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For several years now Seymour Bachmuth has been circulating various
versions of a paper which claims to prove that the two generator Burnside
group of prime-power exponent q, B(2, q), is finite. In 2008 he posted a
version of this paper on arXiv:0803.1612. In 2016 he posted another version
of the paper on arXiv:1603.08421. In all these papers Seymour constructs a
two generator group F (S[t, t−1]), establishes various properties of this group,
including the fact that it is solvable, and then claims that B(2, q) is a homo-
morphic image of F (S[t, t−1]). His group is indeed solvable. So if it were true
that B(2, q) is a homomorphic of F (S[t, t−1]) then indeed B(2, q) would be
finite (whatever Adjan, Ol’schanskii and Rips might say about the matter).
But of course it isn’t true, and I have never been able to fathom out why
Seymour should think it is true. As far as I can make out, Seymour seems to
have an intuition that it is “obvious” that B(2, q) is a homomorphic image
of his group F (S[t, t−1]). The various versions of his paper seem mainly to
differ in his attempts to explain why this is true, but I have never been able
to make any sense of his explanations. In fact his explanations seem to be
mostly gobbledygook. (For a year or more we corresponded regularly about
this point.) It seems that in this latest version of his paper he has yet another
explanation containing four pages of gobbledygook.

In this latest version of his paper, Seymour takes 10 pages of somewhat
confusing mathematics to define his group and prove that it is solvable. But
in fact the construction of the group takes only a few lines, and you can
prove that it is solvable in a page and a half. In fact the normal closure of
one of the two generators of his group is nilpotent, and solvability follows
immediately from this. (Seymour is aware that the normal closure of one
of the two generators is nilpotent, but has not recorded this key fact in any
versions of his paper that I have seen.) In Section 1 below I will define
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his group and prove that it is solvable. In Section 2 I will discuss how to
show that Seymour must be wrong without appealing to the various negative
solutions of the Burnside problem.

1 The group F (S [t, t−1])

Seymour lets F be the group generated by two 2×2 matrices M1, M2T , with
entries in the polynomial ring Z[x, x−1, y, y−1, t, t−1] where

M1 =

(
1 1− y
0 x

)
, M2T =

(
yt 0

1− xt 1

)
.

He lets R = Z[x, x−1, y, y−1], and lets S be the quotient ring R/J where J
is defined below. Then he defines F (S[t, t−1]) to be the group generated by
M1 and M2T , where the coefficients are taken to lie in S[t, t−1]. To define J ,
we first let

∑
be the ideal of R generated by 1− x, 1− y. (Seymour defines∑

to be the augmentation ideal of R, which makes sense if you view R as
the group ring of the free (multiplicative) abelian group of rank 2 generated
by x, y.) Then we let I(q) be the ideal of R generated by the elements
1 + u + u2 + . . . + uq−1 with u ranging over the elements xiyj with i, j ∈ Z.
Finally we set J = I(q)

∑
. Seymour appeals to Theorem B in [1] to prove

that if q = pe (where p is prime) then
∑e(pe−pe−1

≤ I(q), and hence that∑e(pe−pe−1)+1 ≤ J . Note that if q = p (and e = 1) then we have
∑p ≤ J .

Theorem 1 Let K be the normal closure of M1 in F (S[t, t−1]). Then K is
nilpotent of class e(pe − pe−1).

Proof. We show by induction on k that the elements in γk(K) can be
expressed in the form I + A where I is the 2× 2 identity matrix and

A =
∑
i+j=k

(1− x)i(1− y)jAij

where the Aij are 2×2 matrices with entries in S[t, t−1]. The theorem follows
immediately from this since if i+j = e(pe−pe−1)+1 then (1−x)i(1−y)j ∈ J
by Theorem B in [1].

First we consider the case k = 1. We have

M1 = I + (1− x)

(
0 0
0 −1

)
+ (1− y)

(
0 1
0 0

)
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and

M−1
1 = I + (1− x)

(
0 0
0 x−1

)
+ (1− y)

(
0 −x−1

0 0

)
.

So if B ∈ F (S[t, t−1]) then

B−1M1B = I + (1− x)B−1

(
0 0
0 −1

)
B + (1− y)B−1

(
0 1
0 0

)
B

and

B−1M−1
1 B = I + (1− x)B−1

(
0 0
0 x−1

)
B + (1− y)B−1

(
0 −x−1

0 0

)
B.

It follows that any product of conjugates of M1 and its inverse can be ex-
pressed in the form

I + (1− x)A1 + (1− y)A2

which establishes the case k = 1 of our induction.
Now let C ∈ γk(K) and let D ∈ K and consider [C,D]. By induction we

may assume that C = I + A where

A =
∑
i+j=k

(1− x)i(1− y)jAij,

and we may assume that D = I +B where

B = (1− x)B1 + (1− y)B2.

We may also assume that C−1 = I + U where

U =
∑
i+j=k

(1− x)i(1− y)jUij,

and we may assume that D−1 = I + V where

V = (1− x)V1 + (1− y)V2.

Since C−1C = D−1D = I we have

U + A+ UA = V +B + V B = 0.

So

[C,D] = (I + U)(I + V )(I + A)(I +B)

= I + UV + UB + V A+ AB
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and clearly UV + UB + V A+ AB can be expressed in the form∑
i+j=k+1

(1− x)i(1− y)jWij

as required. The same argument shows that [C,D]−1 = [D,C] has the re-
quired form, and it follows that every element of γk+1(K) has the required
form.

This completes our induction, and proves the theorem. �

The fact that F (S[t, t−1]) is solvable follows immediately from Theorem
1.

2 Refutation?

Seymour says with some justification that very few people claim to un-
derstand the negative solutions of the Burnside problem given by Adjan,
Ol’schanskii and Rips. He says that since his positive “solution” of the Burn-
side problem is so short and easy to understand they must just be wrong.
Now as well as contradicting the negative solutions of the Burnside problem,
Seymour’s results also contradict some known facts about the groups R(2, p).
(Here R(2, p) is the largest finite quotient of B(2, p).) In particular, if B(2, p)
were a homomorphic image of F (S[t, t−1]), then Theorem 1 would imply that
one of the generators of B(2, p) would have a normal closure which is nilpo-
tent of class p − 1. This, of course, in turn would imply that both of the
generators of B(2, p) would have normal closures which were nilpotent of class
p− 1, so that B(2, p) would have class at most 2p− 2. This contradicts the
known results that R(2, 5) has class 12 and R(2, 7) has class 28. The problem
is that these results come from computer calculations using the p-quotient
algorithm, and Seymour (of course!) says that the programs must have a bug
in them. Some years ago he asked me why nobody had produced a matrix
representation or a permutation group representation of R(2, 5), and I took
this up as a challenge. Now R(2, 5) has a core free subgroup of index 59, and
so it is quite easy to produce a faithful permutation representation of degree
59 for R(2, 5). But I didn’t feel that was very satisfactory. So I looked for a
matrix representation and managed to find two 66× 66 upper unitriangular
matrices over GF(5) which generate a copy of R(2, 5). These matrices can be
found on my website http://users.ox.ac.uk/~vlee/selected.htm. Sey-
mour (of course!!) said that he couldn’t multiply them by hand, and was
unable to verify that the group has exponent 5. As mentioned above, R(2, 5)
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has class 12 and the Sylow p-subgroup of GL(n, p) has class n − 1, so any
representation of R(2, 5) as a subgroup of GL(n, 5) would need n to be at
least 13. Nobody is going to multiply 13× 13 matrices with entries in GF(5)
by hand, but you would think that even Seymour might believe that a com-
puter could multiply 66× 66 matrices with entries in GF(5) correctly. If you
trust the computer to multiply matrices then it is easy to check that the two
matrices I found generate a class 12 group of order 534. To check that the
exponent of the group is 5, you need to make use of a very well understood
theorem of Graham Higman [2] which implies that to check that a group
of class c has exponent dividing n, then it is only necessary to check that
wn = 1 for all words w of length at most c in the generators of the group. So
in the case of a two generator group of class 12, to check that the group has
exponent 5 it is only necessary to check that w5 = 1 for roughly 213 words
w in the two generators. You would need to write a short bit of code to do
this, but there would be no need to make use of any complicated computer
algorithms.

There is also a completely computer free way of contradicting Seymour’s
claim. Sanov [3] proves that the relations of weight at most 2p − 2 in the
associated Lie ring of R(2, p) all follow from the identity px = 0 and the
(p − 1)-Engel identity. Using this result there is a very short hand proof
that if R(2, 5) is generated by x and y then there are non-trivial commuta-
tors in R(2, 5) of multiweight (5, 3) in x and y, whereas by Theorem 1 all
commutators of multiweight (5, 3) in the generators of F (S[t, t−1]) are trivial
(when p = 5). When p > 5 there is similarly a very short hand proof that
R(2, p) has non-trivial commutators of multiweight (p, 2). A complete proof
of Sanov’s theorem and proofs of these claims can be found on my website
http://users.ox.ac.uk/~vlee/sanov2.pdf.
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