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Higman [1] proves the following theorem.

Theorem 1 The number of ways of choosing a finite number of elements
from GF(q") subject to a finite number of monomial equations and inequali-
ties between them and their conjugates over GF(q), considered as a function

of q, is PORC.

Here we are choosing elements w1, s, ...,z (say) from the finite field
GF(q™) (where ¢ is a prime power) subject to a finite set of equations and
non-equations of the form
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where nq,nso, ..., n, are integer polynomials in the Frobenius automorphism

x — x% of GF(¢™). Higman calls these equations and non-equations mono-
mial. Higman’s proof of Theorem 1 involves 5 pages of homological algebra,
but a shorter more elementary proof can be found in [2] and in [3].

To prove Theorem 1 you actually only need to prove that the number
of ways of choosing a finite number of elements from GF(¢™) subject to a
finite number of monomial equations between them and their conjugates
over GF(q), considered as a function of ¢, is PORC. To see this suppose that
we have a set S of equations and a set T' of non-equations. Let 7™ be the
set of equations obtained from 7' be replacing all the #’s by =’s. For each
subset U C T™ let ny be the number of solutions to the equations S U U.
Then the number of solutions to the equations S and the non-equations T is
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In [2] and in [3] I show that to find the number of ways of choosing a finite
number of elements from GF(¢") subject to a finite number of monomial
equations S we write the equations in S as the rows of a matrix. We also
have to add in equations "' = 1 to make sure that the solutions lie in
GF(¢™). For example, we represent the equations
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by the matrix
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For any given value of ¢ this matrix is an integer matrix and the number
of solutions to the equations is the product of the elementary divisors in
the Smith normal form of the matrix. In [3] I show that the the number of
solutions to a set of monomial equations, when considered as a function of
q, is PORC. In fact I show that the number of solutions can be expressed in
the form df (q) for some primitive polynomial f(x) € Z[z]|, where
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for some rational numbers «,aq, s, ..., q,., some integers my, Mo, ..., M,
with m; > 1 for all ¢, and for some integers n; with 0 < n; < m; for all 7. In
addition I give an algorithm for computing d and f.

So we have an algorithm for computing the PORC function giving the
number of ways of choosing a finite number of elements from GF(¢") subject
to a finite number of monomial equations and inequalities between them and
their conjugates over GF(q). However, as described above, the algorithm
involves computing ny for every possible subset U C T™ so the algorithm is
only practical in this form if the set 7" of non-equations is relatively small. In
this note we consider a particular calculation that arose in Bettina Eick’s and
my calculation of the PORC formulae giving the numbers of k-dimensional 7
generator class two Lie algebras over GF(q) for 8 < k < 28. This calculation
is described in Section 5 of our paper “Counting p-groups and Lie algebras
using PORC polynomials”. Here we expand on what was written in our
paper.

We consider a diagonal matrix A in GL(7,¢q) with seven distinct eigen-
values aq,as,...,a7;. The exterior square of A is a diagonal matrix B in



GL(21, ¢) with eigenvalues a;a; (1 < i < j < 7). As described in our pa-
per, we need to find the PORC formulae giving the number of matrices B of
each possible type that arise as A ranges over all possible diagonal matrices in
GL(7, q) with seven distinct eigenvalues. For any given choice of aq, as, . . ., ar
the type of B is determined by which equations a;a; = aza; hold (and which
do not hold). Since ay, as, ..., ar are all distinct, the equation a;a; = axq; is
only possible if 7, j, k, [ are all distinct. So we let R be the set of all possible
equations a;a; = apa; with i < j, k, k <1, 1, j, k, [ all distinct. (So |R| = 105.)
Let T be the set of 21 equations a;, = a; with 1 <7 < j < 7. Then, to take
just one example, the matrix B has 21 distinct eigenvalues if the eigenvalues
of A satisfy none of the equations in R UT. So the PORC formula (1) for
the number of B which have 21 distinct eigenvalues would be an alternating
sum of 2!%6 terms. We describe below in some detail how we were able to
compute this sum.

For each subset S C R we let gg be the PORC formula giving the number
of choices of distinct elements aq, as, . . ., a; € GF(q) satisfying the equations
in S and satisfying none of the equations in R\S. Permutations of the
eigenvalues aq, as, . .., a7 give an action of Sym(7) on R, and if S and T are
in the same orbit under this action then gs = gr. As described in our paper,
R has more than 8 x 10?" orbits of subsets, but only 426 of these orbits
contain subsets S with gg # 0. We need to find representatives for these 426
orbits, together with the corresponding values of ggs.

Clearly gs = 0 if the relations in S imply a relation a;, = a;, or if they
imply a relation in R\:S. Furthermore it is easy to see whether the relations in
S imply a relation r — compute the PORC formula for the number of choices
of ay,as,...,ar which satisfy the relations in .S, and also compute the PORC
formula for the number of choices of ay, as, ..., a; which satisfy the relations
in SU{r}. If the two formulae are the same then the relations in S imply r.
We computed a set of representatives for the Sym(7)-orbits of subsets S C R
with the property that the relations in S' do not imply any relations a; = a;
or any relations in R\S. There were 483 of these orbits. For each of these
483 orbit representatives S we computed the PORC formula fg giving the
number of choices of distinct elements ay, as, ...,a; € GF(q) satisfying the
relations in S (and possibly also some relations in R\S). We will describe
below how we computed the functions fs. It turned out that fg = 0 for 56
of these representatives, leaving us with 427 orbit representatives for which
we still needed to compute gg. It may seem paradoxical that we can have
fs = 0 when S does not imply any relation a;, = a;, but consider the three
relations a? = a3, a? = a3, a3 = a3. You cannot find solutions to these three
equations with ay,as, as all distinct, but there are solutions with a; # ao,



other solutions with a; # as, and other solutions with as # as.

So we were left with 427 representatives S with fg # 0, and we needed
to compute gg for each of these representatives. We sort these 427 represen-
tatives into a list
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chosen so that if i < j then |S;| > |5}, and we store the values of fs, for
1=1,2,...,427. Then we apply the following piece of pseudo code.

for ¢ in [1..426] do
let O be the Sym(7)-orbit of S;
for j in [i + 1..427] do

if |.S;| = |S;| then continue; end if;
for T"in O do
if S; C T then fs, := fs, — fs,; end if;
end for;
end for;
end for;

This procedure replaces fs, by gs, for e =1,2,...,427.

It remains to describe how to compute fs when S C R. Let V' be the set
of 21 equations a; = a; (1 <1i < j <7), and for each subset U C V let ny
be the number of choices of aq, as, ..., a7y which satisfy the relations in SUU
(as well, possibly, as other relation in R U V'). Then, as in equation (1),

fs =Y _(-=)VIny.
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There are 22! terms in this sum, so it actually quite feasible to compute
fs in this way. But there is a much more efficient way. First we compute
a list of subsets U of V with the property that the relations in U do not
imply any relations in V\U. There are 877 of these subsets, corresponding
to the 877 equivalence relations on {ay, as, ...,ar}. Let R be the set of these
877 subsets. For each subset U € R we let ny be the number of choices
of aj,as, ..., a7 satisfying the relations in S U U (as well, possibly, as other
relation in R U V). Then, as in the computation of gg, we take each subset
T € R in turn, starting with the largest subsets, and then the next largest,
and so on, and iteratively replacing ny by ny — ny whenever U € R is a
proper subset of 7". At the end of this process ng will have been replaced
by fs. Note that this procedure gives

fs= Z mynu
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for some integer coefficients my which are independent of S. We can deter-
mine the coefficients my as follows. For each 7 = 1,2,...,877 let w; be the
row vector of length 877 with ¥ entry 1, and with all other entries 0. Order
the elements of R in a sequence Uy, Us, ..., Ugryr chosen so that if ¢ < j then
\Ui| > |Uj|. (So Uy =V and Uszz = {}.) Then apply the following piece of
pseudo code.

for i in [1..876] do
for j in [i + 1..877] do
it U; C U; then w; := w; — w;; end if;
end for;
end for;

At the end of this process wg77 will have been replaced by
(mUl,mUQ, Ce 7TfL[]S77).

So the functions fg can each be computed as a linear combination of 877
functions ny, rather than as a linear combination of 22! functions ny.
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