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Abstract

We survey the history of Graham Higman's PORC conjecture concerning
the form of the function f(pn) enumerating the number of groups of order pn.
The conjecture is that for a �xed n there is a �nite set of polynomials in p,
g1(p), g2(p), . . . , gk(p), and a positive integer N , such that for each prime p,
f(pn) = gi(p) for some i (1 � i � k) with the choice of i depending on the
residue class of p modulo N . We describe some properties of a group recently
discovered by Marcus du Sautoy which has major implications for the PORC
conjecture.

1 Introduction

Mathematicians love to count things. How many possibilities are there for a Sudoku
solution grid? How many Latin squares of order 4 are there? How many groups are
there of order 8? Answers: 6,670,903,752,021,072,936,960, 576 and 5. I found the
answers to the �rst two questions in Wikipedia. The answer to the third question has
been known to group theorists for well over 100 years. For a short modern analysis
of the groups of order 8 see Section 4.4 of Hall [8]. Often the answers to this sort of
question involve a classi�cation of all the possibilities, and perhaps a complete list
of the possibilities. As mentioned above, the �ve groups of order 8 have been well
understood for well over 100 years, but it might be a bit tricky to produce a list of
all the Sudoku solution grids. It would be perfectly possible (though tedious!) to
draw up a complete list of the 576 Latin squares of order 4 by hand. However, a
little thought enables you to see that there are 576 Latin squares of order 4 without
actually listing them all. Let L be a Latin square of order n, and assume that the
entries in the cells of the square are integers in the range f1; 2; : : : ; ng. We say that
L is reduced if the entries in the �rst row and �rst column are in their natural order
1; 2; : : : ; n. It is easy to see that the total number of Latin squares of order n is
n!(n � 1)! times the number of reduced Latin squares of order n. And it is easy to
see that there are exactly 4 reduced Latin squares of order 4:2664

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

3775 ;
2664
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

3775 ;
2664
1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

3775 ;
2664
1 2 3 4
2 1 4 3
3 4 2 1
4 3 1 2

3775 :
1



It immediately follows that there are 576 Latin squares in all. If we also allow ourselves
to permute the names of the symbols then we are left with just two Latin squares of
order 4: 2664

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

3775 ;
2664
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

3775 :
These two Latin squares give the group multiplication tables for the two groups of
order 4, the Klein four-group and the cyclic group of order 4.

� 1 a b ab

1 1 a b ab
a a 1 ab b
b b ab 1 a
ab ab b a 1

;

� 1 a a2 a3

1 1 a a2 a3

a a a2 a3 1
a2 a2 a3 1 a
a3 a3 1 a a2

:

The total number of Latin squares of order n is bounded by nn
2
. (There are n2

cells, and n choices for the entry in each cell.) You can do a little better than this if
you note that there are n rows, and n! possibilities for the entries in any given row,
so that the total number of Latin squares is bounded by (n!)n. The best bounds do
not seem to do a lot better than this. J.H. van Lint and R.M. Wilson [20] show that
if L(n) is the total number of Latin squares of order n then

(n!)2n

nn2
� L(n) �

nY
k=1

(k!)
n
k :

There are much tighter bounds for the number f(n) of groups of order n. Pyber
[17] has shown that

f(n) � n 2
27
�(n)2+O(�(n)3=2);

where �(n) denotes the highest power to which any prime divides n. Note that there
is no lower bound on f(n) in this theorem, because the value of f(n) is heavily
dependant on the factorization of n into a product of primes. In particular, if n
is prime then f(n) = 1. One of the main components in the proof of this result
is a bound on the number of groups of prime-power order pn given by Higman [9],
improved by Sims [19], and further improved in unpublished work by Mike Newman
and Craig Seeley.

p
2
27
n3�6n2 � f(pn) � p 2

27
n3+O(n5=2):

The book Enumeration of �nite groups by Blackburn, Neumann and Venkatamaran
[2] gives a good account of the history of this problem.
Graham Higman's PORC conjecture is a conjecture about the precise form of the

function f(pn), and we will return to the problem of enumerating groups of order pn

later. Meanwhile, as what might seem like a diversion, we will consider the problem
of enumerating the algebras of dimension n over a �eld F .
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2 Enumerating algebras of dimension n

By an algebra over a �eld F we mean a vector space A over F together with a product:
for each pair of elements a; b 2 A there is a uniquely de�ned product ab 2 A. The
product is required to be bilinear, so that if a; b; c 2 A and �; � 2 F then

(�a+ �b)c = �(ac) + �(bc);

c(�a+ �b) = �(ca) + �(cb):

We do not require the product to satisfy any other conditions such as commutativity
or associativity. If A is an algebra over F , and if we pick a basis fai j i 2 Ig for A as
a vector space over F then for each pair of basis elements ai; aj we can express the
product aiaj as a linear combination

aiaj =
X
k2I

�ijkak

for some scalars �ijk 2 F . These scalars are called structure constants for the algebra
A. These structure constants completely determine the product on A since if a =P

i2I �iai and b =
P

j2I �jaj are any two elements of A then using bilinearity we see
that

ab =
X
i;j;k2I

�i�j�ijkak:

Note however that if we pick a di�erent vector space basis for A then we may get a
di�erent set of structure constants, so that di�erent sets of structure constants can
give the same algebra A. We will return to this point shortly.
If F is an in�nite �eld then there are in�nitely many choices for sets of structure

constants. But there is a unique �nite �eld Fq of order q for every prime-power q,
and if A is an algebra of dimension n over Fq then there are exactly qn

3
possible sets

of structure constants f�ijk j 1 � i; j; k � ng for A. So there is an upper bound of
qn

3
for the number g(n; q) of n-dimensional algebras over Fq. (But remember that

di�erent sets of structure constants can give the same algebra, so g(n; q) is less than
this upper bound.) This means that, for �xed n, g(n; q) is bounded by a polynomial
in q. Graham Higman [10] proved a much stronger result than this. He showed that,
for �xed n, g(n; q) is Polynomial On Residue Classes | PORC. This means that
there is a �nite set of polynomials in q, g1(q), g2(q), . . . , gk(q), and a positive integer
N , such that for any prime-power q

g(n; q) = gi(q)

for some i (1 � i � k), with the choice of i depending on the residue class of q modulo
N . For example, if n = 2 then we have three polynomials. If q is a power of 2 then
g(2; q) = q4+q3+4q2+3q+6, if q is a power of 3 then g(2; q) = q4+q3+4q2+4q+6,
and if q is a power of p with p > 3 then g(2; q) = q4 + q3 + 4q2 + 4q + 7. So we can
take N = 6, and the choice of polynomial depends on the residue class of q modulo
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6. When n = 3 there are 22 polynomials of degree 18, with the choice of polynomial
depending on the residue class of q modulo 4� 3� 5� 7.
Higman's proof of this result is far too long and di�cult to give here, but we can

illustrate many of the key ideas in Higman's proof by looking at how the polynomials
above for n = 2 can be obtained.
First we investigate how a change of basis a�ects the structure constants. We

might as well do this for general n. So let A be an algebra of dimension n over a �eld
F and let a1; a2; : : : ; an and b1; b2; : : : ; bn be two bases for A as a vector space over
F . Let the sets of structure constants for these two bases be f�ijk j 1 � i; j; k � ng
and f�ijk j 1 � i; j; k � ng. We can express the elements of the second basis as linear
combinations of elements of the �rst basis, and vice versa:

bi =

nX
j=1

�jiaj (1 � i � n);

aj =
nX
k=1

�kjbk (1 � j � n);

where [�ji] and
�
�kj
�
are n� n matrices over F which are inverse to each other. So

bibj =
nX

r;s=1

�ri�sjaras

=
nX

r;s;t=1

�ri�sj�rstat

=
nX

r;s;t;k=1

�ri�sj�rst�ktbk:

It follows that

�ijk =
nX

r;s;t=1

�ri�sj�rst�kt:

It is time to simplify the notation a bit! Each set of structure constants consists of
n3 elements of F , and we can think of these sets of structure constants as elements in
an n3-dimensional vector space V over F . The set of all non-singular n� n matrices
over F form a group GL(n; F ), the general linear group of degree n over F . The
formula above de�nes an action of GL(n; F ) on V . If v = f�ijk j 1 � i; j; k � ng 2 V
and g = [�ji] 2GL(n; F ) then we set vg = f�ijk j 1 � i; j; k � ng, where �ijk is given
by the formula above. (The formula also involves the matrix

�
�kj
�
, but this matrix is

the inverse of [�ji] and so depends only on g.) This action of GL(n; F ) on V satis�es
three key properties.

1. If u; v 2 V , �; � 2 F , and g 2GL(n; F ) then (�u+ �v)g = �(ug) + �(vg).

2. If v 2 V and if I is the identity matrix in GL(n; F ) then vI = v.
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3. If v 2 V and g; h 2GL(n; F ) then v(gh) = (vg)h.

There is also a fourth property which is critical for Higman's argument. This
property is that the action of [�ji] on V is given by a matrix in GL(n3; F ) whose
entries are rational functions in the entries �ji.
The three properties given above are easy to check, but I think we have had

enough matrix algebra for now! Two elements u; v 2 V (i.e. two sets of structure
constants) de�ne the same algebra if and only if u = vg for some g 2GL(n; F ). In
the jargon of groups acting on sets we say that two elements u; v 2 V de�ne the same
algebra if and only if they lie in the same orbit under the action of GL(n; F ) on V . It
is easy to see that \being in the same orbit" is an equivalence relation on V , so that
the orbits partition V . The number of algebras of dimension n over F is the number
of orbits in V under the action of GL(n; F ).
If we take F to be the �eld Fq of q elements, then the number of orbits is g(n; q)

and Higman proves that this number is PORC. Actually, Higman proves a much more
general result than this, but we can illustrate many of the key ideas that appear in
Higman's proof by showing how to compute g(2; q).
So let n = 2, and consider the action of GL(2;Fq) on V described above. Note

that when n = 2 then V has dimension 8. The number of orbits of GL(2;Fq) on V
can be computed using a result which is often called Burnside's Lemma [3], though
some people think this is a misnomer. If g 2GL(2;Fq) then we de�ne �x(g) = fv 2
V j vg = vg. The number of orbits is then given by the formula

1

jGL(2;Fq)j

0@ X
g2GL(2;Fq)

j�x(g)j

1A :
It follows from properties (2) and (3) above that if g and h are conjugate elements
of GL(2;Fq) (i.e. if h = x�1gx for some x 2GL(2;Fq)) then j�x(g)j = j�x(h)j. Two
elements in GL(n; F ) are conjugate if and only if they have the same rational canonical
form. However we do not have to concern ourselves with the rational canonical form in
the case n = 2, since two elements in GL(2;Fq) are conjugate if and only if they have
the same minimum polynomial. The minimum polynomial of a matrix in GL(2;Fq)
will have degree one or two. The roots of the minimum polynomial of an element
g 2GL(2;Fq) are the eigenvalues of g. These may not lie in Fq, but they will lie in
some extension �eld of Fq, so allowing roots in an extension �eld we have three types
of minimum polynomial that can arise:

(x� �); (x� �)2; (x� �)(x� �)

with �; � 6= 0, � 6= �. The �rst case corresponds to g =
�
� 0
0 �

�
. In the second case

g has a repeated eigenvalue, but is not diagonalizable | in this case g is conjugate

to

�
� 1
0 �

�
. In the third case g has two distinct eigenvalues which may or may not

lie in Fq.
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For each g 2GL(2;Fq) we can compute the matrix A(g) giving the action of g
on V . Property (1) above implies that �x(g) is a subspace of V , and so j�x(g)j = qk
where k is the dimension of �x(g). This dimension k is the dimension of the eigenspace
of A(g) corresponding to eigenvalue 1.

If g =

�
� 0
0 �

�
then A(g) equals

266666666664

� 0 0 0 0 0 0 0
0 � 0 0 0 0 0 0
0 0 � 0 0 0 0 0
0 0 0 � 0 0 0 0
0 0 0 0 � 0 0 0
0 0 0 0 0 � 0 0
0 0 0 0 0 0 � 0
0 0 0 0 0 0 0 �

377777777775
;

so �x(g) has dimension 0 unless � = 1, in which case it has dimension 8.

If g in conjugate to

�
� 1
0 �

�
then A(g) is conjugate to

266666666664

� 1 0 0 0 0 0 0
0 � 0 0 0 0 0 0
0 0 � 1 0 0 0 0
0 0 0 � 0 0 0 0
0 0 0 0 � 1 0 0
0 0 0 0 0 � 0 0
0 0 0 0 0 0 � 1
0 0 0 0 0 0 0 �

377777777775
or

266666666664

� 1 0 0 0 0 0 0
0 � 0 0 0 0 0 0
0 0 � 1 0 0 0 0
0 0 0 � 1 0 0 0
0 0 0 0 � 0 0 0
0 0 0 0 0 � 1 0
0 0 0 0 0 0 � 1
0 0 0 0 0 0 0 �

377777777775

or

266666666664

� 1 0 0 0 0 0 0
0 � 0 0 0 0 0 0
0 0 � 1 0 0 0 0
0 0 0 � 0 0 0 0
0 0 0 0 � 1 0 0
0 0 0 0 0 � 1 0
0 0 0 0 0 0 � 1
0 0 0 0 0 0 0 �

377777777775
;

depending on whether q is a power of 2, a power of 3, or a power of p for a prime
p > 3.
Finally if g has distinct eigenvalues �; � then A(g) has eigenvalues

�; �; �; �; �; �; �2��1; ��1�2:

In this case, if �; � 2 Fq then A(g) is conjugate to a diagonal matrix with these
eigenvalues along the diagonal. If �; � =2 Fq then A(g) is not conjugate to a diagonal
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matrix in GL(8;Fq), but it is conjugate to a diagonal matrix in GL(8; K) for any
extension �eld K of Fq containing � and �. In either case, the dimension of �x(g) is
the number of 1's in the sequence �; �; �; �; �; �; �2��1; ��1�2.
It is now easy to check the following.

� If g has minimum polynomial x� 1 then �x(g) has dimension 8.

� If g has minimum polynomial (x�1)2 then �x(g) has dimension 4 if q is a power
of 2 and dimension 3 if q is not a power of 2.

� If g has minimum polynomial (x� 1)(x+1) then �x(g) has dimension 4. (Note
that if q is a power of 2 then (x� 1)(x+ 1) = (x� 1)2.)

� If g has minimum polynomial (x � 1)(x � �) with � 6= 0; 1;�1 then �x(g) has
dimension 3.

� If g has minimum polynomial (x��)(x��2) with � 6= 0;�1, �3 6= 1 then �x(g)
has dimension 1.

� If g has minimum polynomial (x � �)(x � �2) with � 6= 1, �3 = 1, then �x(g)
has dimension 2. Note that this cannot arise if q is a power of 3.

� In all other cases �x(g) has dimension 0.

In each case j�x(g)j is PORC. Note that these 7 cases arise from subdividing the
three types of minimal polynomial according to whether or not the eigenvalues satisfy
various monomial equations, such as � = 1, �2 = 1, �3 = 1, �2��1 = 1. It is not really
necessary here, but you can also distinguish between eigenvalues in Fq and eigenvalues
not in Fq with monomial equations: � is a root of an irreducible quadratic over Fq
if �q�1 6= 1, �q

2�1 = 1; and � is the other root of the same irreducible quadratic if
�q��1 = 1.
To compute the number of orbits we also need to know how many g lie in each of

the seven categories just listed. The numbers are as follows.

� There is 1 element g with minimum polynomial x� 1 (the identity element).

� There are q2 � 1 elements with minimum polynomial (x� 1)2.

� If q is odd there are q2 + q elements with minimum polynomial (x� 1)(x+ 1).
If q is a power of 2 this case does not arise.

� If q is a power of 2 there are (q�2)q(q+1) elements with minimum polynomial
(x�1)(x��) with � 6= 0; 1;�1; and if q is odd there are (q�3)q(q+1) elements.

� If q is a power of 2 and q � 1mod 3 then there are (q�4)q(q+1) elements with
minimum polynomial (x � �)(x � �2) with � 6= 0;�1, �3 6= 1; if q is a power
of 2 and q � 2mod 3 then there are (q � 2)q(q + 1) elements; if q is a power of
3 then there are (q � 3)q(q + 1) elements; if q is a power of p for p > 3 and if
q � 1mod 3 there are (q� 5)q(q+1) elements; and if q is a power of p for p > 3
and q � 2mod 3 then there are (q � 3)q(q + 1) elements.
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� If q = 3k there are no elements with minimum polynomial (x� �)(x� �2) with
� 6= 1, �3 = 1; if q � 1mod 3 there are q(q + 1) elements; and if q � 2mod 3
there are q(q � 1) elements.

� The number of elements in this last category is jGL(2;Fq)j minus the sum of
all the numbers of elements in the other 6 categories.

All these numbers are PORC, and it follows that the number of orbits, g(2; q), is
PORC. The three polynomials giving the value of g(2; q) depending on whether q is
a power of 2, a power of 3, or a power of p for some p > 3 can be obtained by feeding
these numbers into the formula for the number of orbits of GL(2;Fq) on V .

3 Enumerating the groups of order pn

As we saw in the Introduction, Higman [9] proved that for �xed n the number of
groups of order pn, f(pn), is bounded by a polynomial in p. Higman conjectured that
(for �xed n) f(pn) is PORC | this is his famous PORC conjecture. The conjecture
has been proved correct for n � 7. The table below gives the number of groups of
order pn for n � 5.

p = 2 p = 3 p � 5
p 1 1 1
p2 2 2 2
p3 5 5 5
p4 14 15 15
p5 51 67 2p+ 61 + 2 gcd(p� 1; 3) + gcd(p� 1; 4)

There are 267 groups of order 26 and 504 groups of order 36. For p � 5 the number
of groups of order p6 is

3p2 + 39p+ 344 + 24 gcd(p� 1; 3) + 11 gcd(p� 1; 4) + 2 gcd(p� 1; 5):

The numbers of groups of order 27, 37, 57 are respectively 2328, 9310, 34297. For
p > 5 the number of groups of order p7 is

3p5 + 12p4 + 44p3 + 170p2 + 707p+ 2455

+(4p2 + 44p+ 291) gcd(p� 1; 3) + (p2 + 19p+ 135) gcd(p� 1; 4)
+(3p+ 31) gcd(p� 1; 5) + 4 gcd(p� 1; 7) + 5 gcd(p� 1; 8)
+ gcd(p� 1; 9):

So, for example, for p � 5 the number of groups of order p6 is one of 8 polynomials
in p, where the choice of polynomial depends on the residue class of p modulo 60.
The PORC conjecture is still open for n = 8.
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The groups of order p2 were classi�ed by Netto [13] in 1882. The groups of order
p3 were independently determined by Cole and Glover [4], H�older [11] and Young [21]
in 1893. The groups of order p4 were determined by H�older [11] and Young [21]. The
groups of order p5 were classi�ed by Bagnera [1] in 1898. However it was not until
2004 that Newman, O'Brien and Vaughan-Lee [14] classi�ed the groups of order p6.
The groups of order p7 were classi�ed by O'Brien and Vaughan-Lee [16] in 2005.
Higman [10] proves that the number of groups of order pn with p-class 2 is PORC

(for any �xed n). The Frattini subgroup of a p-group G is the subgroup generated
by the p-th powers fxp jx 2 Gg and the commutators f[x; y] jx; y 2 Gg (where [x; y]
denotes x�1y�1xy). We say that G has p-class 2 if the Frattini subgroup is elementary
abelian and central, that is to say if

[xp; y] = 1; xp
2

= 1; [[x; y]; z] = 1; [x; y]p = 1

for all x; y; z 2 G. (Higman uses the term �-class 2.) Evseev [7] has extended
Higman's result to the more general class of p-groups in which the derived group is
elementary abelian and central, that is groups satisfying

[[x; y]; z] = 1; [x; y]p = 1

for all x; y; z 2 G.

4 Immediate descendants

Nowadays the classi�cation of p-groups of small order makes use of the lower exponent-
p-central series of a group. If G is any group then the lower exponent-p-central series
of G,

G = G1 � G2 � : : : � Gi � : : : ;
is de�ned by setting G1 = G, G2 = G

0Gp, and in general setting Gi+1 = [Gi; G]G
p
i .

If G is a �nite p-group then Gc+1 = f1g for some c, and we say that G has p-class c
if Gc 6= f1g, Gc+1 = f1g. If G is a �nite p-group of p-class c > 1 then we say that
G is an immediate descendant of G=Gc. Apart from the elementary abelian group
of order pn, every group of order pn is an immediate descendant of a group of order
pk for some k < n. To list the groups of order pn, �rst list the groups of order pk

for all k < n. Then for each group G of order pk for k < n, �nd all the immediate
descendants of G which have order pn.
So (for example) the formula given above for the number of p-groups of order p6

(p � 5) can be obtained as follows. It turns out that for p > 3 there are 42 groups
of order at most p5 which have immediate descendants of order p6. Each of these 42
groups is given by a presentation involving the prime p symbolically | for example
one of the 42 groups has presentation

ha; b j ap = [b; a; a]; bp = 1; class 3i: (1)

For each of these 42 groups we compute the number of immediate descendants of
order p6, and the formula given above is obtained by adding together each of these
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individual contributions. For example, group (1) above has p + gcd(p � 1; 3) + 1
descendants of order p6. Finally, we have to add one to this total to account for the
elementary abelian group of order p6. Each of the individual contributions is PORC,
and as a consequence the formula above is PORC.
Higman does not use the term immediate descendant, and does not explicitly

mention the lower exponent-p-central series. But nevertheless his theorem can be
expressed in these terms. Every group of order pn and p-class 2 is an immediate
descendant of the elementary abelian group of order pr for some r < n. If G has
order pr+s, and if G is an immediate descendant of the elementary abelian group
of order pr then in Higman's terminology we say that G has �-complexion (r; s).
Higman de�nes g(r; s; p) to be the number of groups with �-complexion (r; s). So the
number of p-class 2 groups of order pn isX

r+s=n

g(r; s; p):

If we let V be a vector space of dimension r over Fp, and if we let V ^ V be the
exterior square of V , then GL(r; p) induces an action on the direct sum V � (V ^V ),
in much the same way as GL(n; p) induces an action on sets of structure constants
for algebras of dimension n. Higman shows that if p > 2 then g(r; s; p) is equal to the
number of orbits under this action on subspaces of codimension s in V � (V ^ V ).
Higman uses his theorem on the number of orbits in a vector space under the action of
general linear groups to show that this number is PORC. In fact his theorem shows
that the number of orbits of subspaces of dimension at most s is PORC, and he
obtains the number of orbits of subspaces of dimension s as the di�erence between
the number of orbits of susbspaces of dimension at most s and the number of orbits
of subspaces of dimension at most s� 1.
Marcus du Sautoy has found a group Gp of order p

9 with the property that the
number of immediate descendants of Gp of order p

10 is not PORC. We will describe
this group and some of its properties in Section 5 below. However Marcus's example
does not disprove the PORC conjecture. As we have seen, the total number of groups
of order p10 is obtained by adding together the number of immediate descendants of
order p10 of each group of order less than p10, and then adding 1 to the total to account
for the elementary abelian group of order p10. The grand total might still be PORC,
even though we know that one of the individual summands is not PORC. My own
view is that this is extremely unlikely. But in any case I believe that Marcus's group
provides a counterexample to what I hazard to call the philosophy behind Higman's
conjecture. Higman obtains the number of groups of order pn of p-class 2 by adding
up the number of immediate descendants of order pn of all the elementary abelian
groups of order less than pn. He shows that the grand total is PORC by proving
that all the individual summands are PORC. Each of the individual summands is the
di�erence of two PORC functions obtained from his theorem on the action of general
linear groups. And, as we saw in Section 2, this theorem is obtained by splitting
the elements of the general linear group into a number of distinct classes with the
property that the number of elements in each class is PORC, and with the property
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that for each class C there is a single PORC function giving the value of j�x(g)j for
g 2 C.

5 Marcus du Sautoy's group

Marcus du Sautoy's group has the following presentation for all p > 3:

Gp =

�
x1; x2; x3; x4; x5; x6; y1; y2; y3 : [x1; x4] = y3; [x1; x5] = y1; [x1; x6] = y2

[x2; x4] = y1; [x2; x5] = y3; [x3; x4] = y2; [x3; x6] = y1

�
where all other commutators are de�ned to be 1, and where gp = 1 for all g 2 Gp.
The group is a class two nilpotent group of order p9. The quotient group Gp=G

0
p is

elementary abelian of order p6, and G0p is elementary abelian of order p
3. It turns out

that both the order of the automorphism group of Gp and the number of conjugacy
classes of Gp are not PORC.
In [6], du Sautoy and Vaughan-Lee prove the following result:
Let Dp be the number of descendants of Gp of order p

10 and exponent p. Let Vp
be the number of points (x; y) in F2p that satisfy x4 + 6x2 � 3 = 0 and y2 = x3 � x.
Then

1. If p � 5mod 12 then Dp = (p+ 1)
2=4 + 3.

2. If p � 7mod 12 then Dp = (p+ 1)
2=2 + 2.

3. If p � 11mod 12 then Dp = (p+ 1)
2=6 + (p+ 1)=3 + 2.

4. If p � 1mod 12 and Vp = 0 then Dp = (p+ 1)
2=4 + 3.

5. If p � 1mod 12 and Vp 6= 0 then Dp = (p� 1)2=36 + (p� 1)=3 + 4.

They also show that there are in�nitely many primes p � 1mod 12 for which
Vp > 0, but that there is no sub-congruence of p � 1mod 12 for which Vp > 0 for all
p in that sub-congruence class.
So the number of descendants of Gp of order p

10 and exponent p is not PORC.
It follows easily from this that the number of descendants of Gp of order p

10 is not
PORC.

5.1 The conjugacy classes of Gp

The centre of Gp is the derived group G
0
p, and most elements outside G

0
p have breadth

3 (i.e. they lie in conjugacy classes of size p3). However some elements outside G0p have
breath 2 (i.e. they lie in conjugacy classes of size p2). First we determine the elements
of breadth 2 in the subgroup hx1; x2; x3i. This subgroup is elementary abelian of order
p3. If 0 < � < p then the elements x�2 , x

�
3 have breadth 2, but if 0 < �; � < p then

x�2x
�
3 has breadth 3. We need to determine the elements of breadth 2 in hx1; x2; x3i

11



which lie outside the subgroup hx2; x3i, and so we consider an element x1xd2xe3. The
subgroup [x1x

d
2x
e
3; Gp] is generated by

yd1y
e
2y3; y1y

d
3 ; y

e
1y2

and so x1x
d
2x
e
3 has breadth 2 if p divides

det

24 d e 1
1 0 d
e 1 0

35 = de2 � d2 + 1:
Now if pj(de2 � d2 + 1) then pj((de)2 � d3 + d) and so elements of breadth 2 of the
form x1x

d
2x
e
3 correspond to points on the elliptic curve y

2 = x3 � x over Fp. Let E
be the number of points on this curve, including the point at in�nity. Then there are
E � 2 elements of breadth 2 of the form x1xd2xe3. It follows that there are (p� 1)�E
elements of breadth 2 in the subgroup hx1; x2; x3i. There is an automorphism � of Gp
given by

x1� = x4; x2� = x5; x3� = x6; x4� = x1; x5� = x2; x6� = x3;

and it follows that the elements of breadth 2 in the subgroup hx4; x5; x6i are of the
form x�5 , x

�
6 , (x4x

d
5x
e
6)
� with 0 < � < p and with pj(de2 � d2 + 1). A general element

g 2 Gp can be written in the form g = abc with a 2 hx1; x2; x3i, b 2 hx4; x5; x6i and
c 2 G0p. If abc has breadth 2 then a and b must either be trivial, or have breadth
2, and it is straightforward to show that the elements in Gp of breadth 2 are the
following

x�2x
�
5c; x

�
3x

�
6c; (x1x

d
2x
e
3)
�(x4x

d
5x
e
6)
�c;

where 0 � �; � < p and �; � are not both zero, where pj(de2 � d2 + 1), and where
c 2 G0p. So the total number of elements of breadth 2 in Gp is (p2 � 1)p3 � E. It
follows that the number of conjugacy classes of Gp is

p6 + p3 � 1 + (p3 � p2 � p+ 1)� E:

This number is not PORC. It is shown in Section 18.4 of [12] that if p � 3mod 4
then E = p + 1, but if p � 1mod 4 then E = p + 1 � 2a where p = a2 + b2 with
a + ib � 1mod (2 + 2i). Note that a is uniquely determined by p. The Gaussian
integers are a unique factorization domain, and we can write p = (a + ib)(a � ib)
where this factorization is unique up to unit factors �1, �i. The choice of a and
b so that a + ib � 1mod(2 + 2i) means that we take a to odd and b even, and we
choose the sign of a so that a � b � 1mod 4. So the value of a is a function of p.
But a (and hence E) cannot be a PORC function of p. To see this note that if a
was a polynomial in p then the fact that jaj < pp would imply that a was constant.
So a could only be a PORC function of p if a took only �nitely many values as p
varies. However Dirichlet's theorem on primes in arithmetic progression implies that
approximately half the primes are equal to 1mod 4. Putting this more precisely, if
�(x) is the number of primes less than x, then asymptotically �(x) � x

log x
, and if
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we set �0(x) equal to the number of primes less than x which are equal to 1mod 4,
then �0(x) � x

2 log x
. However for a �xed a there can only be at most

p
x primes less

than x which have the form a2 + b2. So if a only took K distinct values as p varies,
then there could only be at most K

p
x primes less than x which are equal to 1mod 4.

Asymptotically, K
p
x is much less than �0(x). So E is not PORC, and hence the

number of conjugacy classes of Gp is not PORC.

5.2 The automorphism group of Gp

Let H be the automorphism group of Gp. Then H has a normal subgroup N of
order p18 consisting of automorphisms mapping xi to xigi for i = 1; 2; : : : ; 6, with
g1; g2; : : : ; g6 arbitrary elements of G

0
p. The quotient group H=N acts as a group of

automorphisms of Gp=G
0
p. The quotient group Gp=G

0
p is isomorphic as a group to

the additive group of a 6-dimensional vector space over Fp, and we can identify H=N
with a subgroup of the general linear group GL(6;Fp). If we reorder the generators of
Gp in the order x1; x4; x2; x5; x3; x6 then it is easy to see that for every A 2GL(2;Fp),
and for every u 2 Fp satisfying u4 = 1, there is an element of H=N with action on
Gp=G

0
p given by the matrix 24 uA 0 0

0 u�1A 0
0 0 A

35 :
There are gcd(p � 1; 4) choices for u here, and jGL(2;Fp)j choices for A. So these
automorphisms give a subgroup K=N � H=N of order jGL(2;Fp)j � gcd(p� 1; 4). For
most primes (11

16
of them!) H = K, so that H has order jGL(2;Fp)j �gcd(p�1; 4) �p18.

But if we can �nd x; y 2 Fp satisfying x4 + 6x2 � 3 = 0 and y2 = x3 � x, then there
are some additional automorphisms. Speci�cally, if we order the generators of Gp in
their original order x1; x2; x3; x4; x5; x6, and if x; y 2 Fp satisfy x4 + 6x2 � 3 = 0 and
y2 = x3 � x, then if we let d = x and e = y=x and take

A =

264 u(d2+1)e
4

u(d3+9d)e
4

u(d3+5d)
2

u�1(d3+5d)e
4

�u�1(d2+5)e
4

u�1(d2+1)
2

1 d e

375
for any u with u4 = 1, then there are elements in H=N with action on Gp=G

0
p given

by the matrix �
�A 0
0 �A

�
for all �; � 6= 0 in Fp. In the cases when there do exist x; y 2 Fp satisfying x4+6x2�3 =
0 and y2 = x3�x, then these additional automorphisms together with automorphisms
in K generate the full automorphism group H. (All this is described in detail in [6].)
The roots of the polynomial x2 + 6x� 3 are �3� 2

p
3. Now if p > 3 then 3 is a

quadratic residue modulo p if and only if p � �1mod 12, so we need p � �1mod 12
to have any hope of solutions to our two equations.
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The case p � �1mod 12 is straightforward. We need to solve x2 = �3 � 2
p
3.

Now (�3+2
p
3)(�3�2

p
3) = �3, which is not a quadratic residue modulo p, so one

of the two equations x2 = �3 � 2
p
3 has two solutions, and the other has none. So

we obtain two solutions �d 2 Fp to the equation x4 + 6x2 � 3 = 0. We then want to
solve the equations y2 = �(d3�d), and since �1 is not a quadratic residue modulo p
one of these two equations will have two solutions, and the other will have none. So
if p � �1mod 12 there are exactly two solutions to the two equations.
The case p � 1mod 12 is much trickier. In this case �3 is a quadratic residue

modulo p, so the equation x4+6x2�3 = 0 either has no solutions in Fp, or it has four
solutions. It turns out that it has four solutions for approximately half the primes
p � 1mod 12. This is because the splitting �eld of x4 + 6x2 � 3 has degree 8 over
Q, so that, by Chebotarev's density theorem, the primes p for which the polynomial
splits over Fp have density 1

8
. These primes are necessarily equal to 1mod 12, and

the primes equal to 1mod 12 have density 1
4
by Dirichlet's theorem on primes in

arithmetic progression. In the case when x4+6x2�3 = 0 has four solutions �d1;�d2
in Fp we still need to solve the equations y2 = �(d31� d1) and y2 = �(d32� d2). Since
p � 1mod 4, �1 is a quadratic residue mod p, and so the equations y2 = �(d31 � d1)
either have 0 solutions or 4 solutions. Similarly the equations y2 = �(d32 � d2) either
have 0 solutions or 4 solutions. In fact the four equations either have 0 solutions or
8 solutions. To see this observe that

(d31 � d1)(d32 � d2) = (d21 � 1)(d22 � 1)d1d2 = (�4 + 2
p
3)(�4� 2

p
3)
p
�3 = 4

p
�3:

If we pick u 2 Fp such that u2 = �1 then

(
1

4
(1 + u)(d31 + 5d1))

4 = �3;

so 4
p
�3 is a square in Fp, and either both the equations y2 = d31 � d1, y2 = d32 � d2

have solutions in Fp, or neither does.
It turns out that there are 8 solutions (x; y) to the two equations x4+6x2� 3 = 0

and y2 = x3�x over Fp for approximately half the primes for which x4+6x2�3 splits.
It is straightforward to see that if d is a root of x4 + 6x2 � 3 then d3 � d is a root of
x4+360x2� 48. Furthermore, if x4+360x2� 48 has a root then so does x4+6x2� 3.
It follows that the two equations x4+6x2�3 = 0 and y2 = x3�x have solutions over
Fp if and only if x8+360x4�48 has a root in Fp. The splitting �eld of x8+360x4�48
has degree 16 over Q, and so by Chebotarev's density theorem the primes p for which
the polynomial splits over Fp have density 1

16
. These primes are necessarily equal

to 1mod 12. In particular there are in�nitely many primes p � 1mod 12 for which
the two equations have 8 solutions. However the primes p � 1mod 12 for which
x4+6x2� 3 (or equivalently x4+360x2� 48) have a root are extremely irregular. It
is proved in [6] that if p � 1mod 12, and if we write p = a2 � 12b2 with a; b > 0 then
x4 + 6x2� 3 has a root in Fp if and only if a � 1mod 3. This means that you cannot
capture the primes p � 1mod 12 for which there are roots in a sub-congruence class of
p � 1mod 12. If c � 1mod 12 and (c; d) = 1 then a theorem due to Rademacher [18]
implies that there are in�nitely many primes p � cmod 12d where p = a2� 12b2 with
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a > 0 and a � 1mod 3, and in�nitely many primes p � cmod 12d where p = a2�12b2
with a > 0 and a � 2mod 3.
It is proved in [6] that the order of the automorphism group of Gp is as follows:

� If p � 1mod 12 and there are no solutions to the equations x4 + 6x2 � 3 = 0
and y2 = x3 � x over Fp then there are jGL(2; p)j � 4p18 automorphisms.

� If p � 1mod 12 and there are solutions to the equations then there are jGL(2; p)j�
36p18 automorphisms.

� If p � 11mod 12 there are jGL(2; p)j � 6p18 automorphisms.

� If p � 5mod 12 there are jGL(2; p)j � 4p18 automorphisms.

� If p � 7mod 12 there are jGL(2; p)j � 2p18 automorphisms.

Since there are in�nitely many primes p � 1mod 12 for which the equations have
solutions, and since we cannot capture these primes in a sub-congruence class of
p � 1mod 12, it follows that the order of the automorphism group of Gp is not
PORC.

6 The p-group generation algorithm

We described in Section 5 how the order of the automorphism group of Gp is not
PORC, and this is the reason that the number of descendants of Gp of order p

10 is
not PORC. To see why this is so we need to describe O'Brien's p-group generation
algorithm [15] for computing the immediate descendants of a p-group G.
So let G be a �nite p-group of p-class c. The p-covering group P of G is de�ned

to be the largest �nite p-group with a normal subgroup M satisfying the following
three properties:

� P=M �= G;

� M � P pP 0;

� M is central in P and of exponent p.

The p-covering group P is unique, and is actually quite easy to compute. The
normal subgroup M is called the p-multiplier of G, and is also unique. Since G has
p-class c it follows that Pc+1 � M . (Recall from Section 3 that Pc+1 is the (c + 1)

th

term of the lower exponent-p-central series of P .) Since M is central and of exponent
p, Pc+2 = f1g. (It can happen that Pc+1 = f1g.) A proper subgroup S < M is
said to be allowable if S is a supplement in M for Pc+1, that is if SPc+1 = M . The
immediate descendants of G are the quotient groups P=S where S is an allowable
subgroup. Note that if Pc+1 = f1g then there are no allowable subgroups, and hence
no immediate descendants. In this case we say that G is terminal.
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The automorphism group of G acts on M , and two immediate descendants P=S
and P=T are isomorphic if and only if the allowable subgroups S and T are in the
same orbit under the action of the automorphism group of G. So the bigger the
automorphism group the smaller the number of immediate descendants.
We can describe Higman's analysis of the p-groups of p-class 2 in these terms.

The p-groups of p-class 2 are immediate descendants of elementary abelian groups.
Let G be an elementary abelian group of order pr, and identify G with a vector space
V of dimension r over Fp. The p-multiplier of G is V � (V ^ V ). The p-class of G is
1, and in this case if P is the p-covering group then P2 = M = V � (V ^ V ). So in
this case every proper subgroup of M is allowable, and these subgroups correspond
to proper subspaces of V � (V ^ V ). The automorphism group of G is GL(r;Fp),
and the number of immediate descendants of G is the number of orbits of proper
subspaces of V � (V ^ V ) under the action of GL(r;Fp).

7 Further problems

As we have seen, Graham Higman's PORC conjecture has been con�rmed for n � 7.
Higman has shown that the number of p-class two groups of order pn is PORC for all
n. Evseev has extended Higman's proof to show that the number of groups of order
pn with derived groups which are elementary abelian and central is PORC for all n.
What are the possibilities for extending these positive results, and what are the

possibilities for actually settling the question completely? It should be possible to
classify the groups of order p8, though I believe that this will be extraordinarily
di�cult. Classifying the groups of order p9 or p10 seems to be way out of reach
for the time being. One possible way of making progress would be to aim for a
combination of Higman's methods and classi�cation methods. The hardest part of
classifying the groups of order p6 and p7 was classifying the p-class two groups of those
orders. In contrast, classifying the groups of maximal class of order p6 and p7 was
relatively easy. You could settle the PORC conjecture for n = 8 if you could classify
just those groups of order p8 with p-class greater than two. However classifying the
p-class three groups of order p6 and p7 was nearly as hard as classifying the p-class two
groups. Nevertheless I believe that we could make substantial progress with groups of
order p8 by �rst classifying the groups of maximal class, and then looking at groups
of coclass two, and so on.
It might be possible to extend Higman's result about groups of p-class two to

groups of class two (without any restriction on the orders of the elements). But I
believe that Marcus's group shows that it would be impossible to directly extend
Higman's methods to p-class three groups, or even to class three groups of exponent
p. As stated above, I believe that there is no immediate prospect of classifying all
the groups of order p10, or even of classifying all class 3 groups of exponent p and
order p10. We know that Marcus's group has a non-PORC number of immediate
descendants of order p10, but it seems likely that there are other class two groups
of order p9 which also have a non-PORC number of immediate descendants of order
p10. It is possible that the grand total of all class three groups of order p10 is PORC
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even though some of the individual contributions to the total are non-PORC. But I
do not see how to settle this without classifying this class of groups. Nevertheless
it would be useful to �nd some more examples of class two groups of order p9 with
a non-PORC number of immediate descendants of order p10. Even better would be
to �nd some class two groups of order p8 with a non-PORC number of immediate
descendants of order p9.
It is perhaps �tting to end this note with a mention of another remarkable result

of Marcus du Sautoy [5]. Marcus proves that for each n there are �nitely many
subvarieties Ei (i 2 T ) of a variety Y de�ned over Q and for each subset I � T a
polynomial HI(x) such that for almost all primes p

f(pn) =
X
I�T

cp;IHI(p);

where
cp;I = cardfa 2 Y (Fp) j a 2 Ei(Fp) if and only if i 2 Ig:

Here Y means reduction of the variety modulo p, which is de�ned for almost all p.
Marcus's group Gp embeds the elliptic curve y

2 = x3 � x in its structure and there
seems every reason to suppose that much more complicated algebraic varieties can
be embedded in the structure of �nite p-groups in such a way as to impact on the
number of conjugacy classes, the size of the automorphism group and the number of
descendants.
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