Counting p-groups and Lie algebras using PORC polynomials

Bettina Eick and Michael Vaughan-Lee

November 21, 2018

The four files
findtype, sizeclass, numberoffixedspaces, numberofsolutions
define four Magma functions

> findtype $(g), \operatorname{sizeclass}(t), \operatorname{AllFixedSpaceNums}(q, t)$,
> NumberOfSolutions (A, k)
which we define below.
Let V be a finite dimensional vector space over the field $\operatorname{GF}(q)$.
If $g \in \mathrm{GL}(V)$ then findtype (g) returns the type of g.
If $g \in \mathrm{GL}(V)$ has type t then sizeclass (t) returns the size of the conjugacy class of g.

If $g \in \mathrm{GL}(V)$ has type t then AllFixedSpaceNums (q, t) returns a sequence of length $1+\operatorname{dim} V$ giving the numbers of orbits of g on k-dimensional subspaces of V for $k=0,1, \ldots, \operatorname{dim} V$.

Suppose we are choosing elements $x_{1}, x_{2}, \ldots, x_{k}$ (say) from the extension field $\mathrm{GF}\left(q^{n}\right)$ of $\mathrm{GF}(q)$ subject to a finite set of equations of the form

$$
\begin{equation*}
x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots x_{k}^{n_{k}}=1 \tag{1}
\end{equation*}
$$

where $n_{1}, n_{2}, \ldots, n_{k}$ are integer polynomials in the Frobenius automorphism $x \mapsto x^{q}$ of $\mathrm{GF}\left(q^{n}\right)$. We write the equations as the rows of a matrix A, representing equation (1) by the row $\left[n_{1}, n_{2}, \ldots, n_{k}\right]$. Then NumberOfSolutions (A, k) returns the PORC formula for the number of choices of $x_{1}, x_{2}, \ldots, x_{k}$ satisfying the given set of equations. The number of solutions takes the form $a . f(q)$ where

1. a is an integer plus a linear combination of characteristic functions $\chi_{(i, N)}$, where $\chi_{(i, N)}(q)=1$ if $q=i \bmod N$, and $\chi_{(i, N)}(q)=0$ otherwise. (See Section 4 of our paper.)
2. f is a product of cyclotomic polynomials in q.

The function actually returns a and f as two separate values.
Example1, Example2, Example3, Example4 give four examples of sets of equations which actually arose in the computation of $G_{7, k}(q)$.

In Example1 and Example2 we are considering matrices of type

$$
((1,(1)),(3,(1)),(3,(1))) .
$$

These matrices have eigenvalues $a, b, b^{q}, b^{q^{2}}, c, c^{q}, c^{q^{2}}$ satisfying $a^{q-1}=1, b^{q^{3}-1}=$ $1, c^{q^{3}-1}=1, b^{q-1} \neq 1, c^{q-1} \neq 1, b c^{-1} \neq 1, b c^{-q} \neq 1, b c^{-q^{2}} \neq 1$. In Example1 we have 5 equations:

$$
a^{q-1}=1, b^{q^{3}-1}=1, c^{q^{3}-1}=1, b^{q^{2}-1} c^{q^{2}-1}=1, b^{q^{2}-q} c^{q}=1
$$

and the number of solutions is $\left(1+6 \chi_{(2,7)}\right)(q-1)^{2}$. Equations 4 and 5 arise as follows. Let V have dimension 7 over $\operatorname{GF}(q)$, and suppose that $g \in \operatorname{GL}(V)$ has type

$$
((1,(1)),(3,(1)),(3,(1)))
$$

and eigenvalues $a, b, b^{q}, b^{q^{2}}, c, c^{q}, c^{q^{2}}$ satisfying
$a^{q-1}=1, b^{q^{3}-1}=1, c^{q^{3}-1}=1, b^{q-1} \neq 1, c^{q-1} \neq 1, b c^{-1} \neq 1, b c^{-q} \neq 1, b c^{-q^{2}} \neq 1$.
Let \bar{g} give the action of g on $(V \wedge V) \oplus V$. Then \bar{g} has 28 eigenvalues

$$
a, b, b^{q}, b^{q^{2}}, c, c^{q}, c^{q^{2}}, a b, a b^{q}, \ldots, a c^{q^{2}}, b^{q+1}, \ldots, c^{q^{2}+q}
$$

and the type of \bar{g} depends on which of these 28 eigenvalues are equal and which are not equal. Equation 4 corresponds to the eigenvalue $b c$ being equal to the eigenvalue $b^{q^{2}} c^{q^{2}}$ and equation 5 corresponds to the eigenvalue b^{q} being equal to the eigenvalue $b^{q^{2}} c^{q}$.

In Example2 we have 9 equations, and the number of solutions is $(1+$ $\left.2 \chi_{(1,3)}\right)(q-1)$.

In Example3 and Example4 we are considering matrices of type

$$
((1,(1)),(1,(1,1)),(2,(1)),(2,(1))) .
$$

These have eigenvalues $a, b, b, c, c^{q}, d, d^{q}$ satisfying $a^{q-1}=1, b^{q-1}=1, c^{q^{2}-1}=$ $1, d^{q^{2}-1}=1$.

You can run these examples by entering
load Examplei;
at the Magma prompt.

