Inclusion-Exclusion calculations

Michael Vaughan-Lee

November 2018

Higman [1] proves the following theorem.

Theorem 1 The number of ways of choosing a finite number of elements from $GF(q^n)$ subject to a finite number of monomial equations and inequalities between them and their conjugates over GF(q), considered as a function of q, is PORC.

Here we are choosing elements x_1, x_2, \ldots, x_k (say) from the finite field $GF(q^n)$ (where q is a prime power) subject to a finite set of equations and non-equations of the form

$$x_1^{n_1} x_2^{n_2} \dots x_k^{n_k} = 1$$

and

$$x_1^{n_1}x_2^{n_2}\dots x_k^{n_k} \neq 1$$

where n_1, n_2, \ldots, n_k are integer polynomials in the Frobenius automorphism $x \to x^q$ of $GF(q^n)$. Higman calls these equations and non-equations monomial. Higman's proof of Theorem 1 involves 5 pages of homological algebra, but a shorter more elementary proof can be found in [2] and in [3].

To prove Theorem 1 you actually only need to prove that the number of ways of choosing a finite number of elements from $GF(q^n)$ subject to a finite number of monomial equations between them and their conjugates over GF(q), considered as a function of q, is PORC. To see this suppose that we have a set S of equations and a set T of non-equations. Let T^* be the set of equations obtained from T be replacing all the \neq 's by ='s. For each subset $U \subseteq T^*$ let n_U be the number of solutions to the equations $S \cup U$. Then the number of solutions to the equations T is

$$\sum_{U \subseteq T^*} (-1)^{|U|} n_U.$$
 (1)

In [2] and in [3] I show that to find the number of ways of choosing a finite number of elements from $GF(q^n)$ subject to a finite number of monomial equations S we write the equations in S as the rows of a matrix. We also have to add in equations $x_i^{q^n-1} = 1$ to make sure that the solutions lie in $GF(q^n)$. For example, we represent the equations

$$x_1^{q^2-1} = 1, \ x_1^{q+1}x_2^{-2} = 1, \ x_1^{q^n-1} = 1, \ x_2^{q^n-1} = 1$$

by the matrix

$$\begin{bmatrix} q^2 - 1 & 0 \\ q + 1 & -2 \\ q^n - 1 & 0 \\ 0 & q^n - 1 \end{bmatrix}.$$

For any given value of q this matrix is an integer matrix and the number of solutions to the equations is the product of the elementary divisors in the Smith normal form of the matrix. In [3] I show that the the number of solutions to a set of monomial equations, when considered as a function of q, is PORC. In fact I show that the number of solutions can be expressed in the form df(q) for some primitive polynomial $f(x) \in \mathbb{Z}[x]$, where

$$d = \alpha + \sum_{i=1}^{r} \alpha_i \gcd(q - n_i, m_i)$$

for some rational numbers $\alpha, \alpha_1, \alpha_2, \ldots, \alpha_r$, some integers m_1, m_2, \ldots, m_r with $m_i > 1$ for all *i*, and for some integers n_i with $0 < n_i < m_i$ for all *i*. In addition I give an algorithm for computing *d* and *f*.

So we have an algorithm for computing the PORC function giving the number of ways of choosing a finite number of elements from $GF(q^n)$ subject to a finite number of monomial equations and inequalities between them and their conjugates over GF(q). However, as described above, the algorithm involves computing n_U for every possible subset $U \subseteq T^*$ so the algorithm is only practical in this form if the set T of non-equations is relatively small. In this note we consider a particular calculation that arose in Bettina Eick's and my calculation of the PORC formulae giving the numbers of k-dimensional 7 generator class two Lie algebras over GF(q) for $8 \le k \le 28$. This calculation is described in Section 5 of our paper "Counting p-groups and Lie algebras using PORC polynomials". Here we expand on what was written in our paper.

We consider a diagonal matrix A in GL(7, q) with seven distinct eigenvalues a_1, a_2, \ldots, a_7 . The exterior square of A is a diagonal matrix B in

 $\operatorname{GL}(21,q)$ with eigenvalues $a_i a_j$ $(1 \leq i < j \leq 7)$. As described in our paper, we need to find the PORC formulae giving the number of matrices B of each possible type that arise as A ranges over all possible diagonal matrices in $\operatorname{GL}(7,q)$ with seven distinct eigenvalues. For any given choice of a_1, a_2, \ldots, a_7 the type of B is determined by which equations $a_i a_j = a_k a_l$ hold (and which do not hold). Since a_1, a_2, \ldots, a_7 are all distinct, the equation $a_i a_j = a_k a_l$ is only possible if i, j, k, l are all distinct. So we let R be the set of all possible equations $a_i a_j = a_k a_l$ with i < j, k, k < l, i, j, k, l all distinct. (So |R| = 105.) Let T be the set of 21 equations $a_i = a_j$ with $1 \leq i < j \leq 7$. Then, to take just one example, the matrix B has 21 distinct eigenvalues if the eigenvalues of A satisfy none of the equations in $R \cup T$. So the PORC formula (1) for the number of B which have 21 distinct eigenvalues would be an alternating sum of 2^{126} terms. We describe below in some detail how we were able to compute this sum.

For each subset $S \subseteq R$ we let g_S be the PORC formula giving the number of choices of distinct elements $a_1, a_2, \ldots, a_7 \in GF(q)$ satisfying the equations in S and satisfying none of the equations in $R \setminus S$. Permutations of the eigenvalues a_1, a_2, \ldots, a_7 give an action of Sym(7) on R, and if S and T are in the same orbit under this action then $g_S = g_T$. As described in our paper, R has more than 8×10^{27} orbits of subsets, but only 426 of these orbits contain subsets S with $g_S \neq 0$. We need to find representatives for these 426 orbits, together with the corresponding values of g_S .

Clearly $g_S = 0$ if the relations in S imply a relation $a_i = a_i$, or if they imply a relation in $R \setminus S$. Furthermore it is easy to see whether the relations in S imply a relation r — compute the PORC formula for the number of choices of a_1, a_2, \ldots, a_7 which satisfy the relations in S, and also compute the PORC formula for the number of choices of a_1, a_2, \ldots, a_7 which satisfy the relations in $S \cup \{r\}$. If the two formulae are the same then the relations in S imply r. We computed a set of representatives for the Sym(7)-orbits of subsets $S \subseteq R$ with the property that the relations in S do not imply any relations $a_i = a_i$ or any relations in $R \setminus S$. There were 483 of these orbits. For each of these 483 orbit representatives S we computed the PORC formula f_S giving the number of choices of distinct elements $a_1, a_2, \ldots, a_7 \in GF(q)$ satisfying the relations in S (and possibly also some relations in $R \setminus S$). We will describe below how we computed the functions f_S . It turned out that $f_S = 0$ for 56 of these representatives, leaving us with 427 orbit representatives for which we still needed to compute g_S . It may seem paradoxical that we can have $f_S = 0$ when S does not imply any relation $a_i = a_j$, but consider the three relations $a_1^2 = a_2^2$, $a_1^2 = a_3^2$, $a_2^2 = a_3^2$. You cannot find solutions to these three equations with a_1, a_2, a_3 all distinct, but there are solutions with $a_1 \neq a_2$,

other solutions with $a_1 \neq a_3$, and other solutions with $a_2 \neq a_3$.

So we were left with 427 representatives S with $f_S \neq 0$, and we needed to compute g_S for each of these representatives. We sort these 427 representatives into a list

$$S_1, S_2, \ldots, S_{427}$$

chosen so that if i < j then $|S_i| \ge |S_j|$, and we store the values of f_{S_i} for $i = 1, 2, \ldots, 427$. Then we apply the following piece of pseudo code.

for
$$i$$
 in $[1..426]$ do
let \mathcal{O} be the Sym(7)-orbit of S_i
for j in $[i + 1..427]$ do
if $|S_i| = |S_j|$ then continue; end if;
for T in \mathcal{O} do
if $S_j \subset T$ then $f_{S_j} := f_{S_j} - f_{S_i}$; end if;
end for;
end for;
end for;

This procedure replaces f_{S_i} by g_{S_i} for $i = 1, 2, \ldots, 427$.

It remains to describe how to compute f_S when $S \subseteq R$. Let V be the set of 21 equations $a_i = a_j$ $(1 \le i < j \le 7)$, and for each subset $U \subseteq V$ let n_U be the number of choices of a_1, a_2, \ldots, a_7 which satisfy the relations in $S \cup U$ (as well, possibly, as other relation in $R \cup V$). Then, as in equation (1),

$$f_S = \sum_{U \subseteq V} (-1)^{|U|} n_U.$$

There are 2^{21} terms in this sum, so it actually quite feasible to compute f_S in this way. But there is a much more efficient way. First we compute a list of subsets U of V with the property that the relations in U do not imply any relations in $V \setminus U$. There are 877 of these subsets, corresponding to the 877 equivalence relations on $\{a_1, a_2, \ldots, a_7\}$. Let \mathcal{R} be the set of these 877 subsets. For each subset $U \in \mathcal{R}$ we let n_U be the number of choices of a_1, a_2, \ldots, a_7 satisfying the relations in $S \cup U$ (as well, possibly, as other relation in $R \cup V$). Then, as in the computation of g_S , we take each subset $T \in \mathcal{R}$ in turn, starting with the largest subsets, and then the next largest, and so on, and iteratively replacing n_U by $n_U - n_T$ whenever $U \in \mathcal{R}$ is a proper subset of T. At the end of this process $n_{\{\}}$ will have been replaced by f_S . Note that this procedure gives

$$f_S = \sum_{U \in \mathcal{R}} m_U n_U$$

for some integer coefficients m_U which are independent of S. We can determine the coefficients m_U as follows. For each i = 1, 2, ..., 877 let w_i be the row vector of length 877 with i^{th} entry 1, and with all other entries 0. Order the elements of \mathcal{R} in a sequence $U_1, U_2, ..., U_{877}$ chosen so that if i < j then $|U_i| \ge |U_j|$. (So $U_1 = V$ and $U_{877} = \{\}$.) Then apply the following piece of pseudo code.

> for *i* in [1..876] do for *j* in [*i* + 1..877] do if $U_j \subset U_i$ then $w_j := w_j - w_i$; end if; end for; end for;

At the end of this process w_{877} will have been replaced by

$$(m_{U_1}, m_{U_2}, \ldots, m_{U_{877}}).$$

So the functions f_S can each be computed as a linear combination of 877 functions n_U , rather than as a linear combination of 2^{21} functions n_U .

References

- G. Higman, Enumerating p-groups. II: Problems whose solution is PORC, Proc. London Math. Soc. (3) 10 (1960), 566–582.
- [2] Michael Vaughan-Lee, On Graham Higman's famous PORC paper, Internat. J. Group Theory 1 (2012), 65–79.
- [3] Michael Vaughan-Lee, *Choosing elements from finite fields*, arXiv.1707.09652 (2017).