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Higman [1] proves the following theorem.

Theorem 1 The number of ways of choosing a �nite number of elements
from GF(qn) subject to a �nite number of monomial equations and inequali-
ties between them and their conjugates over GF(q), considered as a function
of q, is PORC.

Here we are choosing elements x1; x2; : : : ; xk (say) from the �nite �eld
GF(qn) (where q is a prime power) subject to a �nite set of equations and
non-equations of the form

xn11 x
n2
2 : : : x

nk
k = 1

and
xn11 x

n2
2 : : : x

nk
k 6= 1

where n1; n2; : : : ; nk are integer polynomials in the Frobenius automorphism
x ! xq of GF(qn). Higman calls these equations and non-equations mono-
mial. Higman's proof of Theorem 1 involves 5 pages of homological algebra,
but a shorter more elementary proof can be found in [2] and in [3].
To prove Theorem 1 you actually only need to prove that the number

of ways of choosing a �nite number of elements from GF(qn) subject to a
�nite number of monomial equations between them and their conjugates
over GF(q), considered as a function of q, is PORC. To see this suppose that
we have a set S of equations and a set T of non-equations. Let T � be the
set of equations obtained from T be replacing all the 6='s by ='s. For each
subset U � T � let nU be the number of solutions to the equations S [ U .
Then the number of solutions to the equations S and the non-equations T isX

U�T �
(�1)jU jnU . (1)
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In [2] and in [3] I show that to �nd the number of ways of choosing a �nite
number of elements from GF(qn) subject to a �nite number of monomial
equations S we write the equations in S as the rows of a matrix. We also
have to add in equations xq

n�1
i = 1 to make sure that the solutions lie in

GF(qn). For example, we represent the equations

xq
2�1
1 = 1; xq+11 x�22 = 1; xq

n�1
1 = 1; xq

n�1
2 = 1

by the matrix 2664
q2 � 1 0
q + 1 �2
qn � 1 0
0 qn � 1

3775 :
For any given value of q this matrix is an integer matrix and the number
of solutions to the equations is the product of the elementary divisors in
the Smith normal form of the matrix. In [3] I show that the the number of
solutions to a set of monomial equations, when considered as a function of
q, is PORC. In fact I show that the number of solutions can be expressed in
the form df(q) for some primitive polynomial f(x) 2 Z[x], where

d = �+
rX
i=1

�i gcd(q � ni;mi)

for some rational numbers �; �1; �2; : : : ; �r, some integers m1;m2; : : : ;mr

with mi > 1 for all i, and for some integers ni with 0 < ni < mi for all i. In
addition I give an algorithm for computing d and f .
So we have an algorithm for computing the PORC function giving the

number of ways of choosing a �nite number of elements from GF(qn) subject
to a �nite number of monomial equations and inequalities between them and
their conjugates over GF(q). However, as described above, the algorithm
involves computing nU for every possible subset U � T � so the algorithm is
only practical in this form if the set T of non-equations is relatively small. In
this note we consider a particular calculation that arose in Bettina Eick's and
my calculation of the PORC formulae giving the numbers of k-dimensional 7
generator class two Lie algebras over GF(q) for 8 � k � 28. This calculation
is described in Section 5 of our paper \Counting p-groups and Lie algebras
using PORC polynomials". Here we expand on what was written in our
paper.
We consider a diagonal matrix A in GL(7; q) with seven distinct eigen-

values a1; a2; : : : ; a7. The exterior square of A is a diagonal matrix B in
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GL(21; q) with eigenvalues aiaj (1 � i < j � 7). As described in our pa-
per, we need to �nd the PORC formulae giving the number of matrices B of
each possible type that arise as A ranges over all possible diagonal matrices in
GL(7; q) with seven distinct eigenvalues. For any given choice of a1; a2; : : : ; a7
the type of B is determined by which equations aiaj = akal hold (and which
do not hold). Since a1; a2; : : : ; a7 are all distinct, the equation aiaj = akal is
only possible if i; j; k; l are all distinct. So we let R be the set of all possible
equations aiaj = akal with i < j; k, k < l, i; j; k; l all distinct. (So jRj = 105.)
Let T be the set of 21 equations ai = aj with 1 � i < j � 7. Then, to take
just one example, the matrix B has 21 distinct eigenvalues if the eigenvalues
of A satisfy none of the equations in R [ T . So the PORC formula (1) for
the number of B which have 21 distinct eigenvalues would be an alternating
sum of 2126 terms. We describe below in some detail how we were able to
compute this sum.
For each subset S � R we let gS be the PORC formula giving the number

of choices of distinct elements a1; a2; : : : ; a7 2GF(q) satisfying the equations
in S and satisfying none of the equations in RnS. Permutations of the
eigenvalues a1; a2; : : : ; a7 give an action of Sym(7) on R, and if S and T are
in the same orbit under this action then gS = gT . As described in our paper,
R has more than 8 � 1027 orbits of subsets, but only 426 of these orbits
contain subsets S with gS 6= 0. We need to �nd representatives for these 426
orbits, together with the corresponding values of gS.
Clearly gS = 0 if the relations in S imply a relation ai = aj, or if they

imply a relation in RnS. Furthermore it is easy to see whether the relations in
S imply a relation r| compute the PORC formula for the number of choices
of a1; a2; : : : ; a7 which satisfy the relations in S, and also compute the PORC
formula for the number of choices of a1; a2; : : : ; a7 which satisfy the relations
in S [ frg. If the two formulae are the same then the relations in S imply r.
We computed a set of representatives for the Sym(7)-orbits of subsets S � R
with the property that the relations in S do not imply any relations ai = aj
or any relations in RnS. There were 483 of these orbits. For each of these
483 orbit representatives S we computed the PORC formula fS giving the
number of choices of distinct elements a1; a2; : : : ; a7 2GF(q) satisfying the
relations in S (and possibly also some relations in RnS). We will describe
below how we computed the functions fS. It turned out that fS = 0 for 56
of these representatives, leaving us with 427 orbit representatives for which
we still needed to compute gS. It may seem paradoxical that we can have
fS = 0 when S does not imply any relation ai = aj, but consider the three
relations a21 = a

2
2, a

2
1 = a

2
3, a

2
2 = a

2
3. You cannot �nd solutions to these three

equations with a1; a2; a3 all distinct, but there are solutions with a1 6= a2,
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other solutions with a1 6= a3, and other solutions with a2 6= a3.
So we were left with 427 representatives S with fS 6= 0, and we needed

to compute gS for each of these representatives. We sort these 427 represen-
tatives into a list

S1; S2; : : : ; S427

chosen so that if i < j then jSij � jSjj, and we store the values of fSi for
i = 1; 2; : : : ; 427. Then we apply the following piece of pseudo code.

for i in [1::426] do
let O be the Sym(7)-orbit of Si
for j in [i+ 1::427] do
if jSij = jSjj then continue; end if;
for T in O do
if Sj � T then fSj := fSj � fSi ; end if;
end for;
end for;
end for;

This procedure replaces fSi by gSi for i = 1; 2; : : : ; 427.
It remains to describe how to compute fS when S � R. Let V be the set

of 21 equations ai = aj (1 � i < j � 7), and for each subset U � V let nU
be the number of choices of a1; a2; : : : ; a7 which satisfy the relations in S [U
(as well, possibly, as other relation in R [ V ). Then, as in equation (1),

fS =
X
U�V

(�1)jU jnU :

There are 221 terms in this sum, so it actually quite feasible to compute
fS in this way. But there is a much more e�cient way. First we compute
a list of subsets U of V with the property that the relations in U do not
imply any relations in V nU . There are 877 of these subsets, corresponding
to the 877 equivalence relations on fa1; a2; : : : ; a7g. Let R be the set of these
877 subsets. For each subset U 2 R we let nU be the number of choices
of a1; a2; : : : ; a7 satisfying the relations in S [ U (as well, possibly, as other
relation in R [ V ). Then, as in the computation of gS, we take each subset
T 2 R in turn, starting with the largest subsets, and then the next largest,
and so on, and iteratively replacing nU by nU � nT whenever U 2 R is a
proper subset of T . At the end of this process nfg will have been replaced
by fS. Note that this procedure gives

fS =
X
U2R

mUnU
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for some integer coe�cients mU which are independent of S. We can deter-
mine the coe�cients mU as follows. For each i = 1; 2; : : : ; 877 let wi be the
row vector of length 877 with ith entry 1, and with all other entries 0. Order
the elements of R in a sequence U1; U2; : : : ; U877 chosen so that if i < j then
jUij � jUjj . (So U1 = V and U877 = fg.) Then apply the following piece of
pseudo code.

for i in [1::876] do
for j in [i+ 1::877] do
if Uj � Ui then wj := wj � wi; end if;
end for;
end for;

At the end of this process w877 will have been replaced by

(mU1 ;mU2 ; : : : ;mU877):

So the functions fS can each be computed as a linear combination of 877
functions nU , rather than as a linear combination of 2

21 functions nU .
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