
Counting p-groups and Lie algebras

using PORC polynomials

Bettina Eick and Michael Vaughan-Lee

November 23, 2018

Abstract

Counting problems whose solution is PORC were introduced in a famous paper by
Higman (1960). We consider two specific counting problems with PORC solutions:
the number of isomorphism types of d-generator class-2 Lie algebras over Fq (as a
function in q) and the number of isomorphism types of d-generator p-class 2 p-groups
(as a function in p). We prove lower bounds for the degrees of their PORC polynomials
for all d ∈ N and we determine explicit PORC polynomials for d ≤ 7.

1 Introduction

Let S be an infinite subset of the integers and let f : S → Q be a function. We say that f
is PORC (polynomial on residue classes) if there exists m ∈ N (called the modulus) and
polynomials g0, . . . , gm−1 ∈ Q[x] such that

f(s) = gi(s) for all s ∈ S with s ≡ i mod m.

Higman [7] initiated the investigation of counting problems whose solution is PORC. He
proved, for example, that the number of isomorphism types of groups of order pn, whose
Frattini subgroup is elementary abelian and central, considered as a function of the prime
p, for fixed n, is PORC. Moreover, he introduced his famous PORC conjecture suggesting
that the number of isomorphism types of all groups of order pn, considered as a function
of the prime p, for fixed n, is PORC.
A central tool in Higman’s approach is the translation of counting problems to applications
of linear algebra. We consider two instances here. Let d, k ∈ N and let V denote a
d-dimensional vector space over the finite field Fq with q elements. Write Ld,k(q) for
the number of orbits of GL(V) acting on the k-dimensional subspaces of W = V ∧ V
and Gd,k(q) for the number of orbits of GL(V) acting on the k-dimensional subspaces of
W+ = (V ∧V)⊕V . Write Π for the set of all prime powers, π for the subset of all primes
and πo for the set of all odd primes.

1

1 Theorem:(Higman [7]) Let d, k ∈ N.

(a) Gd,k(p) coincides with the number of isomorphism types of d-generator groups of order
pd+k and p-class 2 for all p ∈ πo.

(b) Ld,k(p) coincides with the number of isomorphism types of d-generator groups of order
pd+k, exponent p and class 2 for all p ∈ πo.

(c) Ld,k(q) coincides with the number of isomorphism types of d-generator Lie algebras of
dimension d+ k and class 2 over Fq for all q ∈ Π.

Let d, k ∈ N. Eick & O’Brien [2] described an effective method to compute Gd,k(q) or
Ld,k(q) for a fixed single q ∈ Π. Vaughan-Lee [10] introduced a method to determine a
PORC polynomial on πo describing Gd,k(p) as a function in p ∈ πo. This method trans-
lates readily to the computation of Ld,k(p) for p ∈ πo and was used to determine PORC
polynomials describing Gd,k(p) for d ≤ 6. Eick & Wesche [5] described the calculation of a
PORC polynomial on Π for the action of GL(V) on the k-dimensional subspaces of V ⊗V
as a function in q ∈ Π. We recall the main principles of these methods in Section 2 for
completeness.
We observe that a PORC function f(s) on S with modulus m can be written as a poly-
nomial in s whose coefficients are Q-linear combinations of products of terms of the form
gcd(s − i, pk) where 0 ≤ i < pk and pk | m, see Section 4. There is no unique way of
writing these coefficients, since there are relations which hold between the gcds. Section
4 discusses how to compute a possibly short PORC polynomial for a PORC function.
We say that the PORC function f on S has degree l if f can be represented by a PORC
polynomial in s which is, as a polynomial in s, of degree l and its leading coefficient is
non-zero for all s ∈ S. Section 3 contains a proof for the following.

2 Theorem: Let d, k ∈ N.

(a) If Ld,k(q) 6= 0, then the degree of Ld,k(q) is at least kd(d− 1)/2− k2 − d2 + 1.

(b) If Gd,k(q) 6= 0, then the degree of Gd,k(q) is at least kd(d+ 1)/2− k2 − d2.

Finally, we combine the ideas of [10] and [5] with the methods described in Section 4
and use these to determine PORC polynomials on Π for Gd,k(q) and Ld,k(q) for d ≤ 7,
k ∈ N and all q ∈ Π, see Section 5 for details. The resulting polynomials are available in
electronic form in [3] and [11]. Section 6 contains an abbreviated description of them.
The bounds of Theorem 2 are attained in many cases in the range d ≤ 7. Exceptions are
L6,3(q) and Gd,2(q) for d ≥ 3, where the actual degree exceeds the lower bound by 1.

2 The algorithm

Let V be a d-dimensional vector space over the field Fq with q elements. In this section
we briefly describe the main features of the algorithm to compute a PORC polynomial for
the number of orbits of GL(V) acting on the k-dimensional subspaces of W = (V ∧ V) or
W+ = W ⊕ V , respectively.

2

2.1 The type of a matrix

Green [6] introduced the notion of a type of a matrix. This plays a key role in our algorithms
and we recall it here briefly.
Let g ∈ GL(V) have minimal polynomial µ(x). Let p1(x), . . . , pm(x) be the distinct
irreducible factors of µ(x). Then for 1 ≤ i ≤ m there exists a sequence si = (si,1, . . . , si,mi)
of natural numbers so that the rational canonical form of g is a block diagonal matrix
whose diagonal blocks are the companion matrices of the polynomials pi(x)si,j . Let ni =
deg(pi(x)). The type of g is the sequence (which is assumed to be lexicographically sorted)

type(g) = ((n1, s1), . . . , (nm, sm)).

If t = ((n1, s1), . . . , (nm, sm)) is the type of a matrix in GL(V) and si = si,1 + . . .+ si,mi ,
then d = n1s1+ . . .+nmsm holds. Hence for a given d there are only finitely many possible
types and these can be listed easily (and are independent of the field-size).

3 Theorem: (Green [6], Eick & O’Brien [2]) Let t be the type of a matrix in GL(V)
for V = Fd

q .

(a) The set Et = {g ∈ GL(V) | type(g) = t} is the union of kt(q) different conjugacy
classes which all have the same size st(q). Both kt(q) and st(q) can be described by
polynomials in q.

(b) Let Uk denote the set of k-dimensional subspaces of V and let g be an element of type t
in GL(V). The number of fixed points Fixg(Uk) depends on t only and can be described
by a polynomial in q.

Formulae for kt(q) and st(q) as polynomials in q have been determined by Green [6]. An
effective method to compute a polynomial in q for Fixg(Uk) using the type of g only was
been described by Eick & O’Brien [2]. We write Fixt(Uk) for the number of fixed points
of an element of type t.

2.2 Burnside’s lemma

The number of orbits of a group acting on a finite set can be determined using Burnside’s
lemma. To evaluate this, let g denote the action of g ∈ GL(V) on W or W+, respectively,
and let Uk denote the set of k-dimensional subspaces of W or W+, respectively. Then the
number of orbits O of GL(V) acting on Uk is given by

O =
1

|GL(V)|
∑

g∈GL(V)

Fixg(Uk).

Let G = GL(V) and let G denote the action of G on W or W+, respectively. Let R denote
a set of representatives for the conjugacy classes in G; for example, R can be chosen as
the set of rational canonical forms of matrices in G. Let T be the set of types of matrices
in G and T the set of types of matrices in G. For t ∈ T and t ∈ T let

A(t, t) = |{g ∈ R | type(g) = t and type(g) = t}|.

3

Then Theorem 3(a) asserts that ∑
t∈T

A(t, t) = kt(q).

Using st(q) for the size of a conjugacy class of an element of type t in G, we obtain the
following refined formula for O

O =
1

|G|
∑
t∈T

∑
t∈T

A(t, t) st(q) Fixt(Uk).

As recalled above, polynomials in q for st(q), for Fixt(Uk) and for |G| can be computed
readily. It thus remains to compute a PORC polynomial for A(t, t) for all t ∈ T and t ∈ T
and this is the key problem of the algorithm. We consider this in more detail in Section 5.

3 The lower bounds

In this section we prove Theorem 2 based on the results and the notation of Section 2. Let
d, k ∈ N and V = Fd

q . Write m for the dimension of W or W+, respectively, and O for the
orbits of G = GL(V) on the set Uk of subspaces of dimension k in W or W+, respectively.
Then it follows that

|Uk|/|G| ≤ |O| ≤ |Uk|.
Further,

|Uk| =
k∏

i=1

qm−i+1 − 1

qi − 1
and |G| =

d∏
i=1

(qd − qi).

Hence if f is a PORC polynomial for O, then

u =
k∑

i=1

(m− i+ 1− i) = mk − k2

is an upper bound for the degree of f and a lower bound is

l =
k∑

i=1

(m− i+ 1− i)− d2 = mk − k2 − d2.

This proves the lower bound for Gd,k(q) as in Theorem 2(b), since Gd,k(q) coincides with
O if we consider the action on W+ and m = d(d+ 1)/2 in this case.
The function Ld,k(q) coincides with O if we consider the action on W . In this case the
diagonal matrices in G act as diagonal matrices on W and hence act trivially on Uk. Thus
in this case we obtain

(q − 1)|Uk|/|G| ≤ |O|
and hence the lower bound improves to mk−k2−d2 +1 with m = d(d−1)/2. This proves
Theorem 2(a).
Alternatively, both lower bounds can also be obtained via the Burnside formula for O by
noting that the type t = (1, (1, . . . , 1)) corresponding to the diagonal matrices in G yields
summands whose degree coincides with the lower bound.

4

4 Simplifying PORC polynomials

Let S be an infinite subset of the integers and let f : S → Q be a PORC function.
As described in the introduction, this implies that there exists m ∈ N and polynomials
g0, . . . , gm−1 ∈ Q[x] such that

f(s) = gi(s) for all s ∈ S with s ≡ i mod m.

For 0 ≤ i ≤ m − 1 define χ(i,m)(s) : S → Q via χ(i,m)(s) = 1 if s ≡ i mod m and
χ(i,m)(s) = 0 otherwise. Then a closed formula for the PORC function f is

f(s) =
m−1∑
i=0

χ(i,m)(s)gi(s).

We investigate the characteristic functions χi,m(s) in more detail. If gcd(a, b) = 1, then
χi,ab(s) = χ(i mod a),a(s)χ(i mod b),b(s). Hence it is sufficient to consider the characteristic

functions for prime powers m = pk. For 0 ≤ i < pk and i = i mod pk−1 we note that

χi,pk(s) =
gcd(s− i, pk)− gcd(s− i, pk−1)

pk − pk−1
.

In summary, a PORC function f can be written as a polynomial whose coefficients are
Q-linear combinations of products of terms of the form gcd(s − i, pk) where 0 ≤ i < pk.
However there is no unique way of writing these functions since there are relations which
hold between the gcds. For example, if p is prime then

p−1∑
i=0

χ(i,p) = 1,

and it follows from this relation that, for 0 ≤ i < p, χ(i,p)(s) can be expressed as a Q-
linear combination of 1, gcd(s, p), gcd(s−1, p), . . . , gcd(s−(p−2), p). There are additional
complications when the set S on which f is defined is the set of primes or the set of prime
powers. Then, for example, the relation χ(0,2)χ(0,3) = 0 holds on S.

4.1 The case that S is the set of all integers

First we consider PORC functions which are defined on the whole of the integers Z. Let
pk be a prime power, and let Vpk be the set of functions f : Z→ Q of the form

pk−1∑
i=0

αiχ(i,pk)

with αi ∈ Q. We view Vpk as a vector space over Q — as such, it has dimension pk

and basis {χ(i,pk) | 0 ≤ i < pk}. To simplify notation, for 0 ≤ i < pr and r ≥ 1, we let
g(i,pr) : Z→ Q be defined by

g(i,pr)(s) = gcd(s− i, pr).

Note that χ(i,pr) and g(i,pr) are elements in Vpk for 0 ≤ i < pr and r = 1, 2, . . . , k.

5

4 Theorem: Let Bpk be the subset of Vpk consisting of the constant function 1 and the
functions g(i,pr) with 1 ≤ r ≤ k and 0 ≤ i < pr − pr−1. Then Bpk is a basis for Vpk .

Proof: The proof is by induction on k. The case k = 1 follows from the definition of χ(i,p)

(0 ≤ i < p), and from the fact that

p−1∑
i=0

g(i,p) = 2p− 1.

So assume that the result is true for k−1, and consider the case k. Let W be the subspace
of Vpk spanned by Bpk . By induction we may assume that g(i,pk−1) ∈W for 0 ≤ i < pk−1,
and so

χ(i,pk) ∈W for 0 ≤ i < pk − pk−1.

Now let pk − pk−1 ≤ i < pk, and let j = i mod pk−1. Then

χ(i,pk) = χ(j,pk−1) −
p−2∑
r=0

χ(j+rpk−1,pk) ∈W

and this completes the proof. •

Using the basis Bpk gives us a unique way of representing elements of Vpk .
Let m = q1q2 . . . qk be a product of prime powers (with qi coprime to qj for i 6= j), and let
Vm be the set of functions f : Z→ Q of the form

m−1∑
i=0

αiχ(i,m)

with αi ∈ Q. As a vector space over Q, Vm has dimension m and we have the following
corollary to Theorem 4.

5 Corollary: Vm has basis Bm consisting of all products f1f2 . . . fk with fi ∈ Bqi for
i = 1, 2, . . . , k.

4.2 The case that S is the set of all prime powers

The situation is more complicated if our PORC functions are only defined over primes
or prime powers (as is the case for our functions Ld,k(q) and Gd,k(q)). Let m > 1 be
a positive integer and let 0 ≤ i < m. If i is coprime to m then Dirichlet’s theorem on
arithmetic progressions implies that there are infinitely many primes p equal to i mod m.
So χ(i,m)(p) = 1 for infinitely many primes p. This shows that even when we consider
the functions χ(i,m) as being defined only on the set of prime powers, {χ(i,m) | 1 ≤ i <
m, gcd(i,m) = 1} is linearly independent. But if i is not coprime to m then it happens
frequently that χ(i,m)(q) = 0 for all prime powers q. In particular this is true if gcd(i,m)
is divisible by two distinct primes. If gcd(i,m) = pr for some prime p then χ(i,m)(q) can
only be non zero for q = ps with s ≥ r, and it is straightforward to check whether or not

6

χ(i,m)(p
s) = 0 for all s ≥ r. For 2 ≤ m ≤ 14 the following functions take the value 0 on

all prime powers:

χ(0,6), χ(6,8), χ(6,9), χ(0,10), χ(0,12), χ(6,12), χ(10,12), χ(0,14), χ(6,14), χ(10,14), χ(12,14).

However, when we consider the functions χ(i,m) as being defined only on prime powers,
then

{χ(i,m) | 0 ≤ i < m, χ(i,m)(q) 6= 0 for some prime power q}

is linearly independent. To see this suppose that

m−1∑
i=0

αiχ(i,m)(s) = 0

whenever s is a prime power, and suppose that χ(j,m)(q) 6= 0 for some prime power q.
Then χ(i,m)(q) = 0 for i 6= j, and so

0 =
m−1∑
i=0

αiχ(i,m)(q) = αj .

As above, let Π be the set of prime powers, and let Wm be the set of functions f : Π→ Q
of the form

m−1∑
i=0

αiχ(i,m)

with αi ∈ Q. Then as a vector space over Q, Wm has dimension

|{i | 0 ≤ i < m, χ(i,m)(q) 6= 0 for some q}|.

We use these ideas to simplify our functions Ld,k(q) and Gd,k(q). A certain amount
of simplification is built into the programs which compute the functions, but we apply
further simplification to the initial output. For example, the first version of the functions
G(6,k)(q) (1 ≤ k ≤ 21) which were computed by our programs involved polynomials in q
with coefficients which were Q-linear combinations of 164 different products of elements
gcd(q − i, pk) with

pk ∈ {2, 4, 8, 16, 64, 3, 9, 5, 7, 11, 13, 17, 19}.

These products included

1, gcd(q, 2). gcd(q − 58, 64), gcd(q, 2)2. gcd(q − 1, 5), gcd(q − 1, 17), gcd(q, 2). gcd(q, 7)

for example. (Products like gcd(q, 2). gcd(q − 58, 64) and gcd(q, 2)2. gcd(q − 1, 5) can
arise when two PORC functions are multiplied together.) The first step is to write these
products as linear combinations of the basis elements Bm for Vm for various m. We
write gcd(q, 2). gcd(q − 58, 64) as a linear combination of elements in B64, and we write
gcd(q, 2)2. gcd(q− 1, 5) as a linear combination of elements in B10, and so on. After these

7

simplifications, all the coefficients were linear combinations of 74 elements of Bm for m ∈ S
where

S = {2, 4, 8, 16, 3, 9, 5, 7, 11, 13, 17, 19, 6, 10, 12, 14, 15, 20}.

(Note that if M |m then BM is a subset of Bm.) Next, for each m ∈ S we found those
values of i (0 ≤ i < m) for which χ(i,m)(q) = 0 for all prime powers q. For each such i,m
we expressed χ(i,m) as a linear combination of the basis elements Bm, and used the relation
χ(i,m) = 0 to eliminate an element of Bm from the functions G(6,k)(q). For example the
relation χ(0,6) = 0 gives

gcd(q, 2). gcd(q, 3) = gcd(q, 2) + gcd(q, 3)− 1,

enabling us to eliminate gcd(q, 2). gcd(q, 3) from the functions G6,k(q), and the relation
χ(10,14) = 0 gives

gcd(q, 2). gcd(q − 3, 7) = gcd(q, 2) + gcd(q − 3, 7)− 1,

enabling us to eliminate gcd(q, 2). gcd(q − 3, 7). After these eliminations, all the coeffi-
cients in the functions g(6,k)(q) were linear combinations of 64 elements of Bm for m ∈ S.
Note that these simplifications are not purely cosmetic. As described in Section 2.2, the
functions Ld,k(q) and Gd,k(q) are given as quotients f

|G| for some PORC function f , and

typically we need to simplify f before it can be cleanly divided by |G|.

5 The key problem of the algorithm

Section 2 gives an overview of an algorithm to compute PORC polynomials for Ld,k(q)
and Gd,k(q) for given d and k. This uses Burnside’s Lemma and the action of G = GL(V)
for V = Fd

q on the set Uk of k-dimensional subspaces of W or W+, respectively. The
remaining key problem is the determination of A(t, t) for a type t of an element of G and
the possible types t of its induced action on W or W+, respectively.
We discuss this remaining key problem here in more detail with a view towards determining
Ld,k(q) and Gd,k(q) for small d. We observe that our approach is successful for d ≤ 7,
while the case d = 8 is out of reach at the current time. The following table contains the
numbers Nr(d) of types of elements in G for d ≤ 10.

d 1 2 3 4 5 6 7 8 9 10

Nr(d) 1 4 8 22 42 103 199 441 859 1784

5.1 General ideas towards computing A(t, t)

Vaughan-Lee [10] describes a general approach towards computing A(t, t) for a fixed type
t and all possibilities for types t. This approach is based on applications of inclusion-
exclusion principles and these can be time-consuming. His implementation [11] allows us
to cut down the runtime used for inclusion-exclusion calculations via ad-hoc arguments.
These have to be programmed separately for each considered type t.

8

The alternative implementation by Eick & Wesche [4] is generic and does not need any
human interaction, but it is less efficient than Vaughan-Lee’s implementation. This generic
implementation allows us to compute Ld,k(q) and Gd,k(q) for d ≤ 5. In the cases d = 6
and d = 7 there are a few types t for which the calculation of A(t, t) is not feasible using
the generic implementation. (For d = 7 there are 11 of these types.)
We combined the two implementations to determine Ld,k(q) and Gd,k(q) for d ≤ 7. In
practice, the generic method determines A(t, t) for as many types t as possible, while the
more efficient ad-hoc method deals with the remaining difficult types.

5.2 An example of a difficult type

In this section we discuss the computation of A(t, t) for the type t = ((1, (1)), . . . , (1, (1))).
This is the most difficult type for both methods. We consider the action on W only; the
same principles work for the action on W+.
The rational canonical forms of the elements in G of type t are the diagonal matrices
with pairwise distinct diagonal entries a1, . . . , ad. Such a diagonal matrix A acts on W
as a diagonal matrix B with diagonal entries aiaj for 1 ≤ i < j ≤ d. The type of B is
determined by which coincidences aiaj = akal hold. Since the eigenvalues of A are all
distinct the equation aiaj = akal is only possible if i, j, k, l are all distinct, and so the set

R of possible equations between the eigenvalues of B has size d(d−1)(d−2)(d−3)
8 .

For each subset S ⊆ R let MS be the set of diagonal matrices A over Fq with pairwise
distinct diagonal entries a1, . . . , ad which satisfy the relations in S and satisfy none of the
relations in R\S. Let gS = |MS |. Higman’s theory [7] implies that gS is a PORC function
of q, and an algorithm to compute gS is described in [9], see also [5] and [10]. If gS 6= 0
then all the matrices B arising from matrices A ∈MS have the same type, and this type
is easy to compute. Our aim is to determine gS for all subsets S ⊆ R for which gS 6= 0.
One possible approach is as follows. For each subset S ⊆ R let fS be the PORC function
giving the number of choices of distinct elements a1, . . . , ad ∈ Fq satisfying the equations
in S (and possibly also some other equations in R\S). A method to compute fS for given
S is described in [9], see also [5] and [10]. For example, when d = 8 this takes somewhere
between 0.05 and 0.2 seconds for each subset. For each subset S ⊆ R we can then compute
the PORC formula for gS by iteratively replacing fS by fS − fT for each pair of subsets
S, T ⊆ R such that S is a proper subset of T . (This has to be done in the correct order.
First we take T = R, then we take those T with |T | = |R| − 1, and next we take those T
with |T | = |R| − 2, and so on. We can, of course, skip T whenever fT = 0.) At the end of
this process fS has been replaced by gS for all subsets S. This outline yields a practical
algorithm for d ≤ 5.

For d ≥ 6 the algorithm sketched above is not practical since the set R of possible equations
is too large. When d = 7, for example, |R| = 105 so that R has 2105 subsets S. Permuting
the eigenvalues of A gives an action of Sym(d) on R, and it is only necessary to compute

gS for one element out of each orbit. But 2105

7! ∼ 8× 1027, so this reduction has very little
impact for d = 7. However it turns out that gS = 0 for most subsets S. More precisely,
for d = 7 there are only 426 Sym(7)-orbits with gS 6= 0. For many subsets S it is possible

9

to predict that gS = 0. We exhibit two examples.

(a) If S contains both a1a2 = a3a4 and a1a2 = a3a5, then fS = gS = 0, since the two
equations imply that a4 = a5 and this is impossible for the type t.

(b) If S contains a1a2 = a3a4 and a1a2 = a5a6 then gS = 0 unless S also contains
a3a4 = a5a6. In this case a3a4 = a5a6 is a consequence of the first two equations.

It is easy to decide whether a relation ai = aj is a consequence of the relations in S.
Just compute the PORC formula for the number of choices of a1, a2, . . . , ad satisfying the
relations in S, and also compute the PORC formula for the number of choices satisfying
the relations in S ∪ {ai = aj}. If the two PORC formulae are the same then ai = aj is a
consequence of the relations in S. Similarly it is easy to see whether any relations in R\S
are consequences of the relations in S.
Our algorithm only generates Sym(d)-orbits of subsets S of R such that the relations in S
do not have any consequences ai = aj , and such that no relation in R\S is a consequence
of the relations in S. If d = 7, then this reduces the set of all orbits of subsets to only 483
orbits. It now remains to compute fS and then gS for these orbits.

If d = 8, then there are 9288 orbits of subsets S ⊆ R where we are unable to prove that
gS 6= 0. It took several hours of CPU-time to find representatives for these orbits. We
estimate that it would take about a month of CPU-time to compute the functions gS for
these representatives. We have not attempted to complete this calculation. Even if we did,
it would only enable us to compute A(t, t) for matrices of type t = (1, (1)), . . . , (1, (1))),
and it would take several more months of CPU-time to compute A(t, t) for all possible
types t. Further, the action on W+ would be much more time-consuming to process than
the action on W .
The timings mentioned above are for programs running in Magma V2.19-10 on a desktop
computer with an Intel Core I7-4770 CPU.

6 Explicit polynomials for small d

In this section we exhibit the PORC polynomials (or their leading terms) for Ld,k(q) and
Gd,k(q) for d ≤ 7. The full PORC polynomials are available in electronic form in the
package [3] based on GAP [8] and code [11] based on Magma [1].

6.1 Polynomials for L

Let l = d(d− 1)/2 and note that Ld,l(q) = 1 and Ld,k(q) = Ld,l−k(q). Thus it is sufficient
to list Ld,k(q) for 1 ≤ k ≤ l/2 and the case d ∈ {1, 2} is trivial. The next table lists PORC
polynomials (or their leading terms) for Ld,k(q) for 3 ≤ d ≤ 7 and 1 ≤ k ≤ l/2. The
PORC polynomials are valid for all prime powers q.

L3,1(q) = 1

L4,1(q) = 2

10

L4,2(q) = 4

L4,3(q) = 6

L5,1(q) = 2

L5,2(q) = 6

L5,3(q) = 22

L5,4(q) = 57

L5,5(q) = 3q + 2(q, 2) + (q, 3) + 2(q − 1, 3) + (q − 1, 4) + 63

L6,1(q) = 3

L6,2(q) = 14

L6,3(q) = 3q2 + 10q − 5(q, 2) + 3(q − 1, 3) + 2(q − 1, 4) + 117

L6,4(q) = q9 + q8 + 3q7 + 6q6 + 13q5 + (26− (q, 2))q4 + (59− 6(q, 2))q3 + . . .

L6,5(q) = q15 + q14 + 3q13 + 5q12 + 10q11 + 16q10 + 29q9 + 45q8 + . . .

L6,6(q) = q19 + q18 + 3q17 + 5q16 + 10q15 + 16q14 + 29q13 + 43q12 + . . .

L6,7(q) = q21 + q20 + 3q19 + 5q18 + 10q17 + 16q16 + 29q15 + 44q14 + . . .

L7,1(q) = 3

L7,2(q) = 20

L7,3(q) = q6 + q5 + 5q4 + 10q3 + (38− 2(q, 2))q2 + . . .

L7,4(q) = q20 + q19 + 3q18 + 5q17 + 10q16 + 15q15 + 27q14 + 40q13 + . . .

L7,5(q) = q32 + q31 + 3q30 + 5q29 + 10q28 + 16q27 + 28q26 + 43q25 + . . .

L7,6(q) = q42 + q41 + 3q40 + 5q39 + 10q38 + 16q37 + 29q36 + 44q35 + . . .

L7,7(q) = q50 + q49 + 3q48 + 5q47 + 10q46 + 16q45 + 29q44 + 45q43 + . . .

L7,8(q) = q56 + q55 + 3q54 + 5q53 + 10q52 + 16q51 + 29q50 + 45q49 + . . .

L7,9(q) = q60 + q59 + 3q58 + 5q57 + 10q56 + 16q55 + 29q54 + 45q53 + . . .

L7,10(q) = q62 + q61 + 3q60 + 5q59 + 10q58 + 16q57 + 29q56 + 45q55 + . . .

6.2 Polynomials for G

Let l = d(d+ 1)/2 and note that Gd,l(q) = 1 and Gd,k(q) = Gd,l−k(q). Thus it is sufficient
to list Gd,k(q) for 1 ≤ k ≤ l/2 and the case d = 1 is trivial. The next table lists PORC
polynomials (or their leading terms) for Gd,k(q) for 3 ≤ d ≤ 7 and 1 ≤ k ≤ l/2. The
PORC polynomials are valid for all prime powers q.

G2,1(q) = 3

G3,1(q) = 4

G3,2(q) = q + (15− (q, 2))

G3,3(q) = 3q + (30− 3(q, 2))

G4,1(q) = 6

11

G4,2(q) = 4q + (50− 2(q, 2))

G4,3(q) = q5 + 2q4 + 7q3 + (26− (q, 2))q2 + (98− 10(q, 2) + (q − 1, 3))q + . . .

G4,4(q) = q8 + 2q7 + 5q6 + 10q5 + 24q4 + (56− 3(q, 2))q3 + . . .

G4,5(q) = q9 + 2q8 + 5q7 + 10q6 + 21q5 + (45− (q, 2))q4 + (102− 8(q, 2))q3 + . . .

G5,1(q) = 7

G5,2(q) = q2 + 15q +
1

2
(267− 16(q, 2)− (q, 3))

G5,3(q) = q11 + 2q10 + 5q9 + 10q8 + 20q7 + 38q6 + (76− 2(q, 2))q5 + . . .

G5,4(q) = q19 + 2q18 + 5q17 + 10q16 + 20q15 + 35q14 + 61q13 + 99q12 + . . .

G5,5(q) = q25 + 2q24 + 5q23 + 10q22 + 20q21 + 36q20 + 63q19 + 104q18 + . . .

G5,6(q) = q29 + 2q28 + 5q27 + 10q26 + 20q25 + 36q24 + 64q23 + 106q22 + . . .

G5,7(q) = q31 + 2q30 + 5q29 + 10q28 + 20q27 + 36q26 + 64q25 + 107q24 + . . .

G6,1(q) = 9

G6,2(q) = q3 + 7q2 + (54− (q, 2))q +
1

2
(682− 50(q, 2)− (q, 3) + 4(q − 1, 3))

G6,3(q) = q18 + 2q17 + 5q16 + 10q15 + 19q14 + 34q13 + 60q12 + 100q11 + 166q10 + . . .

G6,4(q) = q32 + 2q31 + 5q30 + 10q29 + 20q28 + 35q27 + 62q26 + 101q25 + 164q24 + . . .

G6,5(q) = q44 + 2q43 + 5q42 + 10q41 + 20q40 + 36q39 + 64q38 + 106q37 + 174q36 + . . .

G6,6(q) = q54 + 2q53 + 5q52 + 10q51 + 20q50 + 36q49 + 65q48 + 108q47 + 179q46 + . . .

G6,7(q) = q62 + 2q61 + 5q60 + 10q59 + 20q58 + 36q57 + 65q56 + 109q55 + 181q54 + . . .

G6,8(q) = q68 + 2q67 + 5q66 + 10q65 + 20q64 + 36q63 + 65q62 + 109q61 + 182q60 + . . .

G6,9(q) = q72 + 2q71 + 5q70 + 10q69 + 20q68 + 36q67 + 65q66 + 109q65 + 182q64 + . . .

G6,10(q) = q74 + 2q73 + 5q72 + 10q71 + 20q70 + 36q69 + 65q68 + 109q67 + 182q66 + . . .

G7,1(q) = 10

G7,2(q) = q4 + 7q3 + (31− (q, 2))q2 +
1

2
(327− 18(q, 2) + (q, 3) + 2(q − 1, 3))q + . . .

G7,3(q) = q26 + 2q25 + 5q24 + 10q23 + 19q22 + 33q21 + 58q20 + 95q19 + 155q18 + . . .

G7,4(q) = q47 + 2q46 + 5q45 + 10q44 + 20q43 + 35q42 + 62q41 + 102q40 + 166q39 + . . .

G7,5(q) = q66 + 2q65 + 5q64 + 10q63 + 20q62 + 36q61 + 64q60 + 107q59 + 176q58 + . . .

G7,6(q) = q83 + 2q82 + 5q81 + 10q80 + 20q79 + 36q78 + 65q77 + 109q76 + 181q75 + . . .

G7,7(q) = q98 + 2q97 + 5q96 + 10q95 + 20q94 + 36q93 + 65q92 + 110q91 + 183q90 + . . .

G7,8(q) = q111 + 2q110 + 5q109 + 10q108 + 20q107 + 36q106 + 65q105 + 110q104 + . . .

G7,9(q) = q122 + 2q121 + 5q120 + 10q119 + 20q118 + 36q117 + 65q116 + 110q115 + . . .

G7,10(q) = q131 + 2q130 + 5q129 + 10q128 + 20q127 + 36q126 + 65q125 + 110q124 + . . .

G7,11(q) = q138 + 2q137 + 5q136 + 10q135 + 20q134 + 36q133 + 65q132 + 110q131 + . . .

G7,12(q) = q143 + 2q142 + 5q141 + 10q140 + 20q139 + 36q138 + 65q137 + 110q136 + . . .

G7,13(q) = q146 + 2q145 + 5q144 + 10q143 + 20q142 + 36q141 + 65q140 + 110q139 + . . .

12

G7,14(q) = q147 + 2q146 + 5q145 + 10q144 + 20q143 + 36q142 + 65q141 + 110q140 + . . .

We observe that the coefficients of the leading terms of Ld,k(q) and Gd,k(q) for fixed d and
large enough k exhibit a uniform pattern. This observation as well as upper bounds for
the degree of the PORC polynomials still have to be investigated.

References

[1] W. Bosma, J. Cannon, and C. Playoust. The magma algebra system I: The user
language. J. Symb. Comput., 24:235 – 265, 1997.

[2] B. Eick and E. A. O’Brien. Enumerating p-groups. J. Austral. Math. Soc., 67:191 –
205, 1999.

[3] B. Eick, M. Vaughan-Lee, and M. Wesche. PORC - Computing with PORC polyno-
mials, 2018. http://www.icm.tu-bs.de/~beick/soft/.

[4] B. Eick and M. Wesche. Classtwoalg - Enumeration of class two algebras, 2018.
A GAP package available from http://www.icm.tu-bs.de/~morwesch/research/

research.html.

[5] B. Eick and M. Wesche. Enumeration of nilpotent associative algebras of class 2 over
arbitrary finite fields. J. Algebra, 503:573–589, 2018.

[6] J. A. Green. The characters of the finite general linear groups. Trans. Amer. Math.
Soc., 80:402–447, 1955.

[7] G. Higman. Enumerating p-groups. II: Problems whose solution is porc. Proc. London
Math. Soc., 10:566 – 582, 1960.

[8] The GAP Group. GAP – Groups, Algorithms and Programming, Version 4.4. Available
from http://www.gap-system.org, 2005.

[9] M. Vaughan-Lee. Choosing elements from finite fields. ArXiv, 2012.

[10] M. Vaughan-Lee. On Graham Higman’s famous PORC paper. Int. J. Group Theory,
1(4):65–79, 2012.

[11] M. Vaughan-Lee. Magma code. http://users.ox.ac.uk/~vlee/PORC/

pclasstwogroups, 2018.

13

http://www.icm.tu-bs.de/~beick/soft/
http://www.icm.tu-bs.de/~morwesch/research/research.html
http://www.icm.tu-bs.de/~morwesch/research/research.html
http://www.gap-system.org
http://users.ox.ac.uk/~vlee/PORC/pclasstwogroups
http://users.ox.ac.uk/~vlee/PORC/pclasstwogroups

	Introduction
	The algorithm
	The type of a matrix
	Burnside's lemma

	The lower bounds
	Simplifying PORC polynomials
	The case that S is the set of all integers
	The case that S is the set of all prime powers

	The key problem of the algorithm
	General ideas towards computing A(t, t)
	An example of a difficult type

	Explicit polynomials for small d
	Polynomials for L
	Polynomials for G

