GF(p) for all
p > 3.
There are 14 six generator class two Lie algebras of dimension 8 over GF(p) for

all p > 2.
Dimension 6, class 1 Descendants of dimension 8
ha; b; c; d; e; f j class 1i 14

There are three six generator Lie algebras of dimension 7 and class 2, but only
one is capable. It has 5 descendants of dimension 8.

Dimension 7, class 2 Descendants of dimension 8
ha; b j class 2i � hci � hdi � hei � hfi 5

5.6 Seven generator Lie algebras

Dimension 7, class 1 Descendants of dimension 8
ha; b; c; d; e; f; g j class 1i 3
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