Counting p-groups and Lie algebras using PORC polynomials

Bettina Eick and Michael Vaughan-Lee

November 23, 2018

Abstract

Counting problems whose solution is PORC were introduced in a famous paper by Higman (1960). We consider two specific counting problems with PORC solutions: the number of isomorphism types of d-generator class- 2 Lie algebras over \mathbb{F}_{q} (as a function in q) and the number of isomorphism types of d-generator p-class $2 p$-groups (as a function in p). We prove lower bounds for the degrees of their PORC polynomials for all $d \in \mathbb{N}$ and we determine explicit PORC polynomials for $d \leq 7$.

1 Introduction

Let S be an infinite subset of the integers and let $f: S \rightarrow \mathbb{Q}$ be a function. We say that f is PORC (polynomial on residue classes) if there exists $m \in \mathbb{N}$ (called the modulus) and polynomials $g_{0}, \ldots, g_{m-1} \in \mathbb{Q}[x]$ such that

$$
f(s)=g_{i}(s) \quad \text { for all } \quad s \in S \quad \text { with } \quad s \equiv i \bmod m .
$$

Higman [7] initiated the investigation of counting problems whose solution is PORC. He proved, for example, that the number of isomorphism types of groups of order p^{n}, whose Frattini subgroup is elementary abelian and central, considered as a function of the prime p, for fixed n, is PORC. Moreover, he introduced his famous PORC conjecture suggesting that the number of isomorphism types of all groups of order p^{n}, considered as a function of the prime p, for fixed n, is PORC.
A central tool in Higman's approach is the translation of counting problems to applications of linear algebra. We consider two instances here. Let $d, k \in \mathbb{N}$ and let V denote a d-dimensional vector space over the finite field \mathbb{F}_{q} with q elements. Write $L_{d, k}(q)$ for the number of orbits of $\mathrm{GL}(V)$ acting on the k-dimensional subspaces of $W=V \wedge V$ and $G_{d, k}(q)$ for the number of orbits of $\mathrm{GL}(V)$ acting on the k-dimensional subspaces of $W^{+}=(V \wedge V) \oplus V$. Write Π for the set of all prime powers, π for the subset of all primes and π_{o} for the set of all odd primes.

1 Theorem:(Higman [7]) Let $d, k \in \mathbb{N}$.
(a) $G_{d, k}(p)$ coincides with the number of isomorphism types of d-generator groups of order p^{d+k} and p-class 2 for all $p \in \pi_{o}$.
(b) $L_{d, k}(p)$ coincides with the number of isomorphism types of d-generator groups of order p^{d+k}, exponent p and class 2 for all $p \in \pi_{o}$.
(c) $L_{d, k}(q)$ coincides with the number of isomorphism types of d-generator Lie algebras of dimension $d+k$ and class 2 over \mathbb{F}_{q} for all $q \in \Pi$.

Let $d, k \in \mathbb{N}$. Eick \& O'Brien [2] described an effective method to compute $G_{d, k}(q)$ or $L_{d, k}(q)$ for a fixed single $q \in \Pi$. Vaughan-Lee [10] introduced a method to determine a PORC polynomial on π_{o} describing $G_{d, k}(p)$ as a function in $p \in \pi_{o}$. This method translates readily to the computation of $L_{d, k}(p)$ for $p \in \pi_{o}$ and was used to determine PORC polynomials describing $G_{d, k}(p)$ for $d \leq 6$. Eick \& Wesche [5] described the calculation of a PORC polynomial on Π for the action of $\mathrm{GL}(V)$ on the k-dimensional subspaces of $V \otimes V$ as a function in $q \in \Pi$. We recall the main principles of these methods in Section 2 for completeness.
We observe that a PORC function $f(s)$ on S with modulus m can be written as a polynomial in s whose coefficients are \mathbb{Q}-linear combinations of products of terms of the form $\operatorname{gcd}\left(s-i, p^{k}\right)$ where $0 \leq i<p^{k}$ and $p^{k} \mid m$, see Section 4. There is no unique way of writing these coefficients, since there are relations which hold between the gcds. Section 4 discusses how to compute a possibly short PORC polynomial for a PORC function.
We say that the PORC function f on S has degree l if f can be represented by a PORC polynomial in s which is, as a polynomial in s, of degree l and its leading coefficient is non-zero for all $s \in S$. Section 3 contains a proof for the following.

2 Theorem: Let $d, k \in \mathbb{N}$.
(a) If $L_{d, k}(q) \neq 0$, then the degree of $L_{d, k}(q)$ is at least $k d(d-1) / 2-k^{2}-d^{2}+1$.
(b) If $G_{d, k}(q) \neq 0$, then the degree of $G_{d, k}(q)$ is at least $k d(d+1) / 2-k^{2}-d^{2}$.

Finally, we combine the ideas of [10] and [5] with the methods described in Section 4] and use these to determine PORC polynomials on Π for $G_{d, k}(q)$ and $L_{d, k}(q)$ for $d \leq 7$, $k \in \mathbb{N}$ and all $q \in \Pi$, see Section 5 for details. The resulting polynomials are available in electronic form in [3] and [11]. Section 6 contains an abbreviated description of them.
The bounds of Theorem 2 are attained in many cases in the range $d \leq 7$. Exceptions are $L_{6,3}(q)$ and $G_{d, 2}(q)$ for $d \geq 3$, where the actual degree exceeds the lower bound by 1 .

2 The algorithm

Let V be a d-dimensional vector space over the field \mathbb{F}_{q} with q elements. In this section we briefly describe the main features of the algorithm to compute a PORC polynomial for the number of orbits of $\mathrm{GL}(V)$ acting on the k-dimensional subspaces of $W=(V \wedge V)$ or $W^{+}=W \oplus V$, respectively.

2.1 The type of a matrix

Green [6] introduced the notion of a type of a matrix. This plays a key role in our algorithms and we recall it here briefly.
Let $g \in \operatorname{GL}(V)$ have minimal polynomial $\mu(x)$. Let $p_{1}(x), \ldots, p_{m}(x)$ be the distinct irreducible factors of $\mu(x)$. Then for $1 \leq i \leq m$ there exists a sequence $s_{i}=\left(s_{i, 1}, \ldots, s_{i, m_{i}}\right)$ of natural numbers so that the rational canonical form of g is a block diagonal matrix whose diagonal blocks are the companion matrices of the polynomials $p_{i}(x)^{s_{i, j}}$. Let $n_{i}=$ $\operatorname{deg}\left(p_{i}(x)\right)$. The type of g is the sequence (which is assumed to be lexicographically sorted)

$$
\operatorname{type}(g)=\left(\left(n_{1}, s_{1}\right), \ldots,\left(n_{m}, s_{m}\right)\right)
$$

If $t=\left(\left(n_{1}, s_{1}\right), \ldots,\left(n_{m}, s_{m}\right)\right)$ is the type of a matrix in $\mathrm{GL}(V)$ and $\bar{s}_{i}=s_{i, 1}+\ldots+s_{i, m_{i}}$, then $d=n_{1} \bar{s}_{1}+\ldots+n_{m} \bar{s}_{m}$ holds. Hence for a given d there are only finitely many possible types and these can be listed easily (and are independent of the field-size).

3 Theorem: (Green [6], Eick \& O'Brien [2]) Let the the type of a matrix in $\mathrm{GL}(V)$ for $V=\mathbb{F}_{q}^{d}$.
(a) The set $E_{t}=\{g \in \mathrm{GL}(V) \mid$ type $(g)=t\}$ is the union of $k_{t}(q)$ different conjugacy classes which all have the same size $s_{t}(q)$. Both $k_{t}(q)$ and $s_{t}(q)$ can be described by polynomials in q.
(b) Let \mathcal{U}_{k} denote the set of k-dimensional subspaces of V and let g be an element of type t in $\mathrm{GL}(V)$. The number of fixed points $\mathrm{Fix}_{g}\left(\mathcal{U}_{k}\right)$ depends on t only and can be described by a polynomial in q.

Formulae for $k_{t}(q)$ and $s_{t}(q)$ as polynomials in q have been determined by Green [6]. An effective method to compute a polynomial in q for $\operatorname{Fix}_{g}\left(\mathcal{U}_{k}\right)$ using the type of g only was been described by Eick \& O'Brien [2]. We write $\operatorname{Fix}_{t}\left(\mathcal{U}_{k}\right)$ for the number of fixed points of an element of type t.

2.2 Burnside's lemma

The number of orbits of a group acting on a finite set can be determined using Burnside's lemma. To evaluate this, let \bar{g} denote the action of $g \in \mathrm{GL}(V)$ on W or W^{+}, respectively, and let \mathcal{U}_{k} denote the set of k-dimensional subspaces of W or W^{+}, respectively. Then the number of orbits \mathcal{O} of $\operatorname{GL}(V)$ acting on \mathcal{U}_{k} is given by

$$
\mathcal{O}=\frac{1}{|\mathrm{GL}(V)|} \sum_{g \in \mathrm{GL}(V)} \operatorname{Fix}_{\bar{g}}\left(\mathcal{U}_{k}\right) .
$$

Let $G=\operatorname{GL}(V)$ and let \bar{G} denote the action of G on W or W^{+}, respectively. Let \mathcal{R} denote a set of representatives for the conjugacy classes in G; for example, \mathcal{R} can be chosen as the set of rational canonical forms of matrices in G. Let \mathcal{T} be the set of types of matrices in G and $\overline{\mathcal{T}}$ the set of types of matrices in \bar{G}. For $t \in \mathcal{T}$ and $\bar{t} \in \overline{\mathcal{T}}$ let

$$
A(t, \bar{t})=\mid\{g \in \mathcal{R} \mid \operatorname{type}(g)=t \text { and type }(\bar{g})=\bar{t}\} \mid .
$$

Then Theorem 3(a) asserts that

$$
\sum_{\bar{t} \in \overline{\mathcal{T}}} A(t, \bar{t})=k_{t}(q)
$$

Using $s_{t}(q)$ for the size of a conjugacy class of an element of type t in G, we obtain the following refined formula for \mathcal{O}

$$
\mathcal{O}=\frac{1}{|G|} \sum_{t \in \mathcal{T}} \sum_{\bar{t} \in \overline{\mathcal{T}}} A(t, \bar{t}) s_{t}(q) \operatorname{Fix}_{\bar{t}}\left(\mathcal{U}_{k}\right)
$$

As recalled above, polynomials in q for $s_{t}(q)$, for $\operatorname{Fix}_{\bar{t}}\left(\mathcal{U}_{k}\right)$ and for $|G|$ can be computed readily. It thus remains to compute a PORC polynomial for $A(t, \bar{t})$ for all $t \in \mathcal{T}$ and $\bar{t} \in \overline{\mathcal{T}}$ and this is the key problem of the algorithm. We consider this in more detail in Section 5 .

3 The lower bounds

In this section we prove Theorem 2 based on the results and the notation of Section 2 , Let $d, k \in \mathbb{N}$ and $V=\mathbb{F}_{q}^{d}$. Write m for the dimension of W or W^{+}, respectively, and \mathcal{O} for the orbits of $G=\mathrm{GL}(V)$ on the set \mathcal{U}_{k} of subspaces of dimension k in W or W^{+}, respectively. Then it follows that

$$
\left|\mathcal{U}_{k}\right| /|G| \leq|\mathcal{O}| \leq\left|\mathcal{U}_{k}\right|
$$

Further,

$$
\left|\mathcal{U}_{k}\right|=\prod_{i=1}^{k} \frac{q^{m-i+1}-1}{q^{i}-1} \quad \text { and } \quad|G|=\prod_{i=1}^{d}\left(q^{d}-q^{i}\right)
$$

Hence if f is a PORC polynomial for \mathcal{O}, then

$$
u=\sum_{i=1}^{k}(m-i+1-i)=m k-k^{2}
$$

is an upper bound for the degree of f and a lower bound is

$$
l=\sum_{i=1}^{k}(m-i+1-i)-d^{2}=m k-k^{2}-d^{2}
$$

This proves the lower bound for $G_{d, k}(q)$ as in Theorem $2(\mathrm{~b})$, since $G_{d, k}(q)$ coincides with \mathcal{O} if we consider the action on W^{+}and $m=d(d+1) / 2$ in this case.
The function $L_{d, k}(q)$ coincides with \mathcal{O} if we consider the action on W. In this case the diagonal matrices in G act as diagonal matrices on W and hence act trivially on \mathcal{U}_{k}. Thus in this case we obtain

$$
(q-1)\left|\mathcal{U}_{k}\right| /|G| \leq|\mathcal{O}|
$$

and hence the lower bound improves to $m k-k^{2}-d^{2}+1$ with $m=d(d-1) / 2$. This proves Theorem 2(a).
Alternatively, both lower bounds can also be obtained via the Burnside formula for \mathcal{O} by noting that the type $t=(1,(1, \ldots, 1))$ corresponding to the diagonal matrices in G yields summands whose degree coincides with the lower bound.

4 Simplifying PORC polynomials

Let S be an infinite subset of the integers and let $f: S \rightarrow \mathbb{Q}$ be a PORC function. As described in the introduction, this implies that there exists $m \in \mathbb{N}$ and polynomials $g_{0}, \ldots, g_{m-1} \in \mathbb{Q}[x]$ such that

$$
f(s)=g_{i}(s) \quad \text { for all } \quad s \in S \quad \text { with } \quad s \equiv i \bmod m .
$$

For $0 \leq i \leq m-1$ define $\chi_{(i, m)}(s): S \rightarrow \mathbb{Q}$ via $\chi_{(i, m)}(s)=1$ if $s \equiv i \bmod m$ and $\chi_{(i, m)}(s)=0$ otherwise. Then a closed formula for the PORC function f is

$$
f(s)=\sum_{i=0}^{m-1} \chi_{(i, m)}(s) g_{i}(s)
$$

We investigate the characteristic functions $\chi_{i, m}(s)$ in more detail. If $\operatorname{gcd}(a, b)=1$, then $\chi_{i, a b}(s)=\chi_{(i \bmod a), a}(s) \chi_{(i \bmod b), b}(s)$. Hence it is sufficient to consider the characteristic functions for prime powers $m=p^{k}$. For $0 \leq i<p^{k}$ and $\bar{i}=i \bmod p^{k-1}$ we note that

$$
\chi_{i, p^{k}}(s)=\frac{\operatorname{gcd}\left(s-i, p^{k}\right)-\operatorname{gcd}\left(s-\bar{i}, p^{k-1}\right)}{p^{k}-p^{k-1}}
$$

In summary, a PORC function f can be written as a polynomial whose coefficients are \mathbb{Q}-linear combinations of products of terms of the form $\operatorname{gcd}\left(s-i, p^{k}\right)$ where $0 \leq i<p^{k}$. However there is no unique way of writing these functions since there are relations which hold between the gcds. For example, if p is prime then

$$
\sum_{i=0}^{p-1} \chi_{(i, p)}=1
$$

and it follows from this relation that, for $0 \leq i<p, \chi_{(i, p)}(s)$ can be expressed as a \mathbb{Q} linear combination of $1, \operatorname{gcd}(s, p), \operatorname{gcd}(s-1, p), \ldots, \operatorname{gcd}(s-(p-2), p)$. There are additional complications when the set S on which f is defined is the set of primes or the set of prime powers. Then, for example, the relation $\chi_{(0,2)} \chi_{(0,3)}=0$ holds on S.

4.1 The case that S is the set of all integers

First we consider PORC functions which are defined on the whole of the integers \mathbb{Z}. Let p^{k} be a prime power, and let $V_{p^{k}}$ be the set of functions $f: \mathbb{Z} \rightarrow \mathbb{Q}$ of the form

$$
\sum_{i=0}^{p^{k}-1} \alpha_{i} \chi_{\left(i, p^{k}\right)}
$$

with $\alpha_{i} \in \mathbb{Q}$. We view $V_{p^{k}}$ as a vector space over \mathbb{Q} - as such, it has dimension p^{k} and basis $\left\{\chi_{\left(i, p^{k}\right)} \mid 0 \leq i<p^{k}\right\}$. To simplify notation, for $0 \leq i<p^{r}$ and $r \geq 1$, we let $g_{\left(i, p^{r}\right)}: \mathbb{Z} \rightarrow \mathbb{Q}$ be defined by

$$
g_{\left(i, p^{r}\right)}(s)=\operatorname{gcd}\left(s-i, p^{r}\right)
$$

Note that $\chi_{\left(i, p^{r}\right)}$ and $g_{\left(i, p^{r}\right)}$ are elements in $V_{p^{k}}$ for $0 \leq i<p^{r}$ and $r=1,2, \ldots, k$.

4 Theorem: Let $B_{p^{k}}$ be the subset of $V_{p^{k}}$ consisting of the constant function 1 and the functions $g_{\left(i, p^{r}\right)}$ with $1 \leq r \leq k$ and $0 \leq i<p^{r}-p^{r-1}$. Then $B_{p^{k}}$ is a basis for $V_{p^{k}}$.

Proof: The proof is by induction on k. The case $k=1$ follows from the definition of $\chi_{(i, p)}$ ($0 \leq i<p$), and from the fact that

$$
\sum_{i=0}^{p-1} g_{(i, p)}=2 p-1
$$

So assume that the result is true for $k-1$, and consider the case k. Let W be the subspace of $V_{p^{k}}$ spanned by $B_{p^{k}}$. By induction we may assume that $g_{\left(i, p^{k-1}\right)} \in W$ for $0 \leq i<p^{k-1}$, and so

$$
\chi_{\left(i, p^{k}\right)} \in W \text { for } 0 \leq i<p^{k}-p^{k-1} .
$$

Now let $p^{k}-p^{k-1} \leq i<p^{k}$, and let $j=i \bmod p^{k-1}$. Then

$$
\chi_{\left(i, p^{k}\right)}=\chi_{\left(j, p^{k-1}\right)}-\sum_{r=0}^{p-2} \chi_{\left(j+r p^{k-1}, p^{k}\right)} \in W
$$

and this completes the proof.
Using the basis $B_{p^{k}}$ gives us a unique way of representing elements of $V_{p^{k}}$.
Let $m=q_{1} q_{2} \ldots q_{k}$ be a product of prime powers (with q_{i} coprime to q_{j} for $i \neq j$), and let V_{m} be the set of functions $f: \mathbb{Z} \rightarrow \mathbb{Q}$ of the form

$$
\sum_{i=0}^{m-1} \alpha_{i} \chi_{(i, m)}
$$

with $\alpha_{i} \in \mathbb{Q}$. As a vector space over \mathbb{Q}, V_{m} has dimension m and we have the following corollary to Theorem 4.

5 Corollary: V_{m} has basis B_{m} consisting of all products $f_{1} f_{2} \ldots f_{k}$ with $f_{i} \in B_{q_{i}}$ for $i=1,2, \ldots, k$.

4.2 The case that S is the set of all prime powers

The situation is more complicated if our PORC functions are only defined over primes or prime powers (as is the case for our functions $L_{d, k}(q)$ and $G_{d, k}(q)$). Let $m>1$ be a positive integer and let $0 \leq i<m$. If i is coprime to m then Dirichlet's theorem on arithmetic progressions implies that there are infinitely many primes p equal to $i \bmod m$. So $\chi_{(i, m)}(p)=1$ for infinitely many primes p. This shows that even when we consider the functions $\chi_{(i, m)}$ as being defined only on the set of prime powers, $\left\{\chi_{(i, m)} \mid 1 \leq i<\right.$ $m, \operatorname{gcd}(i, m)=1\}$ is linearly independent. But if i is not coprime to m then it happens frequently that $\chi_{(i, m)}(q)=0$ for all prime powers q. In particular this is true if $\operatorname{gcd}(i, m)$ is divisible by two distinct primes. If $\operatorname{gcd}(i, m)=p^{r}$ for some prime p then $\chi_{(i, m)}(q)$ can only be non zero for $q=p^{s}$ with $s \geq r$, and it is straightforward to check whether or not
$\chi_{(i, m)}\left(p^{s}\right)=0$ for all $s \geq r$. For $2 \leq m \leq 14$ the following functions take the value 0 on all prime powers:

$$
\chi_{(0,6)}, \chi_{(6,8)}, \chi_{(6,9)}, \chi_{(0,10)}, \chi_{(0,12)}, \chi_{(6,12)}, \chi_{(10,12)}, \chi_{(0,14)}, \chi_{(6,14)}, \chi_{(10,14)}, \chi_{(12,14)}
$$

However, when we consider the functions $\chi_{(i, m)}$ as being defined only on prime powers, then

$$
\left\{\chi_{(i, m)} \mid 0 \leq i<m, \chi_{(i, m)}(q) \neq 0 \text { for some prime power } q\right\}
$$

is linearly independent. To see this suppose that

$$
\sum_{i=0}^{m-1} \alpha_{i} \chi_{(i, m)}(s)=0
$$

whenever s is a prime power, and suppose that $\chi_{(j, m)}(q) \neq 0$ for some prime power q. Then $\chi_{(i, m)}(q)=0$ for $i \neq j$, and so

$$
0=\sum_{i=0}^{m-1} \alpha_{i} \chi_{(i, m)}(q)=\alpha_{j} .
$$

As above, let Π be the set of prime powers, and let W_{m} be the set of functions $f: \Pi \rightarrow \mathbb{Q}$ of the form

$$
\sum_{i=0}^{m-1} \alpha_{i} \chi_{(i, m)}
$$

with $\alpha_{i} \in \mathbb{Q}$. Then as a vector space over \mathbb{Q}, W_{m} has dimension

$$
\mid\left\{i \mid 0 \leq i<m, \chi_{(i, m)}(q) \neq 0 \text { for some } q\right\} \mid .
$$

We use these ideas to simplify our functions $L_{d, k}(q)$ and $G_{d, k}(q)$. A certain amount of simplification is built into the programs which compute the functions, but we apply further simplification to the initial output. For example, the first version of the functions $G_{(6, k)}(q)(1 \leq k \leq 21)$ which were computed by our programs involved polynomials in q with coefficients which were \mathbb{Q}-linear combinations of 164 different products of elements $\operatorname{gcd}\left(q-i, p^{k}\right)$ with

$$
p^{k} \in\{2,4,8,16,64,3,9,5,7,11,13,17,19\} .
$$

These products included
$1, \operatorname{gcd}(q, 2) \cdot \operatorname{gcd}(q-58,64), \operatorname{gcd}(q, 2)^{2} \cdot \operatorname{gcd}(q-1,5), \operatorname{gcd}(q-1,17), \operatorname{gcd}(q, 2) \cdot \operatorname{gcd}(q, 7)$
for example. (Products like $\operatorname{gcd}(q, 2) \cdot \operatorname{gcd}(q-58,64)$ and $\operatorname{gcd}(q, 2)^{2} \cdot \operatorname{gcd}(q-1,5)$ can arise when two PORC functions are multiplied together.) The first step is to write these products as linear combinations of the basis elements B_{m} for V_{m} for various m. We write $\operatorname{gcd}(q, 2) . \operatorname{gcd}(q-58,64)$ as a linear combination of elements in B_{64}, and we write $\operatorname{gcd}(q, 2)^{2} \cdot \operatorname{gcd}(q-1,5)$ as a linear combination of elements in B_{10}, and so on. After these
simplifications, all the coefficients were linear combinations of 74 elements of B_{m} for $m \in S$ where

$$
S=\{2,4,8,16,3,9,5,7,11,13,17,19,6,10,12,14,15,20\}
$$

(Note that if $M \mid m$ then B_{M} is a subset of B_{m}.) Next, for each $m \in S$ we found those values of $i(0 \leq i<m)$ for which $\chi_{(i, m)}(q)=0$ for all prime powers q. For each such i, m we expressed $\chi_{(i, m)}$ as a linear combination of the basis elements B_{m}, and used the relation $\chi_{(i, m)}=0$ to eliminate an element of B_{m} from the functions $G_{(6, k)}(q)$. For example the relation $\chi_{(0,6)}=0$ gives

$$
\operatorname{gcd}(q, 2) \cdot \operatorname{gcd}(q, 3)=\operatorname{gcd}(q, 2)+\operatorname{gcd}(q, 3)-1
$$

enabling us to eliminate $\operatorname{gcd}(q, 2) \cdot \operatorname{gcd}(q, 3)$ from the functions $G_{6, k}(q)$, and the relation $\chi_{(10,14)}=0$ gives

$$
\operatorname{gcd}(q, 2) \cdot \operatorname{gcd}(q-3,7)=\operatorname{gcd}(q, 2)+\operatorname{gcd}(q-3,7)-1
$$

enabling us to eliminate $\operatorname{gcd}(q, 2) \cdot \operatorname{gcd}(q-3,7)$. After these eliminations, all the coefficients in the functions $g_{(6, k)}(q)$ were linear combinations of 64 elements of B_{m} for $m \in S$. Note that these simplifications are not purely cosmetic. As described in Section 2.2, the functions $L_{d, k}(q)$ and $G_{d, k}(q)$ are given as quotients $\frac{f}{|G|}$ for some PORC function f, and typically we need to simplify f before it can be cleanly divided by $|G|$.

5 The key problem of the algorithm

Section 2 gives an overview of an algorithm to compute PORC polynomials for $L_{d, k}(q)$ and $G_{d, k}(q)$ for given d and k. This uses Burnside's Lemma and the action of $G=\operatorname{GL}(V)$ for $V=\mathbb{F}_{q}^{d}$ on the set \mathcal{U}_{k} of k-dimensional subspaces of W or W^{+}, respectively. The remaining key problem is the determination of $A(t, \bar{t})$ for a type t of an element of G and the possible types \bar{t} of its induced action on W or W^{+}, respectively.
We discuss this remaining key problem here in more detail with a view towards determining $L_{d, k}(q)$ and $G_{d, k}(q)$ for small d. We observe that our approach is successful for $d \leq 7$, while the case $d=8$ is out of reach at the current time. The following table contains the numbers $N r(d)$ of types of elements in G for $d \leq 10$.

d	1	2	3	4	5	6	7	8	9	10
$N r(d)$	1	4	8	22	42	103	199	441	859	1784

5.1 General ideas towards computing $A(t, \bar{t})$

Vaughan-Lee [10] describes a general approach towards computing $A(t, \bar{t})$ for a fixed type t and all possibilities for types \bar{t}. This approach is based on applications of inclusionexclusion principles and these can be time-consuming. His implementation 11 allows us to cut down the runtime used for inclusion-exclusion calculations via ad-hoc arguments. These have to be programmed separately for each considered type t.

The alternative implementation by Eick \& Wesche [4] is generic and does not need any human interaction, but it is less efficient than Vaughan-Lee's implementation. This generic implementation allows us to compute $L_{d, k}(q)$ and $G_{d, k}(q)$ for $d \leq 5$. In the cases $d=6$ and $d=7$ there are a few types t for which the calculation of $A(t, \bar{t})$ is not feasible using the generic implementation. (For $d=7$ there are 11 of these types.)
We combined the two implementations to determine $L_{d, k}(q)$ and $G_{d, k}(q)$ for $d \leq 7$. In practice, the generic method determines $A(t, \bar{t})$ for as many types t as possible, while the more efficient ad-hoc method deals with the remaining difficult types.

5.2 An example of a difficult type

In this section we discuss the computation of $A(t, \bar{t})$ for the type $t=((1,(1)), \ldots,(1,(1)))$. This is the most difficult type for both methods. We consider the action on W only; the same principles work for the action on W^{+}.
The rational canonical forms of the elements in G of type t are the diagonal matrices with pairwise distinct diagonal entries a_{1}, \ldots, a_{d}. Such a diagonal matrix A acts on W as a diagonal matrix B with diagonal entries $a_{i} a_{j}$ for $1 \leq i<j \leq d$. The type of B is determined by which coincidences $a_{i} a_{j}=a_{k} a_{l}$ hold. Since the eigenvalues of A are all distinct the equation $a_{i} a_{j}=a_{k} a_{l}$ is only possible if i, j, k, l are all distinct, and so the set R of possible equations between the eigenvalues of B has size $\frac{d(d-1)(d-2)(d-3)}{8}$.
For each subset $S \subseteq R$ let M_{S} be the set of diagonal matrices A over \mathbb{F}_{q} with pairwise distinct diagonal entries a_{1}, \ldots, a_{d} which satisfy the relations in S and satisfy none of the relations in $R \backslash S$. Let $g_{S}=\left|M_{S}\right|$. Higman's theory [7] implies that g_{S} is a PORC function of q, and an algorithm to compute g_{S} is described in [9], see also [5] and [10]. If $g_{S} \neq 0$ then all the matrices B arising from matrices $A \in M_{S}$ have the same type, and this type is easy to compute. Our aim is to determine g_{S} for all subsets $S \subseteq R$ for which $g_{S} \neq 0$.
One possible approach is as follows. For each subset $S \subseteq R$ let f_{S} be the PORC function giving the number of choices of distinct elements $a_{1}, \ldots, a_{d} \in \mathbb{F}_{q}$ satisfying the equations in S (and possibly also some other equations in $R \backslash S$). A method to compute f_{S} for given S is described in [9], see also [5] and [10]. For example, when $d=8$ this takes somewhere between 0.05 and 0.2 seconds for each subset. For each subset $S \subseteq R$ we can then compute the PORC formula for g_{S} by iteratively replacing f_{S} by $f_{S}-f_{T}$ for each pair of subsets $S, T \subseteq R$ such that S is a proper subset of T. (This has to be done in the correct order. First we take $T=R$, then we take those T with $|T|=|R|-1$, and next we take those T with $|T|=|R|-2$, and so on. We can, of course, skip T whenever $f_{T}=0$.) At the end of this process f_{S} has been replaced by g_{S} for all subsets S. This outline yields a practical algorithm for $d \leq 5$.

For $d \geq 6$ the algorithm sketched above is not practical since the set R of possible equations is too large. When $d=7$, for example, $|R|=105$ so that R has 2^{105} subsets S. Permuting the eigenvalues of A gives an action of $\operatorname{Sym}(d)$ on R, and it is only necessary to compute g_{S} for one element out of each orbit. But $\frac{2^{105}}{7!} \sim 8 \times 10^{27}$, so this reduction has very little impact for $d=7$. However it turns out that $g_{S}=0$ for most subsets S. More precisely, for $d=7$ there are only $426 \operatorname{Sym}(7)$-orbits with $g_{S} \neq 0$. For many subsets S it is possible
to predict that $g_{S}=0$. We exhibit two examples.
(a) If S contains both $a_{1} a_{2}=a_{3} a_{4}$ and $a_{1} a_{2}=a_{3} a_{5}$, then $f_{S}=g_{S}=0$, since the two equations imply that $a_{4}=a_{5}$ and this is impossible for the type t.
(b) If S contains $a_{1} a_{2}=a_{3} a_{4}$ and $a_{1} a_{2}=a_{5} a_{6}$ then $g_{S}=0$ unless S also contains $a_{3} a_{4}=a_{5} a_{6}$. In this case $a_{3} a_{4}=a_{5} a_{6}$ is a consequence of the first two equations.

It is easy to decide whether a relation $a_{i}=a_{j}$ is a consequence of the relations in S. Just compute the PORC formula for the number of choices of $a_{1}, a_{2}, \ldots, a_{d}$ satisfying the relations in S, and also compute the PORC formula for the number of choices satisfying the relations in $S \cup\left\{a_{i}=a_{j}\right\}$. If the two PORC formulae are the same then $a_{i}=a_{j}$ is a consequence of the relations in S. Similarly it is easy to see whether any relations in $R \backslash S$ are consequences of the relations in S.
Our algorithm only generates $\operatorname{Sym}(d)$-orbits of subsets S of R such that the relations in S do not have any consequences $a_{i}=a_{j}$, and such that no relation in $R \backslash S$ is a consequence of the relations in S. If $d=7$, then this reduces the set of all orbits of subsets to only 483 orbits. It now remains to compute f_{S} and then g_{S} for these orbits.

If $d=8$, then there are 9288 orbits of subsets $S \subseteq R$ where we are unable to prove that $g_{S} \neq 0$. It took several hours of CPU-time to find representatives for these orbits. We estimate that it would take about a month of CPU-time to compute the functions g_{S} for these representatives. We have not attempted to complete this calculation. Even if we did, it would only enable us to compute $A(t, \bar{t})$ for matrices of type $t=(1,(1)), \ldots,(1,(1)))$, and it would take several more months of CPU-time to compute $A(t, \bar{t})$ for all possible types t. Further, the action on W^{+}would be much more time-consuming to process than the action on W.
The timings mentioned above are for programs running in Magma V2.19-10 on a desktop computer with an Intel Core 17-4770 CPU.

6 Explicit polynomials for small d

In this section we exhibit the PORC polynomials (or their leading terms) for $L_{d, k}(q)$ and $G_{d, k}(q)$ for $d \leq 7$. The full PORC polynomials are available in electronic form in the package [3] based on GAP [8] and code [11] based on Magma [1].

6.1 Polynomials for L

Let $l=d(d-1) / 2$ and note that $L_{d, l}(q)=1$ and $L_{d, k}(q)=L_{d, l-k}(q)$. Thus it is sufficient to list $L_{d, k}(q)$ for $1 \leq k \leq l / 2$ and the case $d \in\{1,2\}$ is trivial. The next table lists PORC polynomials (or their leading terms) for $L_{d, k}(q)$ for $3 \leq d \leq 7$ and $1 \leq k \leq l / 2$. The PORC polynomials are valid for all prime powers q.

$$
\begin{aligned}
& L_{3,1}(q)=1 \\
& L_{4,1}(q)=2
\end{aligned}
$$

$$
\begin{aligned}
& L_{4,2}(q)=4 \\
& L_{4,3}(q)=6 \\
& L_{5,1}(q)=2 \\
& L_{5,2}(q)=6 \\
& L_{5,3}(q)=22 \\
& L_{5,4}(q)=57 \\
& L_{5,5}(q)=3 q+2(q, 2)+(q, 3)+2(q-1,3)+(q-1,4)+63 \\
& L_{6,1}(q)=3 \\
& L_{6,2}(q)=14 \\
& L_{6,3}(q)=3 q^{2}+10 q-5(q, 2)+3(q-1,3)+2(q-1,4)+117 \\
& L_{6,4}(q)=q^{9}+q^{8}+3 q^{7}+6 q^{6}+13 q^{5}+(26-(q, 2)) q^{4}+(59-6(q, 2)) q^{3}+\ldots \\
& L_{6,5}(q)=q^{15}+q^{14}+3 q^{13}+5 q^{12}+10 q^{11}+16 q^{10}+29 q^{9}+45 q^{8}+\ldots \\
& L_{6,6}(q)=q^{19}+q^{18}+3 q^{17}+5 q^{16}+10 q^{15}+16 q^{14}+29 q^{13}+43 q^{12}+\ldots \\
& L_{6,7}(q)=q^{21}+q^{20}+3 q^{19}+5 q^{18}+10 q^{17}+16 q^{16}+29 q^{15}+44 q^{14}+\ldots \\
& L_{7,1}(q)=3 \\
& L_{7,2}(q)=20 \\
& L_{7,3}(q)=q^{6}+q^{5}+5 q^{4}+10 q^{3}+(38-2(q, 2)) q^{2}+\ldots \\
& L_{7,4}(q)=q^{20}+q^{19}+3 q^{18}+5 q^{17}+10 q^{16}+15 q^{15}+27 q^{14}+40 q^{13}+\ldots \\
& L_{7,5}(q)=q^{32}+q^{31}+3 q^{30}+5 q^{29}+10 q^{28}+16 q^{27}+28 q^{26}+43 q^{25}+\ldots \\
& L_{7,6}(q)=q^{42}+q^{41}+3 q^{40}+5 q^{39}+10 q^{38}+16 q^{37}+29 q^{36}+44 q^{35}+\ldots \\
& L_{7,7}(q)=q^{50}+q^{49}+3 q^{48}+5 q^{47}+10 q^{46}+16 q^{45}+29 q^{44}+45 q^{43}+\ldots \\
& L_{7,8}(q)=q^{56}+q^{55}+3 q^{54}+5 q^{53}+10 q^{52}+16 q^{51}+29 q^{50}+45 q^{49}+\ldots \\
& L_{7,9}(q)=q^{60}+q^{59}+3 q^{58}+5 q^{57}+10 q^{56}+16 q^{55}+29 q^{54}+45 q^{53}+\ldots \\
& L_{7,10}(q)=q^{62}+q^{61}+3 q^{60}+5 q^{59}+10 q^{58}+16 q^{57}+29 q^{56}+45 q^{55}+\ldots
\end{aligned}
$$

6.2 Polynomials for G

Let $l=d(d+1) / 2$ and note that $G_{d, l}(q)=1$ and $G_{d, k}(q)=G_{d, l-k}(q)$. Thus it is sufficient to list $G_{d, k}(q)$ for $1 \leq k \leq l / 2$ and the case $d=1$ is trivial. The next table lists PORC polynomials (or their leading terms) for $G_{d, k}(q)$ for $3 \leq d \leq 7$ and $1 \leq k \leq l / 2$. The PORC polynomials are valid for all prime powers q.

$$
\begin{aligned}
& G_{2,1}(q)=3 \\
& G_{3,1}(q)=4 \\
& G_{3,2}(q)=q+(15-(q, 2)) \\
& G_{3,3}(q)=3 q+(30-3(q, 2)) \\
& G_{4,1}(q)=6
\end{aligned}
$$

$$
\begin{aligned}
& G_{4,2}(q)=4 q+(50-2(q, 2)) \\
& G_{4,3}(q)=q^{5}+2 q^{4}+7 q^{3}+(26-(q, 2)) q^{2}+(98-10(q, 2)+(q-1,3)) q+\ldots \\
& G_{4,4}(q)=q^{8}+2 q^{7}+5 q^{6}+10 q^{5}+24 q^{4}+(56-3(q, 2)) q^{3}+\ldots \\
& G_{4,5}(q)=q^{9}+2 q^{8}+5 q^{7}+10 q^{6}+21 q^{5}+(45-(q, 2)) q^{4}+(102-8(q, 2)) q^{3}+\ldots \\
& G_{5,1}(q)=7 \\
& G_{5,2}(q)=q^{2}+15 q+\frac{1}{2}(267-16(q, 2)-(q, 3)) \\
& G_{5,3}(q)=q^{11}+2 q^{10}+5 q^{9}+10 q^{8}+20 q^{7}+38 q^{6}+(76-2(q, 2)) q^{5}+\ldots \\
& G_{5,4}(q)=q^{19}+2 q^{18}+5 q^{17}+10 q^{16}+20 q^{15}+35 q^{14}+61 q^{13}+99 q^{12}+\ldots \\
& G_{5,5}(q)=q^{25}+2 q^{24}+5 q^{23}+10 q^{22}+20 q^{21}+36 q^{20}+63 q^{19}+104 q^{18}+\ldots \\
& G_{5,6}(q)=q^{29}+2 q^{28}+5 q^{27}+10 q^{26}+20 q^{25}+36 q^{24}+64 q^{23}+106 q^{22}+\ldots \\
& G_{5,7}(q)=q^{31}+2 q^{30}+5 q^{29}+10 q^{28}+20 q^{27}+36 q^{26}+64 q^{25}+107 q^{24}+\ldots \\
& G_{6,1}(q)=9 \\
& G_{6,2}(q)=q^{3}+7 q^{2}+(54-(q, 2)) q+\frac{1}{2}(682-50(q, 2)-(q, 3)+4(q-1,3)) \\
& G_{6,3}(q)=q^{18}+2 q^{17}+5 q^{16}+10 q^{15}+19 q^{14}+34 q^{13}+60 q^{12}+100 q^{11}+166 q^{10}+\ldots \\
& G_{6,4}(q)=q^{32}+2 q^{31}+5 q^{30}+10 q^{29}+20 q^{28}+35 q^{27}+62 q^{26}+101 q^{25}+164 q^{24}+\ldots \\
& G_{6,5}(q)=q^{44}+2 q^{43}+5 q^{42}+10 q^{41}+20 q^{40}+36 q^{39}+64 q^{38}+106 q^{37}+174 q^{36}+\ldots \\
& G_{6,6}(q)=q^{54}+2 q^{53}+5 q^{52}+10 q^{51}+20 q^{50}+36 q^{49}+65 q^{48}+108 q^{47}+179 q^{46}+\ldots \\
& G_{6,7}(q)=q^{62}+2 q^{61}+5 q^{60}+10 q^{59}+20 q^{58}+36 q^{57}+65 q^{56}+109 q^{55}+181 q^{54}+\ldots \\
& G_{6,8}(q)=q^{68}+2 q^{67}+5 q^{66}+10 q^{65}+20 q^{64}+36 q^{63}+65 q^{62}+109 q^{61}+182 q^{60}+\ldots \\
& G_{6,9}(q)=q^{72}+2 q^{71}+5 q^{70}+10 q^{69}+20 q^{68}+36 q^{67}+65 q^{66}+109 q^{65}+182 q^{64}+\ldots \\
& G_{6,10}(q)=q^{74}+2 q^{73}+5 q^{72}+10 q^{71}+20 q^{70}+36 q^{69}+65 q^{68}+109 q^{67}+182 q^{66}+\ldots \\
& G_{7,1}(q)=10 \\
& G_{7,2}(q)=q^{4}+7 q^{3}+(31-(q, 2)) q^{2}+\frac{1}{2}(327-18(q, 2)+(q, 3)+2(q-1,3)) q+\ldots \\
& G_{7,3}(q)=q^{26}+2 q^{25}+5 q^{24}+10 q^{23}+19 q^{22}+33 q^{21}+58 q^{20}+95 q^{19}+155 q^{18}+\ldots \\
& G_{7,4}(q)=q^{47}+2 q^{46}+5 q^{45}+10 q^{44}+20 q^{43}+35 q^{42}+62 q^{41}+102 q^{40}+166 q^{39}+\ldots \\
& G_{7,5}(q)=q^{66}+2 q^{65}+5 q^{64}+10 q^{63}+20 q^{62}+36 q^{61}+64 q^{60}+107 q^{59}+176 q^{58}+\ldots \\
& G_{7,6}(q)=q^{83}+2 q^{82}+5 q^{81}+10 q^{80}+20 q^{79}+36 q^{78}+65 q^{77}+109 q^{76}+181 q^{75}+\ldots \\
& G_{7,7}(q)=q^{98}+2 q^{97}+5 q^{96}+10 q^{95}+20 q^{94}+36 q^{93}+65 q^{92}+110 q^{91}+183 q^{90}+\ldots \\
& G_{7,8}(q)=q^{111}+2 q^{110}+5 q^{109}+10 q^{108}+20 q^{107}+36 q^{106}+65 q^{105}+110 q^{104}+\ldots \\
& G_{7,9}(q)=q^{122}+2 q^{121}+5 q^{120}+10 q^{119}+20 q^{118}+36 q^{117}+65 q^{116}+110 q^{115}+\ldots \\
& G_{7,10}(q)=q^{131}+2 q^{130}+5 q^{129}+10 q^{128}+20 q^{127}+36 q^{126}+65 q^{125}+110 q^{124}+\ldots \\
& G_{7,11}(q)=q^{138}+2 q^{137}+5 q^{136}+10 q^{135}+20 q^{134}+36 q^{133}+65 q^{132}+110 q^{131}+\ldots \\
& G_{7,12}(q)=q^{143}+2 q^{142}+5 q^{141}+10 q^{140}+20 q^{139}+36 q^{138}+65 q^{137}+110 q^{136}+\ldots \\
& G_{7,13}(q)=q^{146}+2 q^{145}+5 q^{144}+10 q^{143}+20 q^{142}+36 q^{141}+65 q^{140}+110 q^{139}+\ldots
\end{aligned}
$$

$$
G_{7,14}(q)=q^{147}+2 q^{146}+5 q^{145}+10 q^{144}+20 q^{143}+36 q^{142}+65 q^{141}+110 q^{140}+\ldots
$$

We observe that the coefficients of the leading terms of $L_{d, k}(q)$ and $G_{d, k}(q)$ for fixed d and large enough k exhibit a uniform pattern. This observation as well as upper bounds for the degree of the PORC polynomials still have to be investigated.

References

[1] W. Bosma, J. Cannon, and C. Playoust. The magma algebra system I: The user language. J. Symb. Comput., 24:235-265, 1997.
[2] B. Eick and E. A. O’Brien. Enumerating p-groups. J. Austral. Math. Soc., 67:191 205, 1999.
[3] B. Eick, M. Vaughan-Lee, and M. Wesche. PORC - Computing with PORC polynomials, 2018. http://www.icm.tu-bs.de/~beick/soft/.
[4] B. Eick and M. Wesche. Classtwoalg - Enumeration of class two algebras, 2018. A GAP package available from http://www.icm.tu-bs.de/~morwesch/research/ research.html.
[5] B. Eick and M. Wesche. Enumeration of nilpotent associative algebras of class 2 over arbitrary finite fields. J. Algebra, 503:573-589, 2018.
[6] J. A. Green. The characters of the finite general linear groups. Trans. Amer. Math. Soc., 80:402-447, 1955.
[7] G. Higman. Enumerating p-groups. II: Problems whose solution is porc. Proc. London Math. Soc., 10:566-582, 1960.
[8] The GAP Group. GAP - Groups, Algorithms and Programming, Version 4.4. Available from http://www.gap-system.org, 2005.
[9] M. Vaughan-Lee. Choosing elements from finite fields. ArXiv, 2012.
[10] M. Vaughan-Lee. On Graham Higman's famous PORC paper. Int. J. Group Theory, 1(4):65-79, 2012.
[11] M. Vaughan-Lee. Magma code. http://users.ox.ac.uk/~vlee/PORC/ pclasstwogroups, 2018.

