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We construct the moduli spaces of stable maps, Mg ,n (Pr, d ), via geometric invariant

theory (GIT). This construction is only valid over Spec C, but a special case is a GIT

presentation of the moduli space of stable curves of genus g with n marked points, Mg,n;

this is valid over Spec Z. In another paper by the first author, a small part of the argument

is replaced, making the result valid in far greater generality. Our method follows the one

used in the case n = 0 by Gieseker in [9], 1982, Lectures on Moduli of Curves to construct

Mg, though our proof that the semistable set is nonempty is entirely different.

1 Introduction

This paper gives a geometric invariant theory (GIT) construction of the Kontsevich–

Manin moduli spaces of stable maps Mg ,n (Pr, d ), for any values of (g, n, d) such that

smooth stable maps exist. From this we derive a GIT construction of all such moduli

spaces of stable maps Mg,n(X, β), where X is a projective variety and β is a discrete

invariant, understood as the homology class of the stable maps. Although the first part

of the construction closely follows Gieseker’s construction in [9] of the moduli spaces
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of stable curves Mg, our proof that there exist GIT-semistable n-pointed maps uses an

entirely different approach.

Some results of this paper are valid over Spec Z. The GIT construction of

Mg ,n (Pr, d ) is in fact only presented in this paper over C, though it can be extended

to work much more generally (see [3]). However, a special case of what we prove here is

a GIT construction of the moduli spaces of n-pointed curves, Mg,n, which works over

Spec Z. A GIT construction of Mg,n does not seem to have been published previously for

n > 0.

When constructing moduli spaces via GIT, one usually writes down a param-

eter space of the desired objects together with some extra structure, and then takes

a quotient. In our case, following the construction of [8], this extra structure involves

an embedding of the domain curve in projective space. Given an n-pointed stable map

f : (C , x1, . . . , xn) → Pr, we define the natural ample line bundle

L := ωC (x1 + · · · + xn) ⊗ f∗OPr (c)

on C , where c is a sufficiently large positive integer, as shall be discussed in Section 2.4.

Choose a sufficiently large so that La is very ample. We fix a vector space of dimension

h0(C ,La ) and denote it by W. A choice of isomorphism W ∼= H0(C ,La ) induces an embed-

ding (C , x1, . . . , xn) ⊂ P(W) and the graph of the map f is a curve (C , x1, . . . , xn) ⊂ P(W)× Pr.

For our parameter space with extra structure, then, we start with the Hilbert

scheme Hilb(P(W)× Pr) ×∏n(P(W)× Pr), where the final factors represent the marked

points. There is a projective subscheme, I , the incidence subscheme where the n points

lie on the curve. This is in fact the Hilbert scheme of n-pointed curves in P(W)× Pr. We

identify a locally closed subscheme J ⊂ I , corresponding to stable maps which have

been embedded as described above. This subscheme is identified by Fulton and Pand-

haripande; they remark ([8], Remark 2.4) that Mg ,n (Pr, d ) is a quotient of J by the action

of SL(W), and should be presentable via GIT, though they follow a different method.

The main theorems of this paper are stated at the beginning of Section 6. The GIT

quotient J//L SL(W) is isomorphic to Mg ,n (Pr, d ) over C, for a narrow but nonempty range

of linearizations L; if we set r = d = 0, we obtain Mg,n over Z. We prove these results for

n = 0 by generalizing Gieseker’s technique, and then use induction on n.

As alternative constructions of these spaces exist, it is natural to ask why one

would go to the (considerable) trouble of constructing them via GIT, especially since the

construction of this paper depends on the construction of Mg ,n (Pr, d ) as a coarse moduli
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space given in [8]. However, this paper paves the way for a construction independent of

[8], over a much more general base, laid out in [3]. The potential stability theorem laid

out here (Theorem 5.19) is more generally applicable; in this form it is also an impor-

tant ingredient in GIT constructions of moduli spaces of stable curves and stable maps

with weighted marked points [27], which have been constructed by other methods ([13],

[21], [1], [5]). The original motivation behind this construction was to use it as a tool

for studying Mg,n, by constructing that as a GIT quotient of a subscheme of Mg ,n (Pr, d );

see [4]. Also, once one has a space constructed via GIT, one may vary the defining lin-

earization to obtain birational transformations of the quotient. Such methods may be

relevant to study maps arising from the minimal model program for Mg,n and Mg ,n (Pr, d );

cf. [14, 15].

The layout of this paper is as follows: Section 2 is a brief review of background

material on the theory of moduli, geometric invariant theory, and stable curves and

maps. Much of the material in this section is standard. However, we need to extend some

of the theory of variation of GIT. Thaddeus [29] and Dolgachev and Hu [7] have a beautiful

picture of the way in which GIT quotients vary with linearization. Unfortunately, these

results are only proved for projective varieties, sometimes with the extra condition of

normality. In addition, the results of [7] are only given over C. We wish to make use of

small parts of this theory in the setting of projective schemes over a field k, and so we

make the elementary extensions necessary in Section 2.3.

Let us summarize the material we shall need from the theory of variation of GIT.

We work in the real vector space of “virtual linearizations” generated by G-linearized

line bundles. One may extend the definitions of stability and semistability to virtual

linearizations. We take the cone within this space spanned by ample linearizations.

Now, suppose a convex region within this ample cone has the property that no virtual

linearization in it defines a strictly semistable point. Variation of GIT tells us that all

virtual linearizations in the convex region define the same semistable set.

In Section 2.4 we review some basic facts about stable curves and stable maps.

Our construction begins in Section 3, where we define the scheme J described

above, and prove that there exists a family C → J with the local universal property for

the moduli problem of stable maps. Here we also lay out in detail the strategy for the

rest of the paper.

Our aim is to show that for some range of virtual linearizations, GIT semistability

implies GIT stability and J
ss = J. However, it will be sufficient for us to show that the

semistable set J
ss

is nonempty and contained in J. For, by definition, elements of J

have finite stabilizer groups, and so all GIT semistable points will be GIT stable points
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if J
ss ⊆ J. An argument involving the construction of Mg ,n (Pr, d ) from [8] allows us to

conclude that if J
ss

is a nonempty subset of J, then the quotient J//SL(W) must be the

entirety of Mg ,n (Pr, d ).

As this argument uses the construction of [8], which is only given over Spec C,

we can only claim to have constructed Mg ,n (Pr, d ) over Spec C. However, this is only a

shortcut which we use for brevity in this paper. An alternative argument is presented

by the first author in [3], which allows us to conclude from ∅ 	= J
ss ⊆ J that J//SL(W) is

Mg ,n (Pr, d ) over a more general base.

Within this paper, in the special case where r = d = 0, we obtain Mg,n. Gieseker’s

construction of Mg in [9] works over Spec Z (although there it is only stated to work over

any algebraically closed field). We may use induction to show that the same is true for

our GIT presentation of Mg,n.

In Section 4, we describe the range of virtual linearizations and general GIT

setup to be used. The longest part of the paper follows. In Section 5, we gradually refine

our choice of virtual linearization so that GIT semistability of an n-pointed map implies

that it is “potentially stable.” The definition of precisely what is meant by this, and the

corresponding theorem, can be found in Section 5.5. With this description of possible

semistable curves, we are able to show in Section 5.6 that GIT semistable curves in J are

indeed in J, at least for a carefully defined range of virtual linearizations. All that is left

is to prove nonemptiness of the semistable set.

A further important fact may be deduced at this stage. We have a range of virtual

linearizations, which is a convex set in the vector space described above. For this range,

semistability is equivalent to stability. It follows that the semistable set is the same for

the whole of our range. Thus, nonemptiness need only be proved for one such virtual

linearization.

In Section 6, we complete the construction by proving this nonemptiness. This is

done by induction on the number n of marked points. Section 6 is therefore divided into

two parts: the base case and the inductive step. In Section 6.2, we follow the methods of

Gieseker and show that smooth maps are GIT semistable when n = 0. This gives us the

required nonemptiness.

The inductive step follows a more novel approach, and is laid out in Section 6.3.

Given a moduli stable map of genus g with n marked points, we attach an elliptic curve

at the location of one of the markings to obtain a new stable map of genus (g + 1),

with (n − 1) marked points. Induction tells us that this has a GIT semistable model, so

we have verification of the numerical criterion for GIT semistability for this map. This

implies GIT semistability of the original stable map for a virtual linearization within
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the specified range. We use the constancy of the GIT quotient for the whole of the range

to deduce the result.

As we talk here about spaces of maps from curves of differing genera and num-

bers of marked points, it is necessary to extend the notation J to Jg,n,d to specify which

space we refer to. The crucial result can then be summarized as

J
ss
g+1,n−1,d = Jg+1,n−1,d =⇒ J

ss
g,n,d = Jg,n,d .

In the special case of genus 0 curves, this induction constructs the moduli space

M0,n for every n ≥ 3; the base case for the induction in this case is Mn,0.

In [28], Swinarski gave a GIT construction of Mg,0(X, β), the moduli spaces of

stable maps without marked points. Baldwin extended this in [2] to marked points.

This paper brings together the results from those two theses. Finally, we note that

Parker has recently given a very different GIT construction of M0,n(Pr, d) as a quotient

of M0,n(Pr × P1, (d, 1)) in [23].

2 Background Material

There is a certain amount of background material which we must review. Almost all

of this section is standard, although in Section 2.3 we must extend some results on

variation of geometric invariant theory, to work for arbitrary schemes over a base of any

characteristic.

2.1 Moduli and quotients

We shall take the definitions of coarse and fine moduli spaces to be standard. However,

our construction will rely on families which have the following property, which ensures

that an orbit space quotient of their base is a coarse moduli space.

Definition 2.1 ([22], p. 37). Given a moduli problem, a family X → S is said to have the

local universal property if, for any other family X ′ → S′ and any s ∈ S′, there exists a

neighborhood U of s in S′ and a morphism φ : U → S such that φ∗X ∼ X ′|U . �

Suppose that we also have a group action on the base space S such that orbits

correspond to equivalence classes for the moduli problem. Some sort of quotient seems a

good candidate as a moduli space, but unfortunately in most cases the naive quotient will
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not exist as a scheme. What we require instead is a categorical quotient ([20], Definition

0.5). We need one additional definition.

Definition 2.2. A categorical quotient (Y, φ) of a scheme X by a group G is an orbit space

if the geometric fibers of φ are precisely the orbits of the geometric points of X. �

By definition, a categorical quotient (Y, φ) is unique up to isomorphism, and φ is

a surjective morphism. Now we see that these definitions are enough to provide coarse

moduli spaces, as formalized in the following proposition.

Proposition 2.3 ([22], Proposition 2.13). Suppose that the family X → S has the local

universal property for some moduli problem, and that the algebraic group G acts on S,

with the property that Xs ∼ Xt if and only if G · s = G · t . Then

(i) any coarse moduli space is a categorical quotient of S by G;

(ii) a categorical quotient of S by G is a coarse moduli space if and only if it is

an orbit space. �

2.2 Geometric invariant theory

Geometric invariant theory (GIT) is a method to construct categorical quotients. Details

of the theory may be found in [20], and the results are extended over more general base

in [25] and [26]. More gentle introductions may be found in [22] and [19]. We state here

the key concepts.

Recall that a geometric invariant theory quotient depends not only on an alge-

braic group action on a projective scheme X, but also on a linearization of that action

([20], Definition 1.6), which is a lifting of the group action to a line bundle on X.

Line bundles together with linearizations of the action of G form a group, which

we denote by PicG (X). An L-linearized action of G on X induces an action of G on the

space of sections of Lr, where r is any positive integer. If L is ample, then the quotient

scheme we obtain is

X//L G := Proj
∞⊕

n=0

H0(X, L⊗n)G . (1)

This is a categorical quotient of an open subset of X, but not necessarily of

the whole of X. The rational map X ��� X//L G is only defined at those x ∈ X where there



Geometric Invariant Theory Construction of Stable Maps 7

exists a section s ∈ H0(X, L⊗n)G such that s(x) 	= 0. We must identify this open subscheme,

and also discover to what extent the categorical quotient is an orbit space. Accordingly

we make extra definitions. In the following, we may work with schemes defined over any

universally Japanese ring, and in particular over any field or over Z.

Definition 2.4 (cf. [20], Definition 1.7, and [26], Proposition 7 and Remark 9). Let G be a

reductive algebraic group, with an L-linear action on the projective scheme X.

(i) A geometric point x ∈ X is semistable (with respect to L and σ ) if there exists

s ∈ H0(X, L⊗n)G for some n ≥ 0, such that s(x) 	= 0 and the subset Xs is affine.

The open subset of X whose geometric points are the semistable points is

denoted Xss
σ (L).

(ii) A geometric point x ∈ X is stable (with respect to L and σ ) if there exists

s ∈ H0(X, L⊗n)G for some n ≥ 0, such that s(x) 	= 0 and the subset Xs is affine,

the action of G on Xs is closed, and the stabilizer Gx of x is 0-dimensional.

The open subset of X whose geometric points are the stable points is denoted

Xs
σ (L).

(iii) A point x ∈ X which is semistable but not stable is called strictly semistable.
�

In particular, we shall use the following.

Corollary 2.5 ([20], p. 10). If Gx is finite for all x ∈ Xss(L), then Xss(L) = Xs(L). �

Now the main theorem of GIT is as follows.

Theorem 2.6 ([20], Theorem 1.10, [26], Theorem 4 and Remark 9). Let X be a projective

scheme, and G a reductive algebraic group with an L-linear action on X.

(i) A categorical quotient (X//L G, φ) of Xss(L) by G exists.

(ii) There is an open subset Ys of X//L G such that φ−1(Ys) = Xs(L) and (Ys, φ) is

an orbit space of Xs(L). �

This may all be summarized in the diagram

Xs(L)
open⊆ Xss(L)

open⊆ X

↓ ↓
Xs(L)/G

open⊆ X//L G.
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Stability and semistability are difficult to prove directly; fortunately the analysis is made

much easier by utilizing one-parameter subgroups (1-PSs) of G, i.e. homomorphisms

λ : Gm → G. This is the so-called Hilbert–Mumford numerical criterion. It is not used

by Seshadri in [26]; although these techniques probably do work for schemes over Z, we

shall only need them to apply GIT over a fixed base field, k.

In the following we use the conventions of Gieseker in [9], which are equiva-

lent to but different from those of [20]. Note that throughout this paper, we shall use

Grothendieck’s convention that if V is a vector space, then P(V ) is the collection of equiv-

alence classes (under scalar action) of the nonzero elements of the dual space V∨.

Let λ : Gm → G be a 1-PS of G. Set x∞ := limt→0 λ(t−1) · x. The group λ(Gm) acts on

the fiber Lx∞ via some character t �→ t R. Then set

µL (x, λ) := R.

From this perspective, one may see clearly that the map L �→ µL (x, λ) is a group homo-

morphism PicG (X) → Z.

For ample line bundles we have an alternative view. Suppose L is very ample,

and consider X as embedded in P(H0(X, L)) =: P. We have an induced action of λ(Gm) on

H0(X, L). Pick a basis {e0, . . . , eN} of H0(X, L) such that for some r0 ≤ · · · ≤ rN ∈ Z,

λ(t )ei = tri ei for all t ∈ Gm.

If {e∨
0 , . . . , e∨

N} is the dual basis for H0(X, L)∨, then the action of λ(t ) on H0(X, L)∨ is given

by the weights −r0, . . . , −rN .

A point x ∈ X is represented by some nonzero x̂ =∑N
i=0 xie∨

i ∈ H0(X, L)∨. Let

R′ := min{ri|xi 	= 0} = − max{−ri|xi 	= 0}.

Then −R′ is the maximum of the weights for x̂, and so x∞ is represented by x̂∞ :=∑
ri=R′ xie∨

i . The fiber Lx∞ is spanned by {ei(x∞)|0 ≤ i ≤ N}, but the nonzero part of this set

is {ei(x∞)|ri = R′}, where by definition λ(Gm) acts via the character t �→ t R′
. Thus

µL (x, λ) = R′ = min{ri|xi 	= 0}.
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We shall refer to the set {ri : xi 	= 0} as the λ-weights of x. The crucial property is that,

for ample linearizations, semistability may be characterized in terms of these minimal

weights.

Theorem 2.7 ([21], Theorem 2.1). Let k be a field. Let G be a reductive algebraic group

scheme over k, with an L-linear action on the projective scheme X (defined over k), where

L is ample. Then

x ∈ Xss(L) ⇐⇒ µL (x, λ) ≤ 0 for all 1-PS λ 	= 0,

x ∈ Xs(L) ⇐⇒ µL (x, λ) < 0 for all 1-PS λ 	= 0.

�

2.3 Variation of GIT

The semistable set depends on the choice of linearization of the group action. The nature

of this relationship is explored in the papers of Thaddeus [29] and Dolgachev and Hu [7]

on the variation of GIT. Unfortunately for us, these papers deal only with GIT quotients

of projective varieties, sometimes requiring the extra condition of normality. We wish

to present Mg ,n (Pr, d ) as a GIT quotient J//L SL(W), where the scheme J will be defined

in Section 3.1; as we already know that Mg ,n (Pr, d ) is in general neither reduced nor

irreducible, we cannot expect J to have either of these properties.

It seems likely that much of the theory of variation of GIT extends to general

projective schemes. We shall here extend the small part that we shall need to use; it is

easier to prove nonemptiness of the semistable set J
ss

if we have a certain amount of

freedom in the precise choice of linearization. We do not need the full picture of “walls

and chambers” as defined by Dolgachev and Hu in [7] and Thaddeus in [29]; developing

this theory for general projective schemes would take more work, so we shall not do so

here. We shall follow the methods of [7], though we depart from their precise conventions.

We shall assume that X is a projective scheme over a field k. This is more conve-

nient than working over Z and shall be sufficient for our final results. We further specify

for all of the following that the character group Hom(G, Gm) is trivial; then there is at

most one G-linearization for any line bundle ([20], Proposition 1.4). In particular, this

holds for G = SL(W).

We shall write PicG (X)R for the vector space PicG (X) ⊗ R. We shall refer to general

elements of PicG (X)R as “virtual linearizations” of the group action, and denote them

with a lower case l to distinguish them from true linearizations, L.
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We shall review the construction of the crucial function M•(x) : PicG (X)R → R. As

the map µ•(x, λ) : PicG (X) → Z is a group homomorphism, it may be naturally extended

to

µ•(x, λ) : PicG (X)R → Z ⊗ R = R.

The numerical criterion applies for ample linearizations, so we shall be most interested

in their convex cone.

Definition 2.8. The G-linearized ample cone AG (X)R is the convex cone in PicG (X)R

spanned by ample line bundles possessing a G-linearization. �

Let T be a maximal torus of G, and let W = NG (T )/T be its Weyl group. Let X∗(G)

be the set of nontrivial one-parameter subgroups of G. Note that X∗(G) =⋃g∈G X∗(gTg−1).

If dim T = n, then we can identify X∗(T ) ⊗ R with Rn. Let ‖ · ‖ be a W-invariant Euclidean

norm on Rn. Then for any λ in X∗(G), define ‖λ‖ := ‖gλg−1‖ where gλg−1 ∈ X∗(T ). For any

1-PS λ 	= 0, any x ∈ X, and virtual linearization l ∈ PicG (X)R, we may set

µ̄l (x, λ) := µl (x, λ)

‖λ‖ .

Now our crucial function may be defined as follows.

Definition 2.9. The function M•(x) : PicG (X)R → R ∪ {∞} is defined as

Ml (x) := sup
λ∈X∗(G)

µ̄l (x, λ). �

It is a result of Mumford that if L is an ample line bundle, then ML (x) is finite ([20],

Proposition 2.17); recall that [20] treats GIT over an arbitrary base field k). We observe

that M•(x) is a positively homogeneous lower convex function on PicG (X)R. Thus M•(x) is

finite-valued on the whole of AG (X)R.

The numerical criterion may be expressed in terms of ML (x). We use M•(x) to

extend naturally the definitions of stability and semistability to virtual linearizations

l ∈ AG (X)R.

Definition 2.10. Let l ∈ AG (X)R. Then

Xss(l) := {x ∈ X : Ml (x) ≤ 0},
Xs(l) := {x ∈ X : Ml (x) < 0}.

�
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Using lower convexity we may prove the following lemma.

Lemma 2.11. Suppose l ∈ AG (X)R. If x is semistable with respect to l1, . . . , lk ∈ PicG (X)R,

then it is semistable with respect to all virtual linearizations in the convex hull of

l1, . . . , lk. �

Now we may prove the result that we shall need.

Proposition 2.12 (cf. [7], Theorem 3.3.2). Suppose H ⊂ AG (X)R is a convex region satisfy-

ing Xss(l) = Xs(l) for all l ∈ H. It follows that Xs(l) = Xss(l) = Xss(l ′) = Xs(l ′) for all l, l ′ ∈ H.�

Proof. Let x ∈ X be arbitrary. It follows from the assumptions that the function M•(x)

is nonzero in H. Let l, l ′ ∈ H and let V be the vector subspace of PicG (X)R spanned by l

and l ′. This has a basis consisting either of l and l ′, or just of l; use this basis to define

a norm and hence a topology on V . Now, since M•(x) is positively homogeneous lower

convex, the restriction

M•(x) : V ∩ AG (X)R → R

is a continuous function. Let L be the line between l and l ′. Then L ⊂ V ∩ H ⊂ V ∩ AG (X)R,

so M•(x) is nonzero and continuous on L. Thus, it does not change sign; either x ∈ Xs(l ′′)

for every l ′′ ∈ L or x /∈ Xss(l ′′) for every l ′′ ∈ L. This holds for all x ∈ X, and so in particular,

Xs(l) = Xs(l ′). �

Remark. In [29] and [7], the authors use the fact that algebraically equivalent line bundles

give rise to the same semistable sets, and so work in the Néron–Severi group

NSG (X) := PicG (X)

PicG
0 (X)

.

The advantage is that in many cases, this is known to be a finitely generated abelian

group, and so NSG (X) ⊗ R is a finite-dimensional vector space. However, this finite gen-

eration does not appear to have been proved in sufficient generality for our purposes. We

could show ([2], Proposition 1.3.4) that the group homomorphism µ•(x, λ) : PicG (X) → Z

descends to NSG (X), but as we would be left with a possibly infinite-dimensional vector

space, we have not troubled with the extra definitions and results.
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2.4 Stable curves and stable maps

We now turn our attention to the specific objects that we shall study: the coarse moduli

spaces of stable curves and of stable maps.

The moduli space Mg,n of Deligne–Mumford stable pointed curves is by now

very well known. We shall not rehearse all the definitions here and instead simply cite

Knudsen’s work [17]; lots of background and context is given in [30]. The only terminology

we shall use which may not be completely standard is the following: a prestable curve

is a connected reduced projective curve whose singularities (if there are any) are nodes.

The moduli spaces of stable maps, Mg,n(X, β) parametrize isomorphism classes

of certain maps from pointed nodal curves to X (this will be made precise below). They

were introduced as a tool for calculating Gromov–Witten invariants, which are used in

enumerative geometry and quantum cohomology.

Fix a projective scheme X. The discrete invariant β may intuitively be understood

as the class of the pushforward f∗[C ] ∈ H∗(X; Z). In this paper, we shall only complete the

construction of moduli of stable maps over C, and so there is no harm in taking this as

the definition of β. For the case of more general schemes X, see ([6], Definition 2.1).

We may define our moduli problem.

Definition 2.13.

(i) A stable map of genus g, degree d, and homology class β is a map f :

(C , x1, . . . , xn) → X, where C is an n-pointed prestable curve of genus g, the

homology class f∗[C ] = β, and the following stability conditions are satisfied:

if C ′ is a nonsingular rational component of C and C ′ is mapped to a point

by f , then C ′ must have at least three special points (either marked points

or nodes); if C ′ is a component of arithmetic genus 1 and C ′ is mapped to a

point by f , then C ′ must contain at least one special point. (Note that since

we require the domain curves C to be connected, the stability condition on

genus 1 components is automatically satisfied except in M1,0(X, 0), which is

empty).

(ii) A family of stable maps

X f→ X

ϕ ↓↑ σi

S
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is a family (X ϕ→ S, σ1, . . . , σn) of pointed prestable curves together with

a morphism f : X → X such that f∗[X ] = β, and satisfying that f |Xs :

(Xs, σ1(s), . . . , σn(s)) → X is a stable map for each s ∈ S.

(iv) Two families (X ϕ→ S, σ1, . . . , σn, f ) and (X ′ ϕ′
→ S, σ ′

1 . . . , σ ′
n, f ′) of stable maps

are equivalent if there is an isomorphism τ : X ∼= X ′ over S, compatible with

sections, such that f ′ ◦ τ = f . �

Note that Mg,n(X, 0) is simply Mg,n × X. In this sense, the Kontsevich spaces gen-

eralize the moduli spaces of stable curves. However, although there is an open subscheme

Mg,n(X, β) corresponding to maps from smooth curves, in general it is not dense in the

moduli space of stable maps—in general, Mg,n(X, β) is reducible and has components

corresponding entirely to nodal maps.

In addition, it is very important to note that the domain of a stable map is not

necessarily a stable curve! It may have rational components with fewer than three special

points (though such components cannot be collapsed by f ). The dualizing sheaf may not

be ample, even after twisting by the marked points. We use a sheaf that provides an extra

twist to all components which are not collapsed,

L := ωC (x1 + · · · + xn) ⊗ f∗OPr (c),

where c is a positive integer, whose magnitude we will discuss below.

In the special case where X = Pr, we may fix an isomorphism H2(X; Z) ∼= Z and

denote β by an integer d ≥ 0. For smooth stable maps to exist, we require 2g − 2 + n +
3d > 0; we shall only consider these cases.

Remark on the magnitude of c. We require L to be ample on a nodal map if and

only if the map is stable. This is certainly true if c ≥ 3, as then L is positive on all rational

components which are not collapsed by the map or have at least three special points.

However, unless we are in the case g = n = 0, all rational components have at least one

special point, and so c ≥ 2 will suffice for us. If g = n = 0, we in addition ensure that

L is positive on irreducible curves (which now have no special points); this holds when

cd ≥ 3, so it is only in the case (g, n, d) = (0, 0, 1) that we require c ≥ 3.

We shall construct Mg ,n (Pr, d ) by GIT. A corollary is a GIT construction of

Mg,n(X, β). An existing construction (not by GIT) is crucial to our proof.

Theorem 2.14 ([8], Theorem 1). Let X be a projective algebraic scheme over C, and let

β ∈ H2(X; Z)+. There exists a projective, coarse moduli space Mg,n(X, β). �
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In [28], Swinarski gave a GIT construction of Mg,0(X, β), the moduli spaces of

stable maps without marked points. Baldwin extended this in [2] to marked points; this

seemingly innocent extension turns out to be very difficult in GIT, because finding a

linearization with the required properties becomes much more subtle. This paper brings

together the results from those two theses.

We gather together a few more facts that have been proven about these spaces.

Most of the progress has been made in the case g = 0. If X is a nonsingular convex pro-

jective variety, e.g. Pr, then M0,n(X, β) is an orbifold projective variety; when nonempty, it

has the “expected dimension.” However, moduli spaces for stable maps of higher genera

have fewer such nice properties. Kim and Pandharipande have shown in [16] that, if X

is a homogeneous space G/P , where P is a parabolic subgroup of a connected complex

semisimple algebraic group G, then Mg,n(X, β) is connected. Little more can be said even

when X = Pr; the spaces Mg,n(Pr, d) are in general reducible, nonreduced, and singular.

Further, Vakil has shown in [31] that every singularity of finite type over Z appears in

one of the moduli spaces Mg ,n (Pr, d ).

3 Constructing Mg ,n (Pr,d ): Core Definitions and Strategy

We use the standard isomorphism H2(Pr) ∼= Z throughout. For any (g, n, d) such that stable

maps exist, we write Mg ,n (Pr, d ) for the coarse moduli space of stable maps of degree d

from n-pointed genus g curves into Pr, as defined in Section 2.4. We wish to construct

this moduli space via geometric invariant theory.

The structure of the main theorem of this paper is given in this section; we shall

summarize it briefly here. We shall define a subscheme J of a Hilbert scheme, such that

J is the base for a locally universal family of stable maps. A group G acts on J such that

orbits of the action correspond to isomorphism classes in the family, and hence an orbit

space of J by G, if it exists, will be precisely Mg ,n (Pr, d ).

The group action extends to the projective scheme J, which is the closure of J

in the relevant Hilbert scheme. Given any linearization L of this action, we may form a

GIT quotient J//L G. Such a quotient is a categorical quotient of the semistable set J
ss

(L),

and is in addition an orbit space if all semistable points are stable. Thus, if we can show

that there exists a linearization L of the action of G on J such that

J
ss

(L) = J
s
(L) = J,

then we will have proved that J//L G ∼= Mg ,n (Pr, d ).
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3.1 The schemes I and J

We start by defining the scheme desired, J = Jg,n,d . Note that all the quantities and

spaces defined in the following depend on (g, n, d), but that we shall only decorate them

with subscripts when it is necessary to make the distinction.

Notation. Given a morphism f : (C , x1, . . . xn) → Pr, where C is nodal, write

L := ωC (x1 + · · · + xn) ⊗ f∗(OPr (c)).

where c is a positive integer satisfying c ≥ 2 unless (g, n, d) = (0, 0, 1), in which case we

require c ≥ 3, as discussed in Section 2.4. Then L is ample on C if and only if C is a stable

map. If a ≥ 3, then La is very ample and h1(C ,La ) = 0. However, larger values of a will be

required for us to complete our GIT construction; it is shown in [24] that cusps are GIT

stable for a = 3. We shall assume for now that a ≥ 5, although it will become apparent

that further refinements are needed in some cases. Define

e := deg(La ) = a(2g − 2 + n + cd),

so h0(C ,La ) = e − g + 1. We will work a lot with projective space of dimension e − g, so it

is convenient to define

N := e − g.

Note that a corollary of our assumptions is that e ≥ ag. If g ≥ 2, then this follows

from the inequality 2g − 2 + n + cd ≥ 2g − 2 ≥ g. If g ≤ 1, we see e = a(2g − 2 + n + cd)

≥ a ≥ ag. If g = 0, it will be more useful to estimate e ≥ a. In any case, it follows that

N ≥ 4, since a ≥ 5.

Let W be a vector space over k of dimension N + 1. Then an isomorphism W ∼=
H0(C ,La ) induces an embedding C ↪→ P(W) (recall that our convention is that P(V ) is

the set of equivalence classes of nonzero linear forms on V ). Now the graph of f is an

n-pointed nodal curve (C , x1, . . . , xn) ⊂ P(W)× Pr, of bidegree (e, d). Its Hilbert polynomial

is

P (m, m̂) := em + dm̂ − g + 1.



16 E. Baldwin and D. Swinarski

Let Hilb(P(W)× Pr) be the Hilbert scheme of curves in P(W)× Pr with Hilbert poly-

nomial P (m, m̂). We append n extra factors of P(W)× Pr to give the locations of the

marked points. Thus, given a stable map f : (C , x1, . . . , xn) → Pr and a choice of isomor-

phism W ∼= H0(C ,La ), we obtain an associated point in Hilb(P(W)× Pr) × (P(W)× Pr)×n.

We write C ϕ→ Hilb(P(W)× Pr) for the universal family. This may be extended as

(
ϕ, 1∏n

i=1 P(W)×Pr

)
: C ×

n∏
i=0

(P(W)× Pr) → Hilb(P(W)× Pr) ×
n∏

i=0

(P(W)× Pr). (2)

Definition 3.1 ([8], p. 58). The scheme

I ⊂ Hilb(P(W)× Pr) ×
n∏

i=1

(P(W)× Pr)

is the closed incidence subscheme consisting of (h, x1, . . . , xn) ⊂ Hilb(P(W)× Pr) × (P(W)×
Pr)×n such that x1, . . . , xn lie on Ch. �

We restrict the family (2) over I . This restriction is the universal family of n-

pointed curves in P(W)× Pr, possessing n sections σ1, . . . , σn, giving the marked points.

Next we consider the subscheme of I corresponding to a-canonically embedded stable

maps.

Definition 3.2 ([8], p. 58). The scheme J ⊂ I is the locally closed subscheme consisting

of those (h, x1, . . . , xn) ∈ I such that

(i) (Ch, x1, . . . , xn) is prestable, i.e. Ch is projective, connected, reduced, and nodal,

and x1, . . . , xn are nonsingular, distinct points on Ch;

(ii) the projection map Ch → P(W) is a nondegenerate embedding;

(iii) (OP(W)(1) ⊗ OPr (1))|Ch and (ωa
Ch

(ax1 + · · · + axn) ⊗ OPr (ca + 1))|Ch are isomorphic.

We denote by J the closure of J in I . �

Following [8], we abuse notation and write OP(W)(1) ⊗ OPr (1) to denote p∗
1OP(W)(1) ⊗

p∗
2OPr (1), where pW and pr are the projections of P(W)× Pr to its corresponding factors.

That J is indeed a locally closed subscheme is verified in ([8], p. 58). As I is a

projective scheme, it follows that this is also the case for J. If (C , x1, . . . , xn) ⊂ P(W)× Pr
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is an n-pointed curve, we shall say that it is represented in J if C = Ch ⊂ P(W)× Pr and

(h, x1, . . . , xn) ∈ J.

We restrict our universal family over J, denoting it (ϕ̃ J : C̃ J → J, σ1, . . . , σn, pr),

where pr : C̃ J → Pr is a projection from the universal family (a subscheme of P(W)× Pr × J)

to Pr. The reader may easily check that this is a family of stable maps.

We extend the natural action of SL(W) on P(W) to P(W)× Pr by defining it to be

trivial on the second factor. This induces an action on Hilb(P(W)× Pr), which we extend

“diagonally” on Hilb(P(W)× Pr) × (P(W)× Pr)×n. Note that I and J are invariant under this

action. Our main object of study is the SL(W) action on J, but we shall approach this by

studying the SL(W) action on I .

As W is a vector space over k, we have so far only defined I and J as schemes

over the field k. By replacing each use of P(W) with PN , we may define all our schemes

over Z. However, we shall continue to use W for notational convenience.

3.2 Strategy for the construction of Mg ,n (Pr,d )

Our aim is to apply Proposition 2.3 to the family (ϕ̃ J : C̃ J → J, σ1, . . . , σn, pr). Therefore, we

check in this section that it has the local universal property, and that orbits correspond

to isomorphism classes. We will first need the following lemma.

Lemma 3.3. Suppose (π : X → S, σ1, . . . , σn, f ) is a family of stable n-pointed maps to Pr.

Then π∗(ωa
X /S(aσ1(S) + · · · + aσn(S)) ⊗ f∗(OPr (ca))) is a locally free OS-module, where σi(S)

denotes the divisor defined by the image of σi in X . �

Proof. The morphism π : X → S is proper and flat, so the OX -module ωa
Xs

(aσ1(s) + · · · +
aσn(s)) ⊗ f∗

s (OPr (ca)) is flat over S for all s in S. Recall that we have chosen a, so that

H1 (Xs, ω
a
Xs

(aσ1(s) + · · · + aσn(s)) ⊗ f∗
s (OPr (ca))

) = 0

for all s ∈ S. Since Xs is a curve, all higher cohomology groups are also zero. The hypothe-

ses of [10], Corollary III.7.9.9 are met, and we conclude that

R0π∗
(
ωa
X /S(aσ1(S) + · · · + aσn(S)) ⊗ f∗(OPr (ca))

)

is locally free. �
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Proposition 3.4.

(i) (ϕ̃ J : C̃ J → J, σ1, . . . , σn, pr) has the local universal property for the moduli

problem Mg ,n (Pr, d ).

(ii) For all (h, x1, . . . , xn) ∈ J and (h′, x′
1, . . . x′

n) ∈ J, the maps (Ch, x1, . . . , xn, pr|Ch ) ∼=
(Ch′ , x′

1, . . . , x′
n, pr|Ch′ ) if and only if (h, x1, . . . , xn) and (h′, x′

1, . . . x′
n) lie in the same

orbit under the action of SL(W). �

Proof. (i) Suppose

X f−→ Pr

π ↓↑ σi

S

is an n-pointed family of stable maps to Pr. For any s0 ∈ S, we seek an open neighborhood

V � s0 and a morphism V
ψ→ J such that ψ∗(C̃ J ) ∼fam X |V .

Pick a basis for

H0(Xs0 , ω
a
Xs0

(aσ1(s0) + · · · + aσn(s0)) ⊗ f∗
s0

(OPr (ca))
)
,

and a basis for W. We showed that π∗(ωa
X /S(aσ1(S) + · · · aσn(S)) ⊗ f∗(OPr (ca))) is locally free;

it will be free on a sufficiently small neighborhood V � s0. Then by ([12], III.12.11(b)) and

Lemma 3.3, there is an induced basis of

H0(Xs, ω
a
Xs

(aσ1(s) + · · · + aσn(s)) ⊗ f∗
s (OPr (ca))

)

for each s ∈ V . With our basis for W, then, this defines a map Xs
ιs→ P(W) for each s ∈ V .

These fit together as a morphism ι : X |V → P(W).

We have given X |V → V the structure of a family of n-pointed curves in P(W)× Pr

parametrized by V ,

X |V (ι, f )−→ P(W)× Pr.

πXV ↓↑ σi|V
V

By the universal properties of I , there is a unique morphism ψ : V → I such that X |V ∼fam

ψ∗(C̃). Finally, observe that ψ (V ) ⊂ J.
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(ii) If (h, x1, . . . , xn) and (h′, x′
1, . . . , x′

n) are in the same orbit of the action of SL(W)

on J, it is immediate that as stable maps, (Ch, x1, . . . , xn, pr|Ch ) ∼= (Ch′ , x′
1, . . . , x′

n, pr|C|h′ ). Con-

versely, suppose we are given an isomorphism τ : (Ch, x1, . . . , xn) ∼= (Ch′ , x′
1, . . . , x′

n); we wish

to extend τ to be an automorphism of projective space P(W). This is possible because

the curves Ch and Ch′ embed nondegenerately in P(W) via La
Ch

and La
Ch′ respectively. As La

Ch

and La
Ch′ are canonically defined on isomorphic stable maps, we have an isomorphism

La
Ch

∼= τ ∗(La
Ch′ ), which induces an isomorphism on the spaces of global sections, from

which we obtain an automorphism of P(W). �

In the following GIT construction, we will first seek a linearization L such that

J
ss

(L) ⊆ J. This has many useful implications, which are explored in the following propo-

sition. Note that in the proof of part (iii) below, we use the existing construction of

Mg ,n (Pr, d ) over C, given by Fulton and Pandharipande in [8]. This is not necessary (see

[3]), but for brevity we take this shortcut.

Proposition 3.5.

(i) If there exists a linearization L of the action of SL(W) on J such that J
ss

(L) =
J

s
(L) = J, then J//L SL(W) ∼= Mg ,n (Pr, d ).

(ii) Suppose there exists a linearization L such that J
ss

(L) ⊆ J. Then J
ss

(L) =
J

s
(L).

(iii) There exists a map j : J → Mg ,n (Pr, d ), which is an orbit space for the SL(W)

action, and in particular a categorical quotient. The morphism j is univer-

sally closed. �

Proof. (i) If J
ss

(L) = J, then J//L SL(W) is a categorical quotient of J, and if J
ss

(L) =
J

s
(L), the quotient is an orbit space. The result follows from Proposition 3.4 and

Proposition 2.3.

(ii) Every point of J corresponds to a moduli stable map, and so has finite stabi-

lizer. The result follows from Corollary 2.5.

(iii) Mg ,n (Pr, d ) is a coarse moduli space ([8], Theorem 1). By Proposition 3.4,

J carries a local universal family, and SL(W) acts on J such that orbits of the group

action correspond to equivalence classes of stable maps. The existence of the orbit

space morphism j : J → Mg ,n (Pr, d ) follows by Proposition 2.3. Universal closure of j is

a consequence of ([8], Proposition 6). �
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The next theorem shows that if a linearization exists for which J
ss

(L) ⊆ J and the

semistable set is nonempty, then it yields the desired results.

Theorem 3.6. Suppose that, for some linearization L of the SL(W)-action, ∅ 	= J
ss

(L) ⊆ J.

Then, over C,

(i) J//L SL(W) ∼= Mg ,n (Pr, d );

(ii) J
ss

(L) = J
s
(L) = J. �

Proof. (i) Write J
ss

for J
ss

(L); this is an open subset of J, and so J − J
ss

is closed

in J. From Proposition 3.5, we have a closed morphism j : J → Mg ,n (Pr, d ). Therefore

j(J − J
ss

) is closed in Mg ,n (Pr, d ). However, J
ss

is SL(W)-invariant, and j is an orbit space

morphism, so j(J
ss

) and j(J − J
ss

) are disjoint subsets of Mg ,n (Pr, d ); an orbit space

morphism is surjective, so these subsets make up the whole of Mg ,n (Pr, d ). It follows that

j(J
ss

) = Mg ,n (Pr, d ) − j(J − J
ss

), and is thus an open subset.

Now since j is an orbit space and J
ss

is SL(W)-invariant, it follows that the

inverse image j−1 j(J
ss

) = J
ss

. The property of being a categorical quotient is local on

the base, and we showed that j(J
ss

) is open in Mg ,n (Pr, d ), so the restriction j|J
ss : J

ss =
j−1 j(J

ss
) → j(J

ss
) is a categorical quotient of J

ss
for the SL(W) action. However, so is

J//SL(W). A categorical quotient is unique up to isomorphism, so

J//SL(W) ∼= j(J
ss

).

The scheme J is projective, so by construction J//SL(W) is projective. Thus j(J
ss

) is also

projective, hence closed as a subset of Mg ,n (Pr, d ).

We have shown that j(J
ss

) is open and closed as a subset of Mg ,n (Pr, d ). It must

be a union of connected components of Mg ,n (Pr, d ). However, Pandharipande and Kim

have shown (main theorem, [16]) that Mg ,n (Pr, d ) is connected over C. We assumed that

J
ss 	= ∅. Hence

J//SL(W) ∼= Mg ,n (Pr, d ).

(ii) We showed that J
ss = J

s
in Proposition 3.5. We saw in the proof of (i) that

Mg ,n (Pr, d ) = j(J
ss

) � j(J − J
ss

) and that j(J
ss

) = Mg ,n (Pr, d ). It follows that j(J − J
ss

) = ∅,

whence J
ss = J. �
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Moreover, proving that J
ss

(L) = J
s
(L) = J is adequate to provide a GIT construc-

tion of the moduli spaces Mg,n(X, β), where X is a general projective variety. The proof

of this corollary follows the lines of ([8], Lemma 8), and is given in detail as ([2],

Corollary 3.2.8).

Corollary 3.7 ([2], Corollary 3.2.8, cf. [8], Lemma 8). Let X be a projective variety defined

over C, with a fixed embedding to projective space X
ι

↪→ Pr, and let β ∈ H2(X; Z)+. Let g

and n be non-negative integers. If β = 0, then suppose in addition that 2g − 2 + n ≥ 1.

Let ι∗(β) = d ∈ H2(Pr; Z)+. Let J be the scheme from Definition 3.2 corresponding to the

moduli space Mg ,n (Pr, d ). Suppose, in the language of Theorem 3.6, that there exists a

linearization L such that J
ss

(L) = J
s
(L) = J.

Then there exists a closed subscheme JX,β of J such that

J X,β//L|J X,β
SL(W) ∼= Mg,n(X, β),

where J X,β is the closure of JX,β in J. �

In Section 5 we shall prove that J
ss

(L) ⊆ J, for a suitable range of linearizations

L. Nonemptiness of J
ss

(L) is dealt with in Section 6. This uses induction on the number

n of marked points. For n = 0, we show that J
ss

is nonempty by showing that smooth

maps are stable, following Gieseker. We then apply Theorem 3.6 to see that all moduli

stable maps have a GIT semistable model. However, the inductive step follows a different

route, and in fact we are able to prove that J
ss = J directly, and then apply Proposition

3.5, which unlike Theorem 3.6 does not depend on the construction of [8].

The generality of our proof thus is limited by the base case. The GIT quotient

J//SL(W) may be defined over quite general base schemes. Indeed, the Hilbert scheme

Hilb(P(W)× Pr) is projective over Spec Z, so our J is also, and thus we obtain a projective

quotient J//SL(W) over Spec Z. However, Theorem 3.6 depends on the cited results of

Fulton, Kim, and Pandharipande that a projective scheme Mg ,n (Pr, d ) exists, is a coarse

moduli space for this moduli problem, and is connected; the relevant papers [8] and [16]

present their results only over C; we can only claim to have constructed Mg ,n (Pr, d ) over

Spec C.

In the special case of Mg,n = Mg,n(P0, 0), our base case is Gieseker’s construction

of Mg, which does indeed work over Spec Z; our construction of Mg,n thus works in this

generality.
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A modification of our argument is given in [3], making our construction work

independently from that of [8], and over the more general base Spec Z[p−1
1 · · · p−1

j ] where

p1, . . . , pj are all prime numbers less than or equal to the degree d. However, it is not

clear whether our quotient, or an open set thereof, coarsely represents a desirable

functor over Z. If the characteristic is less than the degree, a stable map may itself be

an inseparable morphism. The proof that the moduli functor is separated then fails ([6],

Lemma 4.2). Such maps can be left out if one wishes to obtain a Deligne–Mumford stack

(cf. [31], p. 2); this however will not be proper, and so our projective quotient cannot be

its coarse moduli space.

Gieseker’s construction of Mg begins analogously to ours. However, the end of his

argument is different from the proof of Theorem 3.6 in two ways. Gieseker shows directly

that all smooth curves are GIT semistable, and then uses a deformation argument and

semistable replacement to show that all Deligne–Mumford stable curves have SL(W)-

semistable Hilbert points. However, the proof that smooth curves are GIT semistable

does not provide a good enough inequality to prove stability of n-pointed curves or

maps; hence our inductive argument. Further, not all stable maps can be smoothed (the

smooth locus is not in general dense in Mg ,n (Pr, d )), so that aspect of the argument has

also needed modification.

4 The Range of Linearizations to be Used

Now we shall define linearizations of the action of SL(W) on J and I , which were defined

in Definitions 3.1 and 3.2. Most of our analysis of GIT semistability is valid for general

curves in I . Accordingly, it makes sense to prove results in this greater generality, so we

shall define linearizations on I and restrict them to J. If L is a linearization of the group

action on I , then J
ss

(L|J ) = J ∩ I ss(L) by ([20], Theorem 1.19).

4.1 The linearizations Lm,m̂,m′ and their hull HM(I)

Let (h, x1, . . . , xn) ∈ I ⊂ Hilb(P(W)× Pr) × (P(W)× Pr)×n. It is natural to start by defining line

bundles on the separate factors, namely Hilb(P(W)× Pr) and n copies of P(W)× Pr, and

then take the tensor product of their pullbacks.

Notation. This notation will be used throughout the following:

Zm,m̂ := H0(P(W)× Pr,OP(W)(m) ⊗ OPr (m̂))

P (m, m̂) := em + dm̂ − g + 1;
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P (m, m̂) is the Hilbert polynomial of a genus g curve C ⊂ P(W)× Pr, of bidegree

(e, d).

We first define our line bundles on Hilb(P(W)× Pr). Let h ∈ Hilb(P(W)× Pr). If m

and m̂ are sufficiently large, then h1(Ch,OP(W)(m) ⊗ OPr (m̂)|Ch ) = 0 and the restriction map

ρ̂C
m,m̂ : H0(P(W)× Pr,OP(W)(m) ⊗ OPr (m̂)) → H0(Ch,OP(W)(m) ⊗ OPr (m̂)|Ch

)

is surjective (cf. Grothendieck’s “Uniform m Lemma,” [11], 1.11). The Hilbert polynomial

P (m, m̂) will be equal to h0(Ch,OP(W)(m) ⊗ OPr (m̂)|Ch ), so that
∧P (m,m̂)

ρ̂C
m,m̂ gives a point of

P

(
P (m,m̂)∧

H0(P(W)× Pr,OP(W)(m) ⊗ OPr (m̂))

)
= P

(
P (m,m̂)∧

Zm,m̂

)
.

By the “Uniform m Lemma” again, for sufficiently large m, m̂, say m, m̂ ≥ m3, the

Hilbert embedding

Ĥm,m̂ : Hilb(P(W)× Pr) → P

(
P (m,m̂)∧

Zm,m̂

)

Ĥm,m̂ : h �→
[

P (m,m̂)∧
ρ̂C

m,m̂

]
(3)

is a closed immersion (see Proposition 4.6).

Definition 4.1. Let the setup be as above, and let m, m̂ ≥ m3. The line bundle Lm,m̂ on

Hilb(P(W)× Pr) is defined to be the pullback of the hyperplane line bundle OP(
∧P (m,m̂) Zm,m̂)(1)

via the Hilbert embedding

Ĥm,m̂ : Hilb(P(W)× Pr) ↪→ P

(
P (m,m̂)∧

Zm,m̂

)
. �

Recall that Mg,n(P0, 0) = Mg,n. Whenever we write “assume m, m̂ ≥ m3,” one

should bear in mind that m̂ may be set to zero in the case r = d = 0.

We identify Lm,m̂ with its pullback to Hilb(P(W)× Pr) × (P(W)× Pr)×n. Now, for

i = 1, . . . , n, let

pi : Hilb(P(W)× Pr) × (P(W)× Pr)×n → P(W)× Pr
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be projection to the ith such factor. Then, for choices m′
1, m̂′

1, . . . , m′
n, m̂′

n ∈ Z, we may

define n line bundles on the product Hilb(P(W)× Pr) × (P(W)× Pr)×n,

p∗
i (OP(W)(m

′
i) ⊗ OPr (m̂′

i)).

The integers m̂′
1, . . . , m̂′

n will in fact turn out to be irrelevant to our following work. We

shall assume that they are all positive, but suppress them in notation to make things

more readable.

Definition 4.2. If m, m̂ ≥ m3 and m′
1, m̂′

1, . . . , m′
n, m̂′

n ≥ 1, then we define the very ample

line bundle on I ,

Lm,m̂,m′
1,...,m′

n
:=
(

Lm,m̂ ⊗
n⊗

i=1

p∗
i (OP(W)(m

′
i) ⊗ OPr (m̂′

i))

) ∣∣∣∣
I

. (4)

If m′
1 = · · · = m′

n = m′, then we write this as Lm,m̂,m′ . �

These line bundles each possess a unique SL(W)-action linearizing the action on

I , which will be described in Section 4.2. Our aim is to show that

J//Lm,m̂,m′ SL(W) ∼= Mg ,n (Pr, d ),

for a suitable range of choices of m, m̂, m′. However, in order to prove that J
ss

(Lm,m̂,m′ ) has

the desired properties, we shall make use of the theory of variation of GIT (summarized

in Section 2.3). It is therefore necessary to prove results, not just for certain Lm,m̂,m′ but

for all virtual linearizations lying within the convex hull of this range in PicSL(W)(I )R or

PicSL(W)(J)R. To make this precise, let M ⊂ N3 be a set such that, for every (m, m̂, m′) ∈ M,

we have m, m̂ ≥ m3 and m′ ≥ 1.

Definition 4.3. We define HM(I ) to be the convex hull in PicSL(W)(I )R of

{Lm,m̂,m′ : (m, m̂, m′) ∈ M}.

We define HM(J) ⊆ PicSL(W)(J)R by taking the convex hull of the restrictions of the line

bundles to J. �
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As each Lm,m̂,m′ possesses a unique lift of the action of SL(W), there is an induced

group action on each l ∈ HM(I ) or HM(J).

4.2 The action of SL(W) for linearizations Lm,m̂,m′

We shall describe the SL(W) action on Lm,m̂,m′ ; recall its definition from line (4) above. The

linearization of the action of SL(W) on the last factors is easy to describe. The action of

SL(W) on OP(W)(1) is induced from the natural action on W (recall that H0(P(W),OP(W)(1)) ∼=
W). The trivial action on Pr lifts to a trivial action on OPr (1). Thus we have an induced

action on each OP(W)(m′
i) ⊗ OPr (m̂′

i), which may be pulled back along pi and restricted to

the invariant subscheme I .

To describe the SL(W) action on Lm,m̂, it is easier to talk about the linear action

on the projective space P(
∧P (m,m̂) Zm,m̂). Indeed, recall our conventions for the numerical

criterion, and our definition of the function µL (x, λ) as given in Section 2.2; what we shall

wish to calculate are the weights of the SL(W) action on the vector space
∧P (m,m̂) Zm,m̂.

These will enable us to verify stability for a point in P(
∧P (m,m̂) Zm,m̂), where SL(W) acts

with the dual action.

Fix a basis w0, . . . , wN for W = H0(P(W),OP(W)(1)) and a basis f0, . . . , fr for

H0(Pr,OPr (1)). The group SL(W) acts canonically on H0(P(W),OP(W)(1)); the action on

H0(Pr,OPr (1)) is trivial.

We describe the SL(W) action on a basis for
∧P (m,m̂) Zm,m̂. Let B̂m,m̂ be a ba-

sis for Zm,m̂
∼= H0(P(W),OP(W)(m)) ⊗ H0(Pr,OPr (m̂)) consisting of monomials of bidegree

(m, m̂), where the degree m part is a monomial in w0, . . . , wN and the degree m̂ part is

a monomial in f0, . . . , fr. Then if M̂i ∈ B̂m,m̂ is given by w
γ0
0 · · · wγN

N f�0
0 · · · f�r

r , we define

g.M̂i := (g.w0)γ0 · · · (g.wN )γN f�0
0 · · · f�r

r .

A basis for
∧P (m,m̂) Zm,m̂ is given by

P (m,m̂)∧
B̂m,m̂ := {M̂i1 ∧ · · · ∧ M̂iP (m,m̂)

∣∣1 ≤ i1 < · · · < iP (m,m̂) ≤ dim Zm,m̂, M̂ij ∈ B̂m,m̂
}
. (5)

The SL(W) action on this basis is given by

g.
(
M̂i1 ∧ · · · ∧ M̂iP (m,m̂)

) = (g.M̂i1

) ∧ · · · ∧ (g.M̂iP (m,m̂)

)
.

Terminology. We have defined virtual linearizations of the SL(W) action on the scheme

I . We may abuse notation, and say that (C , x1, . . . , xn) ⊂ P(W)× Pr is semistable with
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respect to a virtual linearization l to mean that (h, x1, . . . , xn) ∈ I ss(l), where (C , x1, . . . , xn) =
(Ch, x1, . . . , xn).

4.3 The numerical criterion for Lm,m̂,m′

Let λ′ be a 1-PS of SL(W). We wish to state the Hilbert–Mumford numerical criterion for

our situation. In fact, if we are careful in our analysis then we need only prove results

about the semistability of points with respect to linearizations of the form Lm,m̂,m′ , as

the following key lemma shows.

Lemma 4.4. Fix (h, x1, . . . , xn) ∈ I . Let M be a range of values for (m, m̂, m′). Suppose that

there exists a one-parameter subgroup λ′ of SL(W), such that

µLm,m̂,m′ ((h, x1, . . . , xn), λ′) > 0

for all (m, m̂, m′) ∈ M. Then x is unstable with respect to l for all l ∈ HM(I ). �

Proof. Let l ∈ HM(I ). Then l is a finite combination,

l = Lα1

m1,m̂1,m′
1
⊗ · · · ⊗ Lαk

mk ,m̂k ,m′
k
,

where α1, . . . , αk ∈ R≥0 satisfy
∑

αi = 1, and where (mi, m̂i, m′
i) ∈ M for i = 1, . . . , k. We

know that µ
Lmi ,m̂i ,m′

i ((h, x1, . . . , xn), λ′) > 0 for i = 1, . . . , k. The map l ′ �→ µl ′ (x, λ′) is a group

homomorphism PicG (I )R → R, where R has its additive structure, so it follows that

µl ((h, x1, . . . , xn), λ′) > 0. Hence Ml (h, x1, . . . , xn) > 0, and so (h, x1, . . . , xn) is unstable with

respect to l. �

Note the necessity of the condition that the destabilizing 1-PS λ′ be the same for

all Lm,m̂,m′ such that (m, m̂, m′) ∈ M.

Recall the definition of Lm,m̂,m′ given in line (4). From this and the functorial

nature of µ•((C , x1, . . . , xn), λ), we see

µLm,m̂,m′ ((C , x1, . . . , xn), λ) = µLm,m̂ (C , λ) +
n∑

i=1

µOP(W)(1)(xi, λ)m′
i. (6)
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Let us start, then, with w0, . . . , wN , a basis of W = H0(P(W),OP(W)(1)) diagonalizing the

action of λ′. There exist integers r0, . . . , rN such that λ′(t )wi = tri wi for all t ∈ k∗ and

0 ≤ i ≤ N.

In the first place, following the conventions set up in Section 2.2,

µOP(W) (1)(xi, λ
′) = min{rj|w j(xi) 	= 0}.

We calculate µLm,m̂ (C , λ). Referring to the notation of the previous subsection, if M̂ :=
w

γ0
0 · · · wγN

N f�0
0 · · · f�r

r , then

λ′(t )M̂ = t
∑

γprp M̂.

Accordingly, we define the λ′-weight of the monomial M̂ to be

wλ′ (M̂) =
N∑

p=0

γprp.

Let
∧P (m,m̂) B̂m,m̂ be the basis for

∧P (m,m̂) Zm,m̂ given in line (5). Then the λ′ action on this

basis is given by

λ′(t )
(
M̂i1 ∧ · · · ∧ M̂iP (m,m̂)

) = tθ
(
M̂i1 ∧ · · · ∧ M̂iP (m,m̂)

)
,

where θ :=∑P (m,m̂)
j=1 wλ′

(
M̂ij

)
. If we write Ĥm,m̂(h) in the basis which is dual to

∧P (m,m̂) B̂m,m̂,

Ĥm,m̂(h) =
⎡
⎣ ∑

1≤ j1<···< jP (m,m̂)

ρ̂C
m,m̂

(
M̂j1 ∧ · · · ∧ M̂jP (m,m̂)

) · (M̂j1 ∧ · · · ∧ M̂jP (m,m̂)

)∨⎤⎦ ,

so we may calculate

µLm,m̂ (C , λ′) = min

⎧⎨
⎩

P (m,m̂)∑
j=1

wλ′
(
M̂ij

)⎫⎬⎭ ,

where the minimum is taken over all sequences 1 ≤ i j < · · · < iP (m,m̂) such that

ρ̂C
m,m̂(M̂i1 ∧ · · · ∧ M̂iP (m,m̂) ) 	= 0. However, the latter is true precisely when the set

{ρ̂C
m,m̂(M̂i1 ), . . . , ρ̂C

m,m̂(M̂iP (m,m̂) )} is a basis for H0(C ,OP(W)(m) ⊗ OPr (m̂)|C ).
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Putting this together in equation (6), we may state the numerical criterion:

(h, x1, . . . , xn) is semistable with respect to Lm,m̂,m′ if and only if µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≤
0 for all 1-PS λ′, where

µLm,m̂,m′ ((h, x1, . . . , xn), λ′) = min

⎧⎨
⎩

P (m,m̂)∑
j=1

wλ′
(
M̂ij

)+
n∑

l=1

rkl m
′

⎫⎬
⎭ ,

and the minimum is taken over all sequences 1 ≤ i1 < · · · < iP (m,m̂) such that

{ρ̂C
m,m̂(M̂i1 ), . . . , ρ̂C

m,m̂(M̂iP (m,m̂) )} is a basis for H0(C ,OP(W)(m) ⊗ OPr (m̂)|C ), and all basis ele-

ments wkl such that wkl (xl ) 	= 0.

In our applications, we will often “naturally” write down torus actions on W

which highlight the geometric pathologies we wish to exclude from our quotient space.

These will usually be one-parameter subgroups of GL(W) rather than SL(W), as then

they may be defined to act trivially on most of the space, which makes it easier to

calculate their weights. We may translate these by using “GL(W) version” of the numerical

criterion, derived as follows.

Given a 1-PS λ of GL(W), we define our “associated 1-PS λ′ of SL(W).” There is

a basis w0, . . . , wN of H0(P(W),OP(W)(1)), so that the action of λ is given by λ(t )wi = tri wi

where ri ∈ Z (the sum
∑N

p=0 rp is not necessarily zero). We obtain a 1-PS λ′ of SL(W) by

the rule λ′(t )wi = tr′
i wi, where

r′
i = (N + 1)ri −

N∑
p=0

rp.

Note that now
∑N

p=0 r′
p = 0.

We use this relationship to convert our numerical criterion for the λ′-action into

one for the λ action. We define the total λ-weight of a monomial in analogy with that

defined for a 1-PS of SL(W). Let λ′ be the 1-PS of SL(W) arising from the 1-PS λ of GL(W).

Then the numerical criterion may be expressed as follows.

Lemma 4.5 (cf. [9], p. 10). Let (h, x1, . . . , xn) ∈ I , let λ be a 1-PS of GL(W), and let λ′ be

the associated 1-PS of SL(W). There exist monomials M̂i1 , . . . , M̂iP (m,m̂) in B̂m,m̂ such that

{ρ̂Ch
m,m̂(M̂i1 ), . . . , ρ̂Ch

m,m̂(M̂iP (m,m̂) )} is a basis of H0(Ch,OP(W)(m) ⊗ OPr (m̂)|Ch ), and there exist basis
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elements wk1 , . . . wkn for the SL(W) action such that wkl (xl ) 	= 0, with

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) =
P (m,m̂)∑

j=1

wλ′
(
M̂ij

)+
n∑

l=1

r′
kl

m′ (7)

=
⎛
⎝P (m,m̂)∑

j=1

wλ

(
M̂ij

)+
n∑

l=0

wλ(wkl )m
′

⎞
⎠ (e − g + 1)

− (mP (m, m̂) + nm′)
N∑

p=0

wλ(wp); (8)

moreover, this choice of monomials minimizes the left-hand side of equation (8). �

In the course of the construction, we progressively place constraints on the set

M. In particular, for (m, m̂, m′) ∈ M, we shall be concerned with the values of the ratios
m̂
m and m′

m2 . It may appear surprising at first that m′ varies with m2 and not with m.

Note, however, that both terms on the right-hand side of equation (8) have terms of order

mP (m, m̂) = em2 + dmm̂ − (g − 1)m and terms of order m′, so in fact it is quite natural

that m′ is proportional to m2.

4.4 Fundamental constants and notation

We shall now fix some notation for the whole of this paper. The morphisms pW :

P(W)× Pr → P(W) and pr : P(W)× Pr → Pr are projection onto the first and second fac-

tors, respectively. Let C
ι→ P(W)× Pr be the inclusion. We define

LW := ι∗ p∗
WOP(W)(1),

Lr := ι∗ p∗
rOPr (1).

The following well-known facts are analogous to those given by Gieseker.

Proposition 4.6 (cf. [9], p. 25). Let C ⊂ P(W)× Pr have genus g and bidegree (e, d).

There exist positive integers m1, m2, m3, q1, q2, q3, µ1, and µ2 satisfying the following

properties.

(i) For all m, m̂ > m1, H1(C , Lm
W) = H1(C , Lm̂

r ) = H1(C , Lm
W ⊗ Lm̂

r ) = 0. Also

H1(C̄ , L̄m
W) = H1(C̄ , L̄m̂

r ) = H1(C̄ , L̄m
W ⊗ L̄m̂

r ) = 0 and the three restriction maps
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H0(P(W),OP(W)(m)) → H0(pW(C ),OpW (C )(m)
)
,

H0(Pr,OPr (m̂)) → H0(pr(C ),Opr (C )(m̂)
)
,

H0(P(W)× Pr,OP(W)(m) ⊗ OPr (m̂)) → H0(C , Lm
W ⊗ Lm̂

r

)

are surjective.

(ii) Iq1
C = 0, where IC is the sheaf of nilpotents in OC .

(iii) h0(C , IC ) ≤ q2.

(iv) For every complete subcurve C̃ of C , h0(C̃ ,OC̃ ) ≤ q3 and q3 ≥ q1.

(v) µ1 > µ2 and for every point P ∈ C and for all integers x ≥ 0,

dim
OC ,P

mx
C ,P

≤ µ1x + µ2,

where OC ,P is the local ring of C at P and mC ,P is the maximal ideal of OC ,P .

(vi) For every subcurve C̃ of C , for every point P ∈ C , and for all integers i such

that m2 ≤ i < m, the cohomology H1(C̃ , Im−i
P ⊗ Lm

WC̃
⊗ Lm̂

rC̃
) = 0, where IP is

the ideal subsheaf of OC̃ defining P .

(vii) For all integers m, m̂ ≥ m3, the map

h �→ Ĥm,m̂(h)

Hilb(P(W)× Pr) → P

(
P (m,m̂)∧

H0(P(W)× Pr,OP(W)(m) ⊗ OPr (m̂))

)

is a closed immersion. �

In addition, we define a constant not used by Gieseker.

ḡ := min{0, gȲ | Ȳ is the normalization of a complete subcurve Y contained

in a connected fiber Ch for some h ∈ Hilb(P(W)× Pr)}.

Y need not be a proper subcurve. The maximum number of irreducible components of

Y is e + d, as each must have positive degree. Hence a lower bound for ḡ is given by

−(e + d) + 1. One would expect ḡ to be negative for most (g, n, d), but we have stipulated

in particular that ḡ ≤ 0 as this will be convenient in our calculations.
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5 GIT Semistable Maps Represented in J are Moduli Stable

We now embark on our proof that J//SL(W) is isomorphic to Mg ,n (Pr, d ). Recall Propo-

sition 3.5; our first goal is to show that J
ss ⊆ J. We achieve this in this section. In

Sections 5.2 to 5.5 we work with the locus of semistable points in I . Over the course of

results 5.3–5.19, we find a range M of values for (m, m̂, m′), such that if (C , x1, . . . , xn) ⊂
P(W)× Pr is semistable with respect to l ∈ HM(I ), then (C , x1, . . . , xn) must be close to being

a moduli stable map; this “potential stability” is defined formally in Definition 5.20.

For this section, it is only necessary to work over a field; if we prove that equality

J
ss

(L) = J
s
(L) = J holds over any field k, then equality over Z follows (see the proof of

Theorem 6.3, given at the end of Section 6.3).

In Section 5.6 we finally restrict attention to J, and greatly refine the range M.

Now the results of Sections 5.2–5.5, together with an application of the valuative criterion

of properness, show us that if l ∈ HM(J) then J
ss

(l) ⊆ J, as required.

5.1 General strategy for this section

The strategy for proving many of the results in this section is similar, so we outline it

here in detail and refer back to this subsection as needed.

The proofs will be by contradiction. We will suppose that (C , x1, . . . , xn) ⊂ P(W)×
Pr is connected and SL(W)-semistable with respect to a given virtual linearization l, and

also that C has some “undesirable” geometric property. We will then exhibit a 1-PS λ of

GL(W) which we claim is destabilizing. The 1-PS will all have a special form: they will

give rise to a two- or three-stage weighted filtration 0 ⊂ W0 ⊂ W1 ⊆ W2 := H0(pW(C ), LW).

(Recall that LW denotes ι∗ p∗
WOP(W)(1) and Lr denotes ι∗ p∗

rOPr (1).) We may choose a basis

w0, . . . , wN diagonalizing the λ action and adapted to this filtration. Let Nj := dim Wj, and

let rj be the weight of the basis elements corresponding to the stage Wj. That is, λ acts

as follows:

λ(t )wi = tr0wi, t ∈ C∗, 0 ≤ i ≤ N0 − 1

λ(t )wi = tr1wi, t ∈ C∗, N0 ≤ i ≤ N1 − 1

λ(t )wi = tr2wi, t ∈ C∗, N1 ≤ i ≤ N2 − 1.

For our purposes, to specify the λ action, it is enough to specify W0 and W1, and the

weights r0, r1, r2.

We shall find a lower bound for µLm,m̂,m′ ((C , x1, . . . , xn), λ′) by filtering the vec-

tor space H0(C , Lm
W ⊗ Lm̂

r ) according to the weight with which λ acts. The filtration is
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constructed in the same way every time; we describe it now. Assume r0 ≥ 0 (this will

be the case in all our applications). Let R be a positive integer such that
∑N

i=0 ri ≤ R.

For 0 ≤ p ≤ m, let �m,m̂
p be the subspace of H0(P(W)× Pr,OP(W)(m) ⊗ OPr (m̂)) spanned by

monomials of weight less than or equal to p. Let

�p := ρ̂C
m,m̂

(
�p
) ⊂ H0(C , Lm

W ⊗ Lm̂
r

)
.

We have a filtration of H0(C , Lm
W ⊗ Lm̂

r ) in order of increasing weight,

0 ⊆ �
m,m̂
0 ⊆ �

m,m̂
1 ⊆ · · · ⊆ �

m,m̂
m = H0(C , Lm

W ⊗ Lm̂
r

)
. (9)

Write β̂p = dim �
m,m̂
p .

We will get bounds on β̂p which depend on the problem at hand. However, these

bounds will always have the same format (described below). The next lemma shows how

to estimate the minimal weight µLm,m̂,m′ ((C , x1, . . . , xn), λ′) given these bounds on β̂p.

Lemma 5.1. In the setup described above, suppose that

β̂p ≤ (e − α)m + (d − β)m̂ + γ p+ εp,

where α, β, γ , εp are constants. Set

ε := 1

m

rNm−1∑
p=0

εp.

Suppose

n∑
j=1

wλ(wi j )m
′ = δm′,

where wi1 , . . . , win are the basis elements of minimal weight satisfying wi j (xj) 	= 0. Then

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
((

rNα − r2
N

γ

2

)
(e − g + 1) − Re

)
m2

+ (rNβ(e − g + 1) − Rd)mm̂ + (δ(e − g + 1) − Rn)m′

−
((

rN (g − 1) − rNγ

2
+ ε

)
(e − g + 1) + R

)
m. (10)

�
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Proof. Suppose we have any monomials M̂i1 , . . . , M̂iP (m,m̂) in B̂m,m̂ such that the set

{ρ̂C
m,m̂(M̂i1 ), . . . , ρ̂C

m,m̂(M̂iP (m,m̂) )} is a basis of H0(C , Lm
W ⊗ Lm̂

r ). As our filtration is in order

of increasing weight, a lower bound for
∑P (m,m̂)

j=1 wλ(M̂ij ) is
∑rNm

p=1 p(β̂p − β̂p−1). We calculate

rNm∑
p=1

p(β̂p − β̂p−1) = rNmβ̂rNm −
rNm−1∑

p=0

β̂p

≥ rNm(em + dm̂ − g + 1) −
rNm−1∑

p=0

((e − α)m + (d − β)m̂ + γ p+ εp)

=
(

rNα − r2
Nγ

2

)
m2 + rNβmm̂ −

(
rN (g − 1) − rNγ

2
+ ε

)
m,

where ε := 1
m

∑rNm−1
p=0 εp. Let λ′ be the associated 1-PS of SL(W). Thus, using Lemma 4.5,

we calculate

µLm,m̂,m′ ((C , x1, . . . , xn), λ′)

≥
((

rNα − r2
N

γ

2

)
m2 + rNβmm̂ −

(
rN (g − 1) − rNγ

2
+ ε

)
m + δm′

)
(e − g + 1)

− (m(em + dm̂ − g + 1) + nm′)
N∑

i=0

ri

=
((

rNα − r2
N

γ

2

)
(e − g + 1) − Re

)
m2 + (rNβ(e − g + 1) − Rd)mm̂

+ (δ(e − g + 1) − Rn)m′ −
((

rN (g − 1) − rNγ

2
+ ε

)
(e − g + 1) + R

)
m,

where we have used the bounds 0 ≤∑N
i=0 ri ≤ R to estimate appropriately, according to

the sign of each term. �

Remark. In general, we shall assume that m is very large, that m̂ is proportional to m,

and that m′ is proportional to m2.

The following claim is also one which we will refer to frequently in Section 5,

and hence we have included it in this reference subsection.

If C is a general curve, we have an inclusion i : C red ↪→ C . The reduced curve C red

has normalization π ′ : C̄ red → C red. Following Gieseker in [9], p. 22, we define the normal-

ization π : C̄ → C by letting C̄ := C̄ red and π := i ◦ π ′. Then, whatever the properties of C ,

the curve C̄ is smooth and integral (though possibly disconnected). With these conven-

tions, we may show the following.
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Claim 5.2 (cf. [9], p. 52).

(1) Let C be a generically reduced curve over k; we do not assume it has genus

g. Let π : C̄ → C be the normalization morphism, and let IC be the sheaf of

nilpotents. Suppose that C ⊂ P(W)× Pr. Define LW C and Lr C as in Section 4.4,

and let L̄W C̄ := π∗LW C and L̄r C̄ := π∗Lr C . Let

πm,m̂∗ : H0(C , Lm
W C ⊗ Lm̂

r C

)→ H0(C̄ , L̄m
W C̄ ⊗ L̄m̂

r C̄

)
(11)

be the induced morphism. Then

dim ker πm,m̂∗ = h0(C , IC ).

(2) Suppose that C is a reduced curve. Let D be an effective divisor on C , and let

M be an invertible sheaf on C such that H1(C , M) = 0. Then h1(C , M(−D)) ≤
deg D.

(3) Suppose that C is an integral and smooth curve with genus gC . Let M be an

invertible sheaf on C with deg M ≥ 2gC − 1. Then H1(C , M) = 0. �

5.2 First properties of GIT semistable maps

Proposition 5.3 (cf. [9], 1.0.2). Let M consist of integer triples (m, m̂, m′) such that m, m̂ >

m3 and m′ ≥ 1 with m > (q1 − 1)(e − g + 1). Let l ∈ HM(I ). Suppose that (C , x1, . . . , xn) ⊂
P(W)× Pr is connected and SL(W)-semistable with respect to l. Then pW(C ) is a nonde-

generate curve in P(W), i.e. pW(C ) is not contained in any hyperplane in P(W). �

Proof. It is enough to prove that the composition

H0(P(W),OP(W)(1)) → H0(pW(C )red,OpW (C )red (1)
)→ H0(C red, LWred)

is injective. So suppose that it has nontrivial kernel W0. Let λ be the 1-PS of GL(W) which

acts with weight 0 on W0 and with weight 1 on W1 = W2, and let λ′ be the associated 1-PS

of SL(W).

We wish to show that (C , x1, . . . , xn) is unstable with respect to any l ∈ HM(I ). For

this proof we do not follow all parts of the strategy outlined in Section 5.1, as a simpler
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proof is available. By Lemma 4.4, it is sufficient to show that µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0

for all (m, m̂, m′) ∈ M, so pick (m, m̂, m′) ∈ M.

Let B̂m,m̂ be a basis of H0(P(W)× Pr,OP(W)(m) ⊗ OPr (m̂)) consisting of monomials

of bidegree (m, m̂). Then the first part of the conclusion of Lemma 4.5 is that there exist

monomials M̂i1 , . . . , M̂iP (m,m̂) in B̂m,m̂ such that {ρ̂C
m,m̂(M̂i1 ), . . . , ρ̂C

m,m̂(M̂iP (m,m̂) )} is a basis of

H0(C , Lm
W ⊗ Lm̂

r ). For each of the M̂ij , write M̂ij = w
γ0
0 · · ·wγN

N f�0
0 · · · f�r

r .

Recall that, if IC denotes the ideal sheaf of nilpotent elements of OC , then the

integer q1 satisfies Iq1
C = 0. Now suppose that

∑N0−1
i=0 γi ≥ q1. It follows that ρ̂C

m,m̂(M̂ij ) = 0,

and so cannot be in a basis for H0(C , Lm
W ⊗ Lm̂

r ). Thus
∑N0−1

i=0 γi ≤ q1 − 1. The 1-PS λ acts

with weight 1 on the factors wN0 , . . . , wN , and so

wλ

(
M̂ij

) ≥ m − q1 + 1.

Our basis consists of P (m, m̂) such monomials, M̂i1 , . . . , M̂iP (m,m̂) , so we can estimate their

total weight as

P (m,m̂)∑
j=1

wλ

(
M̂ij

) ≥ P (m, m̂)(m − q1 + 1).

We assumed that the n marked points lie on the curve. Hence if wkl (xl ) 	= 0, then

wλ(wkl ) must be equal to 1, so
∑n

l=1 wλ(wkl )m
′ = nm′. Finally,

N∑
i=0

wλ(wi) = dim W1 − dim W0 = e − g + 1 − dim W0 ≤ e − g,

because dim W0 ≥ 1.

Combining these estimates with Lemma 4.5, we obtain

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥ (P (m, m̂)(m − q1 + 1) + nm′)(e− g+ 1) − (mP (m, m̂) + nm′)(e− g)

≥ P (m, m̂)(m − (q1 − 1)(e− g+ 1)).

However, P (m, m̂) is positive and by hypothesis m > (q1 − 1)(e − g + 1); thus

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0. Recall that λ′ did not depend on the choice of (m, m̂, m′) ∈ M.

So µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0 for all (m, m̂, m′) ∈ M. Thus by Lemma 4.4, the curve

(C , x1, . . . , xn) is not semistable with respect to any l ∈ HM(I ). �
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Next, we would like to show that no components of a GIT semistable curve

collapse under the projection pW. We must refine the choice of virtual linearization to

obtain this result; the proof is spread over Propositions 5.4–5.8.

Let Ci be an irreducible component of C . If the morphism pW|Ci does not collapse

Ci to a point, then it is finite. We shall find a range M ⊂ N3, such that if (C , x1, . . . , xn) ∈ I ss(l)

with l ∈ HM(I ), and if the morphism pW|Ci does not collapse Ci to a point, then pW|Ci red is

generically 1-1, and Ci is generically reduced.

We use the following notation. Write C = C ′ ∪ Y, where C ′ is the union of all

irreducible components of C which collapse under pW and Y = C − C ′ is the union of all

those that do not.

Let pW(C )i be the irreducible components of pW(C ), for i = 1, . . . , �. We use these

to label the components of C ′ and Y.

(1) Let C ′
1,1, . . . , C ′

1, j′
1
, up to C ′

�,1, . . . , C ′
�, j′

�
, be the irreducible components of C ′,

labeled so that pW(C ′
i, j′ ) ∈ pW(C )i. If there is a tie (that is, the projection of

a component of C ′ is a point lying on more than one component of pW(C )),

index it by the smallest i.

(2) Let Y1,1, . . . , Y1, j1 , up to Y�,1, . . . , Y�, j� , be the irreducible components of Y so

that pW(Yi, j) = pW(C )i. Without loss of generality, we may assume that these

are ordered in such a way that, if we set

bi, j := deg pW|Yi, j red,

then bi, j ≥ bi, j+1.

Define

eW := degpW(C )red
OP(W)(1) eW i := degpW(C )i red

OP(W)(1).

Since pW(C ) ⊂ P(W), we have eW i ≥ 1 for i = 1, . . . , �.

By definition, the degree of LW on the components C ′
i, j′ is zero, so we define

ei, j := degYi, j red
LW

di, j := degYi, j red
Lr d ′

i, j′ := degC ′
i, j′ red

Lr.

Finally, let ξi, j be the generic point of Yi, j and ξi be the generic point of pW(C )i. Write

ki, j := length OYi, j ,ξi, j ki := length OpW (C )i ,ξi .
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Then

e =
∑

ki, jei, j, ei, j = bi, jeW i, eW =
∑

kieW i.

Proposition 5.4 ([9], 1.0.3). Let M consist of (m, m̂, m′) such that m, m̂ > m3 and

m >
(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)

(e − g + 1)

with

d
m̂

m
+ n

m′

m2
<

1

4
e − 5

4
g + 3

4
.

Let l ∈ HM(I ). Suppose that (C , x1, . . . , xn) is connected and semistable with respect to l.

Then, in the notation explained above, the morphism pW|Y red is generically 1-1, that is,

bi, j = 1 and ji = 1 for all i = 1, . . . , �. Furthermore, Y is generically reduced, i.e. ki, j = 1

for all i = 1, . . . , � and j = 1, . . . , ji. �

Remark. Since e ≥ ag and a ≥ 5, it follows that e − 5g + 3 > 0, which means that the

condition on d m̂
m + n m′

m2 may be satisfied.

Proof. Suppose not. Then we may assume that at least one of the following is true:

j1 ≥ 2; or b1,1 ≥ 2; or, for some 1 ≤ j ≤ j1, we have k1, j ≥ 2. The first condition implies

that two irreducible components of Y map to the same irreducible component of pW(C ).

The second condition implies that a component of Y is a degree b1,1 ≥ 2 cover of its image.

The third condition implies that the subcurve Y is not generically reduced.

Let W0 be the kernel of the restriction map

H0(P(W),OP(W)(1)) → H0(pW(C )1 red,OpW (C )1 red (1)
)
.

Step 1. We claim that W0 	= 0. To see this, suppose W0 = 0. Let D1 be a divisor on pW(C )1 red

corresponding to the invertible sheaf OpW (C )1 red (1) and having support in the smooth locus

of pW(C )1red. We have an exact sequence

0 → OpW(C )1 red → OpW (C )1 red (1) → OD1 → 0.
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Then the long exact sequence in cohomology implies that

h0(pW(C )1 red,OpW (C )1 red (1)
) ≤ h0(pW(C )1 red,OD1

)+ h0(pW(C )1 red,OpW (C )1 red

)
.

Note that h0(pW(C )1 red,OpW (C )1 red ) = 1, and

h0(pW(C )1 red,OD1

) ≤ deg D1 = degOpW (C )1 red (1) = eW 1.

If W0 = 0, then

e − g + 1 = h0(P(W),OP(W)(1)) ≤ h0(pW(C )1 red,OpW (C )1 red (1)
) ≤ eW 1 + 1

⇒ e − g ≤ eW 1 = e1,1

b1,1
. (12)

We show that this statement leads to a contradiction. First suppose that b1,1 ≥ 2 or

k1,1 ≥ 2. Now we rearrange equation (12) to find

k1,1b1,1(e − g) ≤ k1,1e1,1 = e −
∑

(i, j)	=(1,1)

ki, jei, j ≤ e

⇒ (k1,1b1,1 − 1)e ≤ k1,1b1,1g.

But our assumptions imply that k1,1b1,1−1
k1,1b1,1

≥ 1
2 and we obtain e

2 ≤ g, a contradiction. On the

other hand, suppose that b1,1 = k1,1 = 1 but j1 ≥ 2. Then

eW 1 = k1,1b1,1eW 1 = e −
∑

(i, j)	=(1,1)

ki, jbi, jeW i ≤ e − k1,2b1,2eW 1 ≤ e − eW 1,

i.e. eW 1 ≤ 1
2 e. Combining this with equation (12), we again obtain the contradiction e

2 ≤ g.

Step 2. By Step 1 we have that W0 	= 0, and in particular that eW 1 < (e − g), as

it is line (12) which leads to the contradiction. Following the strategy prescribed in

Section 5.1, let λ be the 1-PS of GL(W) whose weight on W0 is 0, and whose weight on

W1 = W2 is 1. Let �
m,m̂
p and β̂p be as defined in Section 5.1.

Pick (m, m̂, m′) ∈ M and suppose µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≤ 0. We shall show that

this leads to a contradiction.

Let B be the inverse image of pW(C )1 under pW, i.e. B =⋃ j′
1
j′=1 C ′

1, j′ ∪⋃ j1
j=1 Y1, j. Let

C̃ be the closure of C − B in C . Since C is connected, there is at least one closed point in
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B ∩ C̃ . Choose one such point P . Let

ρ̂
C̃ ,C
m,m̂ : H0(C , Lm

W ⊗ Lm̂
r

)→ H0(C̃ , Lm
W C̃ ⊗ Lm̂

r C̃

)

be the map induced by restriction.

The following claim is analogous to one of Gieseker and may be proved using a

similar argument.

Claim 5.5 (cf. [9], p. 43). C̃ = C − B can be given the structure of a closed subscheme of

C such that for all 0 ≤ p ≤ m − q1,

�
m,m̂
p ∩ ker

{
ρ̂

C̃ ,C
m,m̂ : H0(C , Lm

W ⊗ Lm̂
r

)→ H0(C̃ , Lm
WC̃ ⊗ Lm̂

rC̃

)} = 0.

�

Let IP be the ideal subsheaf of OC̃ defining the closed point P . We have an exact

sequence

0 → Im−p
P ⊗ Lm

W C̃ ⊗ Lm̂
r C̃ → Lm

W C̃ ⊗ Lm̂
r C̃ → OC̃

/
Im−p

P ⊗ Lm
W C̃ ⊗ Lm̂

r C̃ → 0.

In cohomology, this induces

0 → H0(C̃ , Im−p
P ⊗ Lm

W C̃ ⊗ Lm̂
r C̃

)→ H0(C̃ , Lm
W C̃ ⊗ Lm̂

r C̃

)
→ H0(C̃ ,OC̃ /Im−p

P ⊗ Lm
W C̃ ⊗ Lm̂

r C̃

)→ H1(C̃ , Im−p
P ⊗ Lm

W C̃ ⊗ Lm̂
r C̃

)→ 0. (13)

The following facts are analogous to those stated by Gieseker in ([9], p. 44.)

(1) h0(C̃ , Lm
W C̃ ⊗ Lm̂

r C̃

) = χ
(
Lm

W C̃ ⊗ Lm̂
r C̃

) = degC̃ Lm
W C̃ ⊗ Lm̂

r C̃ + χ (OC̃ )

≤ (e −∑ k1, je1, j
)
m + (d −∑k1, jd1, j −∑k1, j′d ′

1, j′
)
m̂ + q3.

(2) Since OC̃ /Im−p
P ⊗ Lm

W C̃
⊗ Lm̂

r C̃
has support only at the point P ∈ C̃ , we make

the estimate h0(C̃ ,OC̃ /Im−p
P ⊗ Lm

W C̃
⊗ Lm̂

r C̃
) ≥ m − p.

(3) For 0 ≤ p ≤ m2 − 1, Proposition 4.6 says that h0(C̃ ,OC̃ /Im−p
P ⊗ Lm

W C̃
⊗ Lm̂

r C̃
) ≤

µ1(m − p) + µ2, and so it follows that from the long exact sequence in coho-

mology, h1(C̃ , Im−p
P ⊗ Lm

W C̃
⊗ Lm̂

r C̃
) ≤ µ1(m − p) + µ2.

(4) For m2 ≤ p < m, we have h1(C̃ , Im−p
P ⊗ Lm

W C̃
⊗ Lm̂

r C̃
) = 0 (cf. Proposition 4.6).

(5) ρ̂
C̃ ,C
m,m̂

(
�

m,m̂
p

) ⊂ H0
(
C̃ , Im−p

P ⊗ Lm
W C̃

⊗ Lm̂
r C̃

) ⊂ H0
(
C̃ , Lm

W C̃
⊗ Lm̂

r C̃

)
.
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If p > m − q1, we may make no useful estimate, but if 0 ≤ p ≤ m − q1 then by

Claim 5.5 and fact (5), we have

β̂p = dim �
m,m̂
p ≤ h0(C̃ , Im−p

P ⊗ Lm
W C̃ ⊗ Lm̂

r C̃

)
.

Now the exact sequence (13) tells us

h0(C̃ , Im−p
P ⊗ Lm

W C̃ ⊗ Lm̂
r C̃

) = h0(C̃ , Lm
W C̃ ⊗ Lm̂

r C̃

)− h0(C̃ ,OC̃ /Im−p
P ⊗ Lm

W C̃ ⊗ Lm̂
r C̃

)
+ h1(C̃ , Im−p

P ⊗ Lm
W C̃ ⊗ Lm̂

r C̃

)
.

Thus, using the facts above, we obtain the following estimate:

β̂p ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
e −∑k1, je1, j

)
m + (d −∑k1, jd1, j −∑k1, j′d ′

1, j′
)
m̂

+ q3 + p− m + µ1(m − p) + µ2 if 0 ≤ p ≤ m2 − 1(
e −∑k1, je1, j

)
m + (d −∑k1, jd1, j −∑k1, j′d ′

1, j′
)
m̂

+ q3 + p− m if m2 ≤ p ≤ m − q1

em + dm̂ − g + 1 if m − q1 + 1 ≤ p ≤ m.

(14)

Step 3. We wish to estimate
∑P (m,m̂)

j=1 wλ(M̂ij ). Unfortunately, we cannot apply

Lemma 5.1 as the estimates in equation (14) do not quite fit the setup there. Instead,

we proceed as follows:
∑P (m,m̂)

j=1 wλ(M̂ij ) is greater than or equal to
∑m

p=1 p(β̂p − β̂p−1), and

one may easily calculate

m∑
p=1

p(β̂p − β̂p−1) = mβ̂m −
m−1∑
p=0

β̂p ≥
(∑

k1, je1, j + 1

2

)
m2 − S1m + c2, (15)

where

S1 = g − 3

2
+
∑

k1, je1, j(q1 + 1) + q3 + µ1m2

c2 = (q1 − 1)
(

g + q3 − q1

2
− 1
)

− µ2m2 + µ1
m2(m2 − 1)

2
.

The inequality (15) follows because the term (
∑

k1, jd1, j +∑ k1, j′d1, j′ )m̂(m − q1 + 1) is pos-

itive, since the hypotheses imply that m > q1. Finally, we may estimate c2 ≥ 0, since
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q3 > q1 and µ1 > µ2 (see Proposition 4.6), yielding

P (m,m̂)∑
j=1

wλ

(
M̂ij

) ≥
(∑

k1, je1, j + 1

2

)
m2 − S1m. (16)

Step 4. We estimate the weight coming from the marked points. We know noth-

ing about which components each marked point lies on, so we can simply state that∑n
l=1 wλ(wkl )m

′ ≥ 0. Finally, we estimate the sum of the weights

N∑
i=0

wλ(wi) = dim W1 − dim W0 ≤ h0(pW(C1,1)red,OpW (C1,1)red (1)
)

≤ degOpW (C1,1) red(1) + 1 ≤ eW 1 + 1. (17)

Step 5. We combine inequalities (16) and (17) with Lemma 4.5 to obtain a contra-

diction as follows:

((∑
k1, je1, j + 1

2

)
m2 − S1m

)
(e − g + 1) − (mP (m, m̂) − nm′)(eW 1 + 1)

≤ µLm,m̂,m′ ((C , x1, . . . , xn), λ′)

≤ 0

=⇒
(∑

k1, je1, j + 1

2

)
(e − g + 1)m2 −

(
e + 1

m

)
(eW 1 + 1)m2 − S1(e − g + 1)m

≤ (eW 1 + 1)
(

d
m̂

m
+ n

m′

m2

)
m2.

We showed that eW 1 < e − g, and by hypothesis m > (g − 1
2 + e(q1 + 1) + q3 + µ1m2)(e −

g + 1) ≥ (S1 + 1)(e − g + 1), so we may estimate

(∑
k1, je1, j + 1

2

)
(e − g + 1) − e(eW 1 + 1) − 1

(eW 1 + 1)
≤ d

m̂

m
+ n

m′

m2
. (18)

Note that since b1,1 ≥ 2 or k1,1 ≥ 2 or j1 ≥ 2, we have
∑

k1, jb1, j ≥ 2. Thus

(
eW 1

∑
k1, jb1, j + 1

2

)
(e − g + 1) − e(eW 1 + 1) − 1 > 0.
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Furthermore, the quantity

(
eW 1

∑
k1, jb1, j + 1

2

)
(e − g + 1) − e(eW 1 + 1) − 1

(eW 1 + 1)

is minimized when eW 1 takes its smallest value, that is, when eW 1 = 1. So

(
eW 1

∑
k1, jb1, j + 1

2

)
(e − g + 1) − e(eW 1 + 1) − 1

(eW 1 + 1)
≥

5
2 (e − g + 1) − 2e − 1

2

= 1

4
e − 5

4
g + 3

4
.

But by hypothesis, d m̂
m + n m′

m2 < 1
4 e − 5

4 g + 3
4 ; combining this result with

equation (18) gives a contradiction. This implies that µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0, and this

holds for all (m, m̂, m′) ∈ M. It follows by Lemma 4.4 that (C , x1, . . . , xn) is not semistable

with respect to l for any l ∈ HM(I ). This completes the proof of Proposition 5.4. �

Next we derive inequality (19), which is similar to Gieseker’s so-called Basic

Inequality. This turns out to be an extremely useful tool. Later we will show that this

inequality holds in more generality than is stated here (see Amplification 5.18). One of the

main changes to our potential stability proof compared to Gieseker’s is that he derives

this inequality much later in his proof. We noticed that the Basic Inequality is something

we can prove on components which do not collapse under pW, and we will use it to prove

that there are no components which collapse under pW.

Notation. Suppose C is a curve which has at least two irreducible components, and

suppose it is generically reduced on any components which do not collapse under pW.

Let Y be a union of components which do not collapse under pW, and let C ′ be the closure

of C − Y in C as constructed above. Let C ′ ιC ′→ C
ιC→ P(W)× Pr and Y

ιY→ C be the inclusion

morphisms. Let

LW Y := ι∗Yι∗C p∗
WOP(W)(1) LW C ′ := ι∗C ′ ι

∗
C p∗

WOP(W)(1)

Lr Y := ι∗Yι∗C p∗
rOPr (1) Lr C ′ := ι∗C ′ ι

∗
C p∗

rOPr (1).

Let π : C̄ → C be the normalization morphism. Let L̄W Ȳ := π∗LW Y and similarly define

L̄W C̄ ′ , L̄r Ȳ and L̄r C̄ ′ . Normalization induces a homomorphism

πm,m̂∗ : H0(C , Lm
W ⊗ Lm̂

r

)→ H0(C̄ , L̄m
W ⊗ L̄m̂

r

)
.
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Define

e′ := degC̄ ′ L̄W C̄ ′ = degC ′ LW C ′

d ′ := degC̄ ′ L̄r C̄ ′ = degC ′ Lr C ′ ,

and let n′ be the number of markings on C ′. Write h0 := h0(pW(C ′),OpW (C ′)(1)). Recall that

we defined ḡ to be

ḡ := min{0, gȲ | Ȳ is the normalization of a complete subcurve Y contained

in a connected fiber Ch for some h ∈ Hilb(P(W)× Pr)}.

Proposition 5.6 ([9], 1.0.7). Let M ⊂ M̃, where M̃ consists of those (m, m̂, m′) such that

m, m̂ > m3 and

m >
(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)

(e − g + 1)

with

d
m̂

m
+ n

m′

m2
<

1

4
e − 5

4
g + 3

4
.

Let l ∈ HM(I ). Let (C , x1, . . . , xn) be a connected marked curve which is semistable with

respect to l. Suppose C has at least two irreducible components. Let C ′ and Y be as

above; in particular, no component of Y collapses under pW. The subcurve C ′ need not be

connected. Suppose C ′ has b connected components. Suppose there exist distinct points

P1, . . . , Pk on Ȳ satisfying

(i) π (Pi) ∈ Y ∩ C ′ for all 1 ≤ i ≤ k;

(ii) for each irreducible component Ȳj of Ȳ,

degȲj
(L̄W Ȳ(−D)) ≥ 0,

where D = P1 + · · · + Pk.
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Then there exist (m, m̂, m′) ∈ M such that

e′ + k

2
<

h0e + (dh0 − d ′(e − g + 1)) m̂
m + (nh0 − n′(e − g + 1)) m′

m2

e − g + 1
+ S

m
, (19)

where S = g + k(2g − 3
2 ) + q2 − ḡ + 1. �

Proof. We depart from the strategy outlined in Section 5.1 in one important regard:

this is not a proof by contradiction in exactly the same way that the other proofs in

this section are. However, the following proof will still use some of the notation and

constructions described there.

We define the key 1-PS for this case. We shall revisit it later, so we give it the

special notation λC ′ . Let

W0 := ker
{
H0(P(W),OP(W)(1)) → H0(pW(C ′),OpW (C ′)(1)

)}
.

Let λC ′ be the 1-PS of GL(W) which acts with weight 0 on W0 and weight 1 on W1 = W2.

Let λ′
C ′ be the associated 1-PS of SL(W).

Claim 5.7. If (C , x1, . . . , xn) satisfies µLm,m̂,m′ ((C , x1, . . . , xn), λ′
C ′ ) ≤ 0 for some (m, m̂, m′) ∈ M,

then equation (19) is satisfied for this choice of (m, m̂, m′). �

Suppose the claim is true. Fix l ∈ HM(I ) and suppose that (C , x1, . . . , xn) is

semistable with respect to l. If there do no exist (m, m̂, m′) ∈ M satisfying equation (19),

then it follows from Claim 5.7 that µLm,m̂,m′ ((C , x1, . . . , xn), λ′
C ′ ) > 0 for all (m, m̂, m′) ∈ M.

But then Lemma 4.4 tells us that (C , x1, . . . , xn) is not semistable with respect to l. This

contradiction implies the existence of such (m, m̂, m′) ∈ M.

It remains to prove Claim 5.7, so assume that µLm,m̂,m′ ((C , x1, . . . , xn), λ′
C ′ ) ≤ 0. We

shall derive the fundamental inequality from this, using Lemma 4.5.

Estimate the weights for λC ′ coming from the marked points. There are n′ of these

on C ′, so
∑n

l=1 wλC ′ (wkl )m
′ ≥ n′m′. Also, estimate the sum of the weights. It is clear from

the definition of λC ′ that
∑N

i=0 wλC ′ (wi) ≤ h0.

Now we look at the weight coming from the curve.

Let �
m,m̂
p and β̂p be as defined in Section 5.1.
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For p = m, it is clear that β̂m = h0(C , Lm
W ⊗ Lm̂

r ) = em + dm̂ − g + 1. We estimate

β̂p in the case p 	= m. Restriction to Y induces a homomorphism

ρ̂
Y,C
m,m̂ : H0(C , Lm

W ⊗ Lm̂
r

)→ H0(Y, Lm
WY ⊗ Lm̂

rY

)
.

We restrict this to �
m,m̂
p , where 0 ≤ p < m. Note that if M̂ is a monomial in �

m,m̂
p and

p < m, then M̂ has at least one factor from W0, and hence by definition M̂ vanishes on

C ′. If such M̂ also vanishes on Y, then M̂ is zero on C . Hence the restriction ρ̂
Y,C
m,m̂|

�
m,m̂
p

has

zero kernel, so is an isomorphism of vector spaces, and thus

dim ρ̂
Y,C
m,m̂

(
�

m,m̂
p

) = dim �
m,m̂
p = β̂p.

We denote ρ̂
Y,C
m,m̂(�

m,m̂
p ) by �

m,m̂
p |Y.

The normalization morphism πY : Ȳ → Y induces a homomorphism

πY m,m̂∗ : H0(Y, Lm
W ⊗ Lm̂

r

)→ H0(Ȳ, L̄m
W ⊗ L̄m̂

r

)
.

By definition, the sections in πY m,m̂∗(�
m,m̂
p |Y) vanish to order at least m − p at the points

P1, . . . , Pk. Thus

πY m,m̂∗
(
�

m,m̂
p

∣∣
Y

) ⊆ H0(Ȳ, L̄m
WȲ ⊗ L̄m̂

rȲ(−(m − p)D)
)
.

Then

β̂p = dim
(
�

m,m̂
p

)
Y ≤ h0(Ȳ, L̄m

WȲ ⊗ L̄m̂
rȲ(−(m − p)D)

)+ dim ker πY m,m̂∗

= (e − e′)m + (d − d ′)m̂ − k(m − p) − ḡ + 1

+ h1(Ȳ, L̄m
WȲ ⊗ L̄m̂

rȲ(−(m − p)D)
)+ dim ker πY m,m̂∗. (20)

We apply the estimates of Claim 5.2 to our current situation.

(1) dim ker πY m,m̂∗ < q2.

No component of Y collapses under pW, so by Proposition 5.4 the curve Y is generically

reduced. Claim 5.2(1) may be applied to Y ⊂ P(W)× Pr. Let IY denote the ideal sheaf of

nilpotents in OY. Then dim ker πY m,m̂∗ < h0(Y, IY). In Proposition 4.6, the constant q2 was

defined to have the property h0(C , IC ) < q2; hence h0(Y, IY) < q2 as well.

(2) h1(Ȳ, L̄m
W Ȳ

⊗ L̄m̂
r Ȳ

(−(m − p)D)) ≤ k(m − p) ≤ km if 0 ≤ p ≤ 2g − 2.
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The sheaf L̄m
W Ȳ

⊗ L̄m̂
r Ȳ

is locally free on Ȳ, and we have chosen m and m̂ so that H1(Ȳ, L̄m
W Ȳ

⊗
L̄m̂

r Ȳ
) = 0. The hypotheses of Claim 5.2(2) hold, and we calculate deg(m − p)D = k(m − p).

We make a coarser estimate than we could as this will be sufficient for our purposes.

(3) h1(Ȳ, L̄m
W Ȳ

⊗ L̄m̂
r Ȳ

(−(m − p)D)) = 0 if 2g − 1 ≤ p ≤ m − 1.

Ȳ is reduced, and is a union of disjoint irreducible (and hence integral) components Ȳj of

genus gYj ≤ g. We apply Claim 5.2(3) separately to each component. Our assumption (ii)

was that degȲj
(L̄W Ȳ(−D)) ≥ 0, so

degȲj
(L̄W Ȳ) ≥ degȲj

D.

If degȲj
D ≥ 1, then

degȲj

(
L̄m

W Ȳ ⊗ L̄m̂
r Ȳ(−(m − p)D)

) ≥ m
(
degȲj

D
)− (m − p)

(
degȲj

D
)

≥ p ≥ 2g − 1 ≥ 2gYj − 1,

as required. On the other hand, suppose that degȲj
D = 0. We assumed that no component

of Y collapses under pW, and hence for each j, the degree degȲj
(L̄W Ȳ) ≥ 1. Thus, again

degȲj

(
L̄m

W Ȳ ⊗ L̄m̂
r Ȳ(−(m − p)D)

) ≥ m ≥ 2gYj − 1.

Combining this data with our previous formula (20), we have shown

β̂p ≤
{

(e − e′ − k)m + (d − d ′)m̂ + kp− ḡ + 1 + q2 + km 0 ≤ p ≤ 2g − 2

(e − e′ − k)m + (d − d ′)m̂ + kp− ḡ + 1 + q2, 2g − 1 ≤ p ≤ m − 1.

Thus, we may use Lemma 5.1, setting α = e′ + k, β = d ′, γ = k, δ = n′, ε = − ḡ + 1 + q2 +
(2g − 1)k, rN = 1 and R = h0. Following Lemma 5.1, we see

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
((

e′ + k

2

)
(e − g + 1) − h0e

)
m2

+ (d ′(e − g + 1) − dh0)mm̂ + (n′(e − g + 1) − nh0)m′

−
(

g − k

2
− ḡ + q2 + (2g − 1)k

)
(e − g + 1)m − h0m.
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Thus, since we assume that µLm,m̂,m′ ((C , x1, . . . , xn), λ) ≤ 0, we may conclude that

e′ + k

2
<

h0e + (dh0 − d ′(e − g + 1)) m̂
m + (nh0 − n′(e − g + 1)) m′

m2

e − g + 1
+ S

m
,

where S = g + k(2g − 3
2 ) + q2 − ḡ + 1. �

This fundamental inequality allows us finally to show that no irreducible com-

ponents of C collapse under projection to P(W).

Proposition 5.8 ([9], 1.0.3). Let M consist of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(6g + 2q2 − 2ḡ)(e − g + 1)

}

with

d
m̂

m
+ n

m′

m2
<

1

4
e − 5

4
g + 3

4
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d
.

Let l ∈ HM(I ). If C is connected and (C , x1, . . . , xn) is semistable with respect to l, then no

irreducible components of C collapse under pW. �

Remark. As the denominator e − g + 1 − d is equal to (2a − 1)(g − 1) + an + (ca − 1)d, it

is evident that this is positive.

Proof. This is trivial if d = 0; assume that d ≥ 1. Suppose that at least one component

of C collapses under pW. Let C ′ be the union of all irreducible components of C which

collapse under pW and let Y := C − C ′. Suppose that C ′ consists of b connected compo-

nents, namely C ′
1, . . . , C ′

b. If d ′
i = degC ′

i
Lr C ′

i
then d ′

i ≥ 1, since e′
i = 0, for i = 1, . . . , b. But

then d ′ = degC ′ Lr C ′ =∑b
i=1 d ′

i ≥ b. Hence

1 ≤ b ≤ d ′ ≤ d.
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The curve C is connected, so C ′ ∩ Y 	= ∅. Choose one point P ∈ Ȳ such that π (P ) ∈
C ′ ∩ Y. We have by definition degȲj

(L̄W Ȳ) ≥ 1, so degȲj
(L̄W Ȳ(−P )) ≥ 0 for each irreducible

component Yj of Y. The hypotheses of Proposition 5.6 are satisfied for k = 1, and M as in

the statement of this proposition. Let (m, m̂, m′) ∈ M be the integers which that corollary

provides, satisfying equation (19).

Since C ′ consists of b connected components, it is collapsed to at most b distinct

points under pW, so we estimate

h0(pW(C ′),OpW(C ′)(1)
) ≤ b.

Recall that we defined S = g + k(2g − 3
2 ) + q2 − ḡ + 1. In the current situation, k = 1, so

S < 3g + q2 − ḡ. The hypotheses on m imply then that S
m (e − g + 1) < 1

2 . Estimate n′ ≥ 0.

Then inequality (19) reads

0 + 1

2
≤ e′ + k

2
≤ h0e + (dh0 − d ′(e − g + 1)) m̂

m + (nh0 − n′(e − g + 1)) m′
m2

e − g + 1
+ S

m

≤
(

1 − 1

2b

)
e + 1

2b
g + n

m′

m2
≤ e + 1

2
g + n

m′

m2

⇒ m̂

m
≤ 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d
.

We have contradicted our hypothesis that m̂
m > 1 +

3
2 g−1+d+n m′

m2

e−g+1−d . �

Remark. We have now described a range M of (m, m̂, m′) such that if l ∈ HM(I ) and

(C , x1, . . . , xn) is semistable with respect to l, then the map pW|C : C → pW(C ) is surjective,

finite, and generically 1-1. Further, since no components of C are collapsed under pW, it

follows from Proposition 5.4 that C is generically reduced.

One may check that there exist integers (m, m̂, m′) such that all stable maps have

a model satisfying inequality (19) of Proposition 5.6. Such a calculation is carried out

in ([2], Proposition 5.1.8). It turns out that one may easily show that the inequality is

satisfied by any complete subcurve C ′ ⊂ C , if m̂
m = ca

2a−1 , and m′
m2 = a

2a−1 for l = 1, . . . , n.

We will be able to use the theory of variation of GIT to show that in fact the quotient is

constant in a small range around this key linearization.
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5.3 GIT semistability implies that the only singularities are nodes

The next series of results provides a range M of triples (m, m̂, m′) such that if l ∈ HM(I ) and

if the connected curve (C , x1, . . . , xn) is semistable with respect to l, then any singularities

of C are nodes. First we show that C has no cusps by showing that the normalization

morphism π : C̄ → C is unramified. Singular points are shown to be double points by

showing that the inverse image under π of any P ∈ C contains at most two points. We

must also rule out tacnodes; these occur at double points P such that the two tangent

lines to C at P coincide.

In the hypotheses of the following lemma, note that 6g + 2q2 − 2ḡ ≤ 9g + 3q2 − 3ḡ

and that 2e − 10g + 6 > e − 9g + 7, and so in particular the hypotheses of Proposition 5.8

hold.

Proposition 5.9 (cf. [9], 1.0.5). Let a be sufficiently large that e − 9g + 7 = a(2g − 2 + n +
cd) − 9g + 7 > 0, and let M consist of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(9g + 3q2 − 3ḡ)(e − g + 1)

}

with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d
.

Let l ∈ HM(I ). If (C , x1, . . . , xn) is connected and semistable with respect to l, then

the normalization morphism π : C̄ → C red is unramified. In particular, C possesses no

cusps. �

Proof. Suppose π is ramified at P ∈ C̄ . Then pW ◦ π : C̄ → pW(C red) is also ramified at P .

Recall that by Proposition 5.3, the curve pW(C ) ⊂ P(W) is nondegenerate; we can think of

H0(P(W),OP(W)(1)) as a subspace of H0(pW(C ), LW). Define

W0 = {s ∈ H0(P(W),OP(W)(1))|π∗ pW ∗s vanishes to order ≥ 3 at P },
W1 = {s ∈ H0(P(W),OP(W)(1))|π∗ pW ∗s vanishes to order ≥ 2 at P }.
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Let λ be the 1-PS of GL(W) whose weights are 0 on W0, 1 on W1, and 3 on W2, and let λ′ be

the associated 1-PS of SL(W). Pick some (m, m̂, m′) ∈ M.

As discussed in Section 5.1, to make an estimate for µLm,m̂,m′ ((C , x1, . . . , xn), λ′), we

need to find an estimate for β̂i := dim �
m,m̂
i for 0 ≤ i ≤ 3m.

We use the homomorphism πm,m̂∗ induced by the normalization morphism (see

equation (11)). We show that

πm,m̂∗
(
�

m,m̂
i

) ⊆ H0(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ ((−3m + i)P )
)
, (21)

for 0 ≤ i ≤ 3m. When i = 0, this follows from the definitions. For 1 ≤ i ≤ 3m, it is enough

to show that monomial M̂ ∈ (�
m,m̂
i − �

m,m̂
i−1 ) vanishes at P to order at least 3m − i. Suppose

that such M̂ has i0 factors from W0, i1 factors from W1, and i2 factors from W3. Then

i0 + i1 + i2 = m and i1 + 3i2 = i. By definition, M̂ vanishes at P to order at least 3i0 + 2i1.

But

3i0 + 2i1 = 3(i0 + i1 + i2) − (i1 + 3i2) = 3m − i,

so the monomial vanishes as required, and hence equation (21) is satisfied.

By equation (21) and Riemann–Roch,

β̂i := dim �
m,m̂
i ≤ h0(C̄ , L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(3m − i)P )

)+ dim ker πm,m̂∗

≤ em + dm̂ − 3m + i − ḡ + 1

+ h1(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(3m − i)P )
)+ dim ker πm,m̂∗.

We may use Claim 5.2 in a straightforward way to show that dim ker πm,m̂∗ < q2 and that

h1(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(3m − i)P )) ≤ 3m − i ≤ 3m if 0 ≤ i ≤ 2g − 2. More care is needed to

show that the h1 term vanishes for higher values of i.

Let C̄i be an irreducible component of C̄ . Suppose C̄i does not contain P ∈ C̄ . We

have shown (Proposition 5.8) that degC̄i
L̄W = degCi

LW ≥ 1. Thus

degC̄i

(
L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(3m − i)P )

) = degC̄i

(
L̄m

W ⊗ L̄m̂
r

) ≥ m ≥ 2gCi − 1.

On the other hand, suppose that C̄i is the component of C̄ on which P lies. The morphism

C̄i → pW(Ci red) is ramified at P , so pW(Ci red) is singular and integral in P(W). Were pW(Ci red)

an integral curve of degree 1 or 2 in P(W), it would be either a line or a conic, and hence
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nonsingular. We conclude that degC̄i
L̄W = degCi red

LW ≥ 3. Then

degC̄i

(
L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(3m − i)P )

) ≥ 3m − 3m + i = i.

Thus, Claim 5.2(3) shows that h1(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(3m − i)P )) = 0 if 2g − 1 ≤ i ≤ 3m − 1.

Combining these inequalities, we have

β̂i ≤
{

(e − 3)m + dm̂ + i − ḡ + q2 + 1 + 3m, 0 ≤ i ≤ 2g − 2

(e − 3)m + dm̂ + i − ḡ + q2 + 1, 2g − 1 ≤ i ≤ 3m − 1.

Thus, in the language of Lemma 5.1, we shall set α = 3, β = 0, γ = 1, and ε = − 3ḡ + 3q2 +
6g. We may estimate the minimum weight of the action of λ on the marked points xi as

zero, so we set δ = 0. We know that rN = 3. It remains to find an upper bound for
∑

wλ(wi).

Recall that we are regarding W as a subspace of H0(pW(C ), LW). Note that the

image of W0 under π∗ is contained in H0(C̄ , L̄W(−3P )), and the image of W1 under π∗ is

contained in H0(C̄ , L̄W(−2P )). We have two exact sequences

0 → L̄W(−P ) → L̄W → k(P ) → 0

0 → L̄W(−3P ) → L̄W(−2P ) → k(P ) → 0,

which give rise to long exact sequences in cohomology

0 → H0(C̄ , L̄W(−P )) → H0(C̄ , L̄W) → H0(C̄ , k(P )) → · · ·
0 → H0(C̄ , L̄W(−3P )) → H0(C̄ , L̄W(−2P )) → H0(C̄ , k(P )) → · · · .

The second long exact sequence implies that dim W1/W0 ≤ 1. Now recall that

L̄W := π∗(LW) and π is ramified at P . The ramification index must be at least 2, so

we have H0(C̄ , L̄W(−P )) = H0(C̄ , L̄W(−2P )). Then the first long exact sequence implies that

dim W2/W1 ≤ 1. We conclude that
∑N+1

i=1 wλ(wi) ≤ 1 + 3 = 4 =: R.

We may now estimate the λ′-weight for (C , x1, . . . , xn), using Lemma 5.1,

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
(

9

2
(e − g + 1) − 4e

)
m2 − 4dmm̂ − 4nm′

−
((

9g − 3ḡ + 3q2 − 9

2

)
(e − g + 1) + 4

)
m

≥
(

1

2
e − 9

2
(g − 1) − 4d

m̂

m
− 4n

m′

m2

)
m2

− (9g − 3ḡ + 3q2)(e − g + 1)m.
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We assumed that (9g − 3ḡ + 3q2) (e − g + 1) < m, so we have shown that

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
(

1

2
e − 9

2
g + 7

2
− 4d

m̂

m
− 4n

m′

m2

)
m2.

This is clearly positive, as we assumed that

1

8
e − 9

8
g + 7

8
> d

m̂

m
+ n

m′

m2
,

so m2 has a positive coefficient.

Thus µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0. This is true for all (m, m̂, m′) ∈ M, and therefore

by Lemma 4.4, the n-pointed curve (C , x1, . . . , xn) is not semistable with respect to l for

any l ∈ HM(I ). �

Remark. Note that the value e − 9g + 7 is positive for any (g, n, d) as long as a ≥ 10,

but smaller values of a will suffice in many cases; for example, if g ≥ 3 then a ≥ 5 is

sufficient.

Proposition 5.10 (cf. [9], 1.0.4). Let a be sufficiently large that e − 9g + 7 > 0, and let M

consist of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(9g + 3q2 − 3ḡ)(e − g + 1)

}

with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d
.

Let l ∈ HM(I ). If (C , x1, . . . , xn) is connected, and semistable with respect to l, then all

singular points of C red are double points. �

Proof. Suppose there exists a point P ∈ C with multiplicity ≥3 on C red. Let ev :

H0(P(W),OP(W)(1)) → k(P ) be the evaluation map. Let W0 = ker ev. We have N0 := dim
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W0 = N. We take W1 = W2 and let λ be the 1-PS of GL(W) which acts with weight 0

on W0 and weight 1 on W1. Let λ′ be the associated 1-PS of SL(W) and pick (m, m̂, m′) ∈ M.

We follow the strategy of Section 5.1. We need to find an upper bound for β̂p :=
dim �

m,m̂
p .

Define a divisor D on C̄ as follows: Let π : C̄ → C be the normalization morphism.

The hypotheses of Proposition 5.9 are satisfied, so π is unramified; as P has multiplicity

at least 3, there must be at least three distinct points in the preimage π−1(P ). Let D =
Q1 + Q2 + Q3 be three such points. Note that if any two of these points lie on the same

component C̄1 ⊂ C̄ , then the corresponding component C1 ⊂ C must have degC1
LW ≥ 3,

by the same argument as in the proof of Proposition 5.9.

The normalization morphism induces a homomorphism πm,m̂∗ (see equation (11)).

Note that πm,m̂∗(�
m,m̂
p ) ⊆ H0(C̄ , L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(m − p)D)). We have

β̂p := dim �
m,m̂
p ≤ h0(C̄ , L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(m − p)D)

)+ dim ker πm,m̂ ∗

≤ em + dm̂ − 3(m − p) − ḡ + 1

+ h1(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(m − p)D)
)+ dim ker πm,m̂ ∗.

We may use Claim 5.2(1) and (2) to make the estimates that h0(C , IC ) < q2 and that

h1(C̄ , L̄m
W(−(m − p)D) ⊗ L̄m̂

r ) ≤ 3(m − p) ≤ 3m if 0 ≤ p ≤ 2g − 2. To show, as one would

wish, that h1(C̄ , L̄m
W(−(m − p)D) ⊗ L̄m̂

r ) = 0 if p ≥ 2g − 1, we may verify that the degree of

LW on any component C1 meeting P implies that the hypothesis of Claim 5.2(3) is satisfied.

Thus

β̂p ≤
{

(e − 3)m + dm̂ + 3p− ḡ + q2 + 1 + 3m, 0 ≤ p ≤ 2g − 2

(e − 3)m + dm̂ + 3p− ḡ + q2 + 1, 2g − 1 ≤ p ≤ m.

We may apply Lemma 5.1, setting α = 3, β = 0, γ = 3, and ε = − ḡ + q2 + 6g − 2. We know

that rN = 1 and may estimate the weight of the action of λ on the marked points x1, . . . , xn

as greater than or equal to zero, so we set δ = 0. Finally, note that
∑N

i=0 wλ(wi) = 1 =: R.

Now, substituting in these values,

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
(

3

2
(e − g + 1) − e

)
m2 − dmm̂ − nm′

−
((

7g − ḡ + q2 − 9

2

)
(e − g + 1) + 1

)
m

≥
(

1

2
e − 3

2
(g + 1) − d

m̂

m
− n

m′

m2

)
m2 − (7g − ḡ + q2)(e − g + 1)m.
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Our assumptions imply that (7g − ḡ + q2)(e − g + 1) < m. We have shown that

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
(

1

2
e − 3

2
g + 1

2
− d

m̂

m
− n

m′

m2

)
m2.

However, we assumed that

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

and 1
8 e − 9

8 g + 7
8 < 1

2 e − 3
2 g + 1

2 , since e − g ≥ 4, so the coefficient of m2 is positive.

Thus µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0. This holds for all (m, m̂, m′) ∈ M, so by

Lemma 4.4, we see that (C , x1, . . . , xn) is not semistable with respect to l for any

l ∈ HM(I ). �

The remaining case we must rule out is that C possesses a tacnode. The analogous

proposition in [9] is 1.0.6, but the proof there contains at least two errors (one should use

�m
i accounting rather than the Tata notes’ Wm−r

i Wr
j when the filtration has more than

two stages, and tacnodes need not be separating). These may be avoided if we simply

follow ([11], 4.53) instead.

Proposition 5.11 (cf. [11], 4.53). Let a be sufficiently large that e − 9g + 7 > 0, and let M

consist of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

}

with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d
.

Let l ∈ HM(I ). If C is connected and (C , x1, . . . , xn) is semistable with respect to l, then C red

does not have a tacnode. �
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Proof. Suppose that C red has a tacnode at P . Let π : C̄ → C be the normalization. There

exist two distinct points, Q1, Q2 ∈ C̄ , such that π (Q1) = π (Q2) = P . Moreover, the two

tangent lines to C at P are coincident. Define the divisor D := Q1 + Q2 on C̄ .

We consider H0(P(W),OP(W)(1)) as a subspace of H0(pw(C ), LW). Thus we may define

subspaces

W0 := {s ∈ H0(P(W),OP(W)(1))|π∗ pW∗x vanishes to order ≥ 2 at Q1 and Q2},
W1 := {s ∈ H0(P(W),OP(W)(1))|π∗ pW∗x vanishes to order ≥ 1 at Q1 and Q2}.

Let λ be the 1-PS of GL(W) which acts with weight 0 on W0, 1 on W1, and 2 on W2. Let λ′

be the associated 1-PS of SL(W) and fix (m, m̂, m′) ∈ M.

Following the strategy of Section 5.1, we wish to estimate β̂i = dim �
m,m̂
i .

As in Proposition 5.6, we use the homomorphism πm,m̂∗ induced by the normal-

ization morphism (see equation (11)). Similarly to as in Proposition 5.9, we show that

πm,m̂∗
(
�

m,m̂
i

) ⊆ H0(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(2m − i)D)
)
, (22)

for 0 ≤ i ≤ 2m. When i = 0, this follows from the definitions. For 1 ≤ i ≤ 2m it is enough

to show that for any monomial M̂ ∈ �
m,m̂
i − �

m,m̂
i−1 , we have

πm,m̂∗(M̂) ∈ H0(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(2m − i)D)
)
.

Suppose that such M̂ has jk factors from Wk, for k = 0, 1, 2. Then j0 + j1 + j2 = m and

j1 + 2 j2 = i. By definition, πm,m̂∗(M̂) vanishes at both Q1 and Q2 to order at least 2 j0 + j1.

But

2 j0 + j1 = 2( j0 + j1 + j2) − ( j1 + 2 j2) = 2m − i,

giving the required vanishing of πm,m̂∗(M̂).

We shall also prove at this stage that
∑N+1

i=1 wλ(wi) ≤ 3. We have two exact se-

quences

0 → L̄W(−Q1) → L̄W → k(Q1) → 0

0 → L̄W(−2Q1) → L̄W(−Q1) → k(Q1) → 0,
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which give rise to long exact sequences in cohomology

0 → H0(C̄ , L̄W(−Q1)) → H0(C̄ , L̄W) → H0(C̄ , k(P ))

0 → H0(C̄ , L̄W(−2Q1)) → H0(C̄ , L̄W(−Q1)) → H0(C̄ , k(P )).

If we let W̄2 be the image of W2 = H0(P(W),OP(W)(1)) in H0(C̄ , L̄W), we may intersect each of

the spaces in the sequences with W̄2. Note that the image of W1 in H0(C̄ , L̄W) is precisely

W̄2 ∩ H0(C̄ , L̄W(−Q1)); if a section of L̄W which vanishes at Q1 is the pullback a section of

C , then it automatically vanishes at Q2 as well. Similarly, the image of W0 in H0(C̄ , L̄W)

is W̄2 ∩ H0(C̄ , L̄W(−2Q1)). We have obtained

0 → W̄1 → W̄2 → W̄2 ∩ H0(C̄ , k(P ))

0 → W̄0 → W̄1 → W̄2 ∩ H0(C̄ , k(P )).

It follows that dim W2/W1 ≤ 1 and dim W1/W0 ≤ 1. Thus
∑N+1

i=1 wλ(wi) ≤ 1 + 2 = 3 =: R.

The weight coming from the marked points will always be estimated as zero. In

order to estimate β̂p, there are unfortunately various cases to consider, which shall give

rise to different inequalities.

(1) There is one irreducible component C1 of C passing through P .

(2) There are two irreducible components C1 and C2 of C passing through P , and

degCi red
LW ⊗ Lr ≥ 2 for i = 1, 2.

(3) There are two irreducible components C1 and C2 of C passing through P , and

degC1 red
LW ⊗ Lr = 1, while degC2 red

LW ⊗ Lr ≥ 2.

There cannot be two degree 1 curves meeting at a tacnode, so these are the only cases.

Note that in Case 1, since C1 is an irreducible curve with a tacnode, degC1 red
LW ⊗ Lr ≥ 4.

For Case 3, we know by Proposition 5.8 that degC1 red
LW ≥ 1, and hence we see that

degC1 red
Lr = 0.

Cases 1 and 2. We estimate β̂p. By equation (22) and Riemann–Roch,

β̂i := dim �
m,m̂
i ≤ h0(C̄ , L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(2m − i)D)

)+ dim ker πm,m̂∗

≤ em + dm̂ − 2(2m − i) − ḡ + 1

+ h1(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(2m − i)D)
)+ dim ker πm,m̂∗.

Claim 5.2 allows us to estimate, as usual, the upper bounds dim ker πm,m̂∗ < q2 and

h1
(
C̄ , L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(2m − i)D)

) ≤ 4m − 2i ≤ 4m if 0 ≤ i ≤ 2g − 2. To show that the h1



Geometric Invariant Theory Construction of Stable Maps 57

term vanishes for larger values of i, recall that our assumptions imply that m̂ > m. Thus,

for any component Ci of the curve,

degC̄i
L̄m

W ⊗ L̄m̂
r ≥ degC̄i

L̄m
W ⊗ L̄m

r = m · degC̄i
L̄W ⊗ L̄r.

If we are in Case 1, then we conclude that degC̄1
L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(2m − i)D) ≥ 4m − 2 ·

2m + i ≥ 2g − 2 if 2g − 2 ≤ i ≤ 2m − 1. The other components of the curve do not meet

D, and so one sees from Claim 5.2(3) that h1 is zero there. Case 2 follows similarly.

Combining these inequalities, we have

β̂i ≤
{

(e − 4)m + dm̂ + 2i − ḡ + 1 + q2 + 4m, 0 ≤ i ≤ 2g − 2

(e − 4)m + dm̂ + 2i − ḡ + 1 + q2, 2g − 1 ≤ i ≤ 3m − 1.

In the language of Lemma 5.1, we set α = 4, β = 0, γ = 2, δ = 0, ε = 8g − 3ḡ + 3q2 − 1,

rN = 2, and R = 3. Now

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥ (4(e − g + 1) − 3e)m2 − 3dmm̂ − 3nm′

− ((10g − 3ḡ + 3q2 − 5)(e − g + 1) + 3)m

≥
(
e − 4(g − 1) − 3d

m̂

m
− 3n

m′

m2

)
m2 − (10g− 3ḡ+ 3q2)(e− g+ 1)m.

This is clearly positive for large m. In particular, as we set m > (10g − 3ḡ + 3q2)(e − g + 1),

we must infer that

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
(

e − 4g + 3 − 3d
m̂

m
− 3n

m′

m2

)
m2.

Then, since

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
<

1

3
e − 4

3
g + 1

(where the latter inequality may be seen to hold, since e − g ≥ 4), we conclude that

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0.

Case 3. Now that degC̄1
L̄W ⊗ L̄r = 1, we need a new way to estimate β̂i :=

dim �
m,m̂
p . However, we do know that the genus of C1 is zero. Let Y := C − C1. Noting
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in line (22) that C̄1 and Ȳ are disjoint, we may write

πm,m̂∗
(
�

m,m̂
p

) ⊂ H0(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(2m − i)D)
)

= H0(C̄1, L̄m
W ⊗ L̄m̂

r (−(2m − i)Q1)
)⊕ H0(Ȳ, L̄m

W ⊗ L̄m̂
r (−(2m − i)Q2)

)
.

Thus

β̂i := dim �
m,m̂
i ≤ h0

i + (e − 1)m + dm̂ − (2m − i) − gC̄ + 1

+ h1(Ȳ, L̄m
W ⊗ L̄m̂

r ⊗ OȲ(−(2m − i)Q2)
)+ dim ker πm,m̂∗,

where we write h0
i for h0(C̄1, L̄m

W ⊗ L̄m̂
r ⊗ OC̄1

(−(2m − i)Q1)).

As usual, Claim 5.2 allows us to estimate the upper bounds dim ker πm,m̂∗ < q2

and h1(Ȳ, L̄m
W ⊗ L̄m̂

r ⊗ OȲ(−(2m − i)Q2)) ≤ 2m − i ≤ 2m if 0 ≤ i ≤ 2g − 2. The assumptions

for Case 3 tell us directly that we may apply Claim 5.2 (3) and obtain, as we desire,

h1(Ȳ, L̄m
W ⊗ L̄m̂

r ⊗ OȲ(−(2m − i)Q2)) = 0 if 2g − 1 ≤ i ≤ 2m − 1.

Combining these inequalities, we have

β̂i ≤
{

(e − 3)m + dm̂ + i − ḡ + 1 + q2 + 2m + h0
i , 0 ≤ i ≤ 2g − 2

(e − 3)m + dm̂ + i − ḡ + 1 + q2 + h0
i , 2g − 1 ≤ i ≤ 2m − 1.

(23)

To calculate the ε term in the language of Lemma 5.1, we must calculate
∑2m−1

i=0 h0
i . We

recall that C̄1
∼= P1, that degC̄1

L̄W = 1, and that degC̄1
L̄r = 0. Thus L̄W C̄1

= OP1 (1) and

L̄r C̄1
= OP1 , so

h0
i = h0(P1,OP1 (m) ⊗ OP1 (−(2m − i)Q1)) =

{
0 i ≤ m − 1

−m + i + 1 i ≥ m.

Thus, in particular,

2m−1∑
i=0

h0
i =

m∑
j=1

j = 1

2
m2 + 1

2
m.

Hence, we calculate ε to be = 4g − 2ḡ + 2q2 + 1
2 + 1

2 m. For the rest of the dictionary for

Lemma 5.1, we set α = 4, β = 0, γ = 1, δ = 0, rN = 2 and R = 3. Then
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µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥ (4(e − g + 1) − 3e)m2 − 3dmm̂ − 3nm′

−
((

6g − 2ḡ + 2q2 − 5

2
+ 1

2
m
)

(e − g + 1) + 3
)

m

≥
(

1

2
e− 7

2
(g− 1) − 3d

m̂

m
− 3n

m′

m2

)
m2 − (6g− 2ḡ+ 2q2)(e− g+ 1)m.

Our estimates for m imply that m > (e − g + 1)(6g − 2ḡ + 2q2), so we have shown that

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
(

1

2
e − 7

2
g + 5

2
− 3d

m̂

m
− 3n

m′

m2

)
m2.

This is clearly positive, as

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
<

1

6
e − 7

6
g + 5

6
,

where the second inequality holds, since e − g ≥ 4.

Thus µLm,m̂,m′ ((C , x1, . . . , xn), λ) > 0 for all triples (m, m̂, m′) ∈ M, and hence by

Lemma 4.4, we see that (C , x1, . . . , xn) is unstable with respect to l for any l ∈ HM(I ). �

5.4 Marked points are nonsingular and distinct

We now turn to the marked points, which we would like to be nonsingular and distinct.

This is ensured in the following two propositions.

Proposition 5.12. Let a be sufficiently large that e − 9g + 7 > 0, and let M consist of

those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

}

with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d

m′

m2
>

g + d m̂
m

e − g + 1 − n
.
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Let l ∈ HM(I ). If (C , x1, . . . , xn) is connected, and semistable with respect to l, then all the

marked points lie on the nonsingular locus of C . �

Remark. As e − g + 1 − n = (2a − 1)(g − 1) + (a − 1)n + cad, it is evident that this is

positive.

Proof. Suppose there exists a point P ∈ C , which is singular and also the loca-

tion of a marked point. By Proposition 5.10, this point is a double point. Let ev :

H0(P(W),OP(W)(1)) → k(P ) be the evaluation map. Let W0 = ker ev. We have N0 := dim W0 =
N − 1. Let λ be the 1-PS of GL(W) which acts with weight 0 on W0 and with weight 1 on

W1. Let λ′ be the associated 1-PS of SL(W) and fix (m, m̂, m′) ∈ M.

We have assumed that at least one marked point, say, xi lies at P . If w ∈ W0 then

w(xi) = 0, so wki must be we−g, whose λ-weight is 1. Hence
∑n

l=1 wλ(wkl )m
′ ≥ m′. Note also

that
∑N

i=0 wλ(wi) = 1 =: R. As usual, construct a filtration of H0(C , Lm
W ⊗ Lm̂

r ) of increasing

weight as in equation (9). We need to find an upper bound for β̂p = dim �
m,m̂
p .

Let π : C̄ → C be the normalization morphism, which is unramified as the hy-

potheses of Proposition 5.9 are satisfied. There are two distinct points in π−1(P ), by

Proposition 5.10. Let the divisor D := Q1 + Q2 on C̄ consist of these points. Should Q1

and Q2 lie on the same component C̄1 of C̄ , we see as in the proof of Proposition 5.9 that

degC̄1
L̄W ≥ 3.

The normalization morphism induces a homomorphism πm,m̂∗ (see equation (11))

with πm,m̂∗(�
m,m̂
p ) ⊆ H0(C̄ , L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(m − p)D)). We have

β̂p := dim �
m,m̂
p ≤ h0(C̄ , L̄m

W ⊗ L̄m̂
r ⊗ OC̄ (−(m − p)D)

)+ dim ker πm,m̂∗

= em + dm̂ − 2(m − p) − gC̄ + 1 + h1(C̄ , L̄m
W ⊗ L̄m̂

r ⊗ OC̄ (−(m − p)D)
)+ dim ker πm,m̂∗.

We may use Claim 5.2 as usual to establish the estimates that dim ker πm,m̂∗ < q2, that

h1(C̄ , L̄m
W ⊗ L̄m̂

r (−(m − p)D)) ≤ 2(m − p) ≤ 2m if 0 ≤ p ≤ 2g − 2, and that, as one would

wish, h1(C̄ , L̄m
W ⊗ L̄m̂

r (−(m − p)D)) = 0 if p ≥ 2g − 1.

We can now estimate β̂p,

β̂p ≤
{

(e − 2)m + dm̂ + 2p− ḡ + q2 + 1 + 2m, 0 ≤ p ≤ 2g − 2

(e − 2)m + dm̂ + 2p− ḡ + q2 + 1, 2g − 1 ≤ p ≤ m.
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We may apply Lemma 5.1, setting α = 2, β = 0, γ = 2, δ = 1, ε = −ḡ + q2 + 4g − 1, rN = 1,

and R = 1; thus we estimate

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥ ((e − g + 1) − e)m2 − dmm̂ + ((e − g + 1) − n)m′

− ((5g − ḡ + q2 − 3)(e − g + 1) + 1)m

≥
(

−g + 1 − d
m̂

m
+ (e − g + 1 − n)

m′

m2

)
m2

− (5g − ḡ + q2)(e − g + 1)m.

Our assumptions imply that m > (5g − ḡ + q2)(e − g + 1), and so we have shown that

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
(

−g − d
m̂

m
+ (e − g + 1 − n)

m′

m2

)
m2.

This, however is positive, as we assumed that

m′

m2
>

g + d m̂
m

e − g + 1 − n
.

Thus µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0. This is true for any (m, m̂, m′) ∈ M, so it follows by

Lemma 4.4 that (C , x1, . . . , xn) is not semistable with respect to l, for any l ∈ HM(I ). �

Proposition 5.13. Let a be sufficiently large that e − 9g + 7 > 0, and let M consist of

those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

}

with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d

m′

m2
>

1

4
+ g + n

4 + d m̂
m

2(e − g + 1) − n
.

Let l ∈ HM(I ). If (C , x1, . . . , xn) is connected, and semistable with respect to l, then all the

marked points are distinct. �
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Remark. The denominator 2(e − g + 1) − n is easily checked to be positive, as it is equal

to (4a − 1)(g − 1) + (2a − 1)n + cad .

Proof. Suppose two marked points, xi and xj meet at P ∈ C . The hypotheses of the

previous proposition hold, and so P is a nonsingular point. Let ev : H0(P(W),OP(W)(1)) →
k(P ) be the evaluation map. Let W0 = ker ev; thus N0 := dim W0 = N. Let λ be the 1-PS of

GL(W) which acts with weight 0 on W0 and with weight 1 on W1. Let λ′ be the associated

1-PS of SL(W). Fix (m, m̂, m′) ∈ M.

As we assume that xi and xj lie at P , it follows that
∑n

l=1 wλ(wkl )m
′ ≥ 2m′. Again,

note that
∑N

i=0 wλ(wi) = 1 =: R. Construct a filtration of H0(C , Lm
W ⊗ Lm̂

r ) of increasing

weight as in equation (9). We need to find an upper bound for β̂p := dim �
m,m̂
p .

This time, we do not need to use the normalization to estimate β̂p; by

Proposition 5.12, we know that C is smooth at P . It is clear that the space of mono-

mials �
m,m̂
p ⊆ H0(C , Lm

W ⊗ Lm̂
r ⊗ OC (−(m − p)P )). We have

β̂p := dim �
m,m̂
p ≤ h0(C , Lm

W ⊗ Lm̂
r ⊗ OC (−(m − p)P )

)
= em + dm̂ − (m − p) − g + 1 + h1(C , Lm

W ⊗ Lm̂
r ⊗ OC (−(m − p)P )

)
.

We use Claim 5.2 to estimate that h1(C , Lm
W ⊗ Lm̂

r (−(m − p)P )) ≤ (m − p) ≤ m and that

h1(C , Lm
W ⊗ Lm̂

r (−(m − p)P )) = 0 if p ≥ 2g − 1.

These give us upper bounds for β̂p,

β̂p ≤
{

(e − 1)m + dm̂ + p− g + 1 + m, 0 ≤ p ≤ 2g − 2

(e − 1)m + dm̂ + p− g + 1, 2g − 1 ≤ p ≤ m − 1.

We may apply Lemma 5.1, setting α = 1, β = 0, γ = 1, δ = 2, ε = g − 1, rN = 1, and R = 1.

Thus we estimate

µLm,m̂,m′ ((C , x1, . . . , xn), λ′) ≥
(

1

2
(e − g + 1) − e

)
m2 − dmm̂

+ (2(e − g + 1) − n)m′ −
((

2g − 5

2

)
(e − g + 1) + 1

)
m

≥
(

−1

2
e − 1

2
g − 1

2
− d

m̂

m
+ (2(e − g + 1) − n)

m′

m2

)
m2,

where we have used the fact that our assumptions imply m > (2g − 5
2 )(e − g + 1) − (g − 1).
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However, this must be positive, as we assumed that

m′

m2
>

1

4
+ g + n

4 + d m̂
m

2(e − g + 1) − n
=

1
2 e + 1

2 g + 1
2 + d m̂

m

2(e − g + 1) − n
.

Thus µLm,m̂,m′ ((C , x1, . . . , xn), λ′) > 0, and therefore by Lemma 4.4, we know that (C , x1, . . . , xn)

is not semistable with respect to l for any l ∈ HM(I ). �

5.5 GIT semistable curves are reduced and “potentially stable”

The next three results show that, if (C , x1, . . . , xn) is semistable with respect to some l in

our range ∈ HM(I ) of virtual linearizations, then the curve C is reduced. We begin with a

generalized Clifford’s theorem.

Lemma 5.14 (cf. [9], p. 18). Let C be a reduced curve with only nodes, and let L be a line

bundle generated by global sections which is not trivial on any irreducible component

of C . If H1(C , L) 	= 0, then there is a connected subcurve C ′ ⊂ C such that

h0(C ′, L) ≤ degC ′ (L)

2
+ 1. (24)

Furthermore, C ′ 	∼= P1. �

Proof. Gieseker proves nearly all of this. It remains only to show that C ′ may be taken

to be connected and C ′ 	∼= P1. Firstly, if equation (24) is satisfied by C ′ ⊂ C , then it is clear

that equation (24) must be satisfied by some connected component of C ′. So assume that

C ′ is connected and suppose that C ′ ∼= P1. Now, every line bundle on P1 is isomorphic to

OP1 (m) for some m ∈ Z. By hypothesis, L is generated by global sections and is nontrivial

on C ′; this implies that m > 0. However, combining this with equation (24) implies that

m + 1 = h0(C ′, L) ≤ m
2 + 1 which implies that m ≤ 0, a contradiction. �

Lemma 5.15 ([9], p. 79). Let a be sufficiently large that e − 9g + 7 > 0, and let M consist

of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

}
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with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d

m′

m2
>

1

4
+ g + n

4 + d m̂
m

2(e − g + 1) − n
.

Let l ∈ HM(I ). If (C , x1, . . . , xn) is connected and semistable with respect to l, then

H1(C red, LWred) = 0. �

Proof. Since Cred is nodal, it has a dualizing sheaf ω. Suppose H1(C red, LWred) 	= 0. Then

by duality,

H0(C red, ω ⊗ L−1
Wred

) ∼= H1(C red, LWred) 	= 0.

By Proposition 5.8, the line bundle LWred is not trivial on any component of Cred. Then

by Lemma 5.14, there is a connected subcurve C ′ 	∼= P1 of C red for which e′ > 1 and

h0(C ′, LW C ′ ) ≤ e′
2 + 1.

Let Y := C − C ′
red and pick a point P on the normalization Ȳ, so that π (P ) ∈ C ′ ∩ Y.

By Proposition 5.8, we know that degȲj
L̄W(−P ) ≥ 0 for every component Yj of Y. We

may apply Proposition 5.6, setting k = 1 and b = 1. There exists (m, m̂, m′) ∈ M satisfying

inequality (19). Estimate d ′ ≥ 0, and n′ ≥ 0. Recall that in this case, S = 3g + q2 − ḡ′ + 1
2 ,

and so the hypotheses on m certainly imply that S
m (e − g + 1) ≤ 1

2 . We obtain

e′ + 1

2
= e′ + k

2
≤
(

e′
2 + 1

)
e + d

(
e′
2 + 1

)
m̂
m + n

(
e′
2 + 1

)
m′
m2

e − g + 1
+ 1

2(e − g + 1)

⇒ 0 < −
(

e′ + 1

2

)
(e − g + 1) +

(
1

2
e′ + 1

)(
e + d

m̂

m
+ n

m′

m2

)
+ 1

2
.

Use the bound d m̂
m + n m′

m2 < 1
8 e − 9

8 g + 7
8 to obtain

0 < −
(

e′ + 1

2

)
(e − g + 1) +

(
1

2
e′ + 1

)(
9

8
e − 9

8
g + 7

8

)
+ 1

2

= −
(

7

16
e′ − 5

8

)
(e − g) − 9

16
e′ + 7

8
.
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Since e′ > 1, we may substitute in e′ ≥ 2

0 < −1

4
(e − g) − 1

4
,

a contradiction. Thus H1(C red, LW red) = 0. �

We may now, finally, show that our semistable curves are reduced.

Proposition 5.16 (cf. [9], 1.0.8). Let a be sufficiently large that e − 9g + 7 > 0, and let M

consist of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1),

}

with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d

m′

m2
>

1

4
+ g + n

4 + d m̂
m

2(e − g + 1) − n
.

Let l ∈ HM(I ). If (C , x1, . . . , xn) is connected and semistable with respect to l, then C is

reduced. �

Proof. Let ι : C red → C be the canonical inclusion. The exact sequence of sheaves on C

0 → IC ⊗ LW → LW → ι∗LWred → 0

gives rise to a long exact sequence in cohomology

· · · → H1(C , IC ⊗ LW) → H1(C , LW) → H1(C , ι∗LWred) → 0.

Since C is generically reduced, IC has finite support, hence H1(C , IC ⊗ LW) = 0.

Lemma 5.15 tells us us that H1(C , ι∗LWred) = H1(C red, LWred) = 0. The exact sequence implies
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H1(C , LW) = 0 as well. Next, the map

H0(P(W),OP(W)(1)) → H0(pW(C )red,OpW (C )red (1)
)→ H0(C red, LWred)

is injective by Proposition 5.3. Then

e − g + 1 = h0(P(W),OP(W)(1)) ≤ h0(C red, LWred)

= h0(C , LW) − h0(C , IC ⊗ LW) = e − g + 1 − h0(C , IC ⊗ LW).

Therefore h0(C , IC ⊗ LW) = 0. Since IC ⊗ LW has finite support, IC = 0, so C is

reduced. �

Next, we improve on Proposition 5.6. If C is connected and (C , x1, . . . , xn) is

semistable with respect to some l ∈ HM(I ), and if C ′ is a connected subcurve of C , then we

know that our “fundamental inequality” is satisfied without needing to verify condition

(ii). This inequality is then an extra property of semistable curves, which we will use in

Theorem 5.21 to show that J
ss

(l) ⊆ J for the right range of virtual linearizations.

We repeat the definition of λ′
C ′ : Let

W0 := ker
{
H0(P(W),OP(W)(1)) → H0(pW(C ′),OpW (C ′)(1)

)}
.

Choose a basis w0, . . . , wN of H0(P(W),OP(W)(1)) relative to the filtration 0 ⊂ W0 ⊂ W1 =
H0(P(W),OP(W)(1)). Let λC ′ be the 1-PS of GL(W) whose action is given by

λC ′ (t )wi = wi, t ∈ C∗, 0 ≤ i ≤ N0 − 1

λC ′ (t )wi = twi, t ∈ C∗, N0 ≤ i ≤ N,

and let λ′
C ′ be the associated 1-PS of SL(W). It is more convenient to prove that the

inequality holds for linearizations Lm,m̂,m′ before inferring the result in general.

Lemma 5.17 (cf. [9], p. 83 and Proposition 5.6 above). Let a be sufficiently large that

e − 9g + 7 > 0, and suppose that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1),

}
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with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d

m′

m2
>

1

4
+ g + n

4 + d m̂
m

2(e − g + 1) − n
.

Let (C , x1, . . . , xn) ⊂ P(W)× Pr be a connected curve whose only singularities are nodes, and

such that no irreducible component of C collapses under projection to P(W). Suppose C

has at least two irreducible components. Let C ′ 	= C be a reduced, connected, complete

subcurve of C , and let Y be the closure of C − C ′ in C with the reduced structure. Suppose

there exist points P1, . . . , Pk on Ȳ, the normalization of Y, satisfying π (Pi) ∈ Y ∩ C ′ for all

1 ≤ i ≤ k. Write h0(pW(C ′),OpW (C ′)(1)) =: h0.

Finally, suppose that

µLm,m̂,m′ ((C , x1, . . . , xn), λ′
C ′ ) ≤ 0.

Then

e′ + k

2
<

h0e + (dh0 − d ′(e − g + 1)) m̂
m + (nh0 − n′(e − g + 1)) m′

m2

e − g + 1
+ S

m
, (25)

where S = g + k(2g − 3
2 ) + q2 − ḡ + 1. �

Proof. Arguing similarly to ([9], pp. 83–85), we prove the result by contradiction. We

first assume that k = #(Y ∩ C ′) and then show that this implies the general case.

Let C ′ be a connected subcurve of C , and let P1, . . . , Pk be all the points on Ȳ

satisfying π (Pi) ∈ Y ∩ C ′. We assume that equation (25) is not satisfied for C ′, and further

that C ′ is maximal with this property. Namely, if C ′′ is complete and connected, and

C ′ � C ′′ ⊂ C , then equation (25) does hold for C ′′. Since equation (25) does not hold for C ′,

(
e′ + k

2

)
(e − g + 1) ≥ (e′ − g′ + 1)e + (d(e′ − g′ + 1) − d ′(e − g + 1))

m̂

m

+ (n(e′ − g′ + 1) − n′(e − g + 1))
m′

m2
+ S′

m
(e − g + 1). (26)



68 E. Baldwin and D. Swinarski

As all other hypotheses of Proposition 5.6 have been met, we must conclude that condition

(ii) there fails. Thus there is some irreducible component Ȳj of Ȳ, the normalization of Y,

such that

degȲj
(L̄W Ȳ(−(P1 + · · · + Pk))) < 0.

Let Yj be the corresponding irreducible component of Y. By assumption, Yj does not col-

lapse under projection to P(W), and so degȲj
(L̄W Ȳ) = degYj

(LW) > 0. Putting this together,

0 < degȲj
(L̄W Ȳ) < #(Ȳj ∩ {P1, . . . , Pk}) = #(Yj ∩ C ′) =: iYj ,C ′ .

Thus iYj ,C ′ ≥ 2. We define D to be the connected subcurve Yj ∪ C ′. By the maximality

assumption on C ′, it follows that equation (25) does hold for D. We define constants

eD, kD, h0
D, dD, nD, and SD in analogy with the constants e′, k, h0, d ′, n′, and S′ for C ′.

Similarly, we define constants pertaining to Yj. Then

eD + kD

2
<

h0
De + (dh0

D − dD(e − g + 1)
)

m̂
m + (nh0

D − nD(e − g + 1)
)

m′
m2

e − g + 1
+ SD

m
. (27)

Observe that eD = e′ + eYj , dD = d ′ + dYj , and nD = n′ + nYj . The curve C is nodal, so we

conclude that

(i) kD = #((Yj ∪ C ′) ∩ (Y − Yj)) = #(C ′ ∩ Y) + #(Yj ∩ Y − Yj) − #(C ′ ∩ Yj); if we set

iYj ,Y := #(Yj ∩ Y), then kD = k + iYj ,Y − iYj ,C ′ ;

(ii) gD = g′ + gYj + iYj ,C ′ − 1;

(iii) h0
D = eD − gD + 1 = e′ + eYj − g′ − gYj − iYj ,C ′ + 2.

Note in particular that, since iYj ,C ′ ≥ 2 and since C ′ and Yj are connected, (ii) implies

that gD ≥ 1. But gD ≤ g, so if g = 0 then we already have the required contradiction. We

henceforth assume that g ≥ 1. Equation (27) may be rearranged to form

(
e′ + eYj + k + iYj ,Y − iYj ,C ′

2

)
(e − g + 1) <

(
e′ + eYj − g′ − gYj − iYj ,C ′ + 2

)
e

+ (d(e′ + eYj − g′ − gYj − iYj ,C ′ + 2
)− (d ′ + dYj

)
(e − g + 1)

)m̂
m

+ (n(e′ + eYj − g′ − gYj − iYj ,C ′ + 2
)− (n′ + nYj

)
(e − g + 1)

)m′

m2
+ SD

m
(e − g + 1).
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We subtract our assumption, line (26),

(
eYj + iYj ,Y − iYj ,C ′

2

)
(e − g + 1) <

(
eYj − gYj − iYj ,C ′ + 1

)
e

+ (d(eYj − gYj − iYj ,C ′ + 1
)− dYj (e − g + 1)

)m̂
m

+ (n(eYj − gYj − iYj ,C ′ + 1
)− nYj (e − g + 1)

)m′

m2

+
(
iYj ,Y − iYj ,C ′

)(
2g − 1

2

)
m

(e − g + 1). (28)

We rearrange, and use the inequality eYj ≤ iYj ,C ′ − 1.

(
iYj ,Y + iYj ,C ′

2
+ gYj − 1 + dYj

m̂

m
+ nYj

m′

m2
+
(
iYj ,C ′ − iYj ,Y

)(
2g − 1

2

)
m

)
e

<

(
iYj ,Y + iYj ,C ′

2
− 1 + dYj

m̂

m
+ nYj

m′

m2
+
(
iYj ,C ′ − iYj ,Y

)(
2g − 1

2

)
m

)

× (g − 1) − gYj

(
d

m̂

m
+ n

m′

m2

)
, (29)

so that finally we may estimate

(
iYj ,Y + iYj ,C ′

2
+ gYj − 1 + dYj

m̂

m
+ nYj

m′

m2
+
(
iYj ,C ′ − iYj ,Y

)(
2g − 1

2

)
m

)
(e − g + 1)

< −gYj

(
d

m̂

m
+ n

m′

m2

)
≤ 0. (30)

Recall that e − g + 1 = dim W > 0, that iYj ,C ′ ≥ 2, and that g ≥ 1. Thus the left-hand side

of equation (30) is strictly positive. This is a contradiction. No such C ′ exists, i.e. all

subcurves C ′ of C satisfy inequality (25), provided that k = #(C ′ ∩ Y).

Finally, suppose that we choose any k points P1 . . . , Pk on Ȳ such that π (Yi) ∈
(C ′ ∩ Y). Then k ≤ #(C ′ ∩ Y) := k′. We proved that equation (25) is true for k′, and though

we must take a little care with the dependence of S on k, it follows that equation (25) is

true for k. �
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Now we may extend this to general l ∈ HM(I ), to provide the promised extension

of the fundamental basic inequality.

Amplification 5.18. Let a be sufficiently large that e − 9g + 7 > 0, and let M ⊂ M̃, where

M̃ consists of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1),

}

with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d

m′

m2
>

1

4
+ g + n

4 + d m̂
m

2(e − g + 1) − n
.

Let l ∈ HM(I ). Let (C , x1, . . . , xn) be semistable with respect to l, where C is a con-

nected curve. Suppose C has at least two irreducible components. Let C ′ 	= C be a

reduced, complete subcurve of C and let Y := C − C ′. The subcurves C ′ and Y need

not be connected; suppose C has b connected components. Suppose there exist points

P1, . . . , Pk on Ȳ, the normalization of Y, satisfying π (Pi) ∈ Y ∩ C ′ for all 1 ≤ i ≤ k. Write

h0(pW(C ′),OpW (C ′)(1)) =: h0. Then there exists a triple (m, m̂, m′) ∈ M such that

e′ + k

2
<

h0e + (dh0 − d ′(e − g + 1)) m̂
m + (nh0 − n′(e − g + 1)) m′

m2

e − g + 1
+ bS

m
, (31)

where S = g + k(2g − 3
2 ) + q2 − ḡ + 1. �

Proof. First assume that C ′ is connected, and suppose that inequality (31) fails for

all (m, m̂, m′) ∈ M. It must follow that (C , x1, . . . , xn) does not satisfy the hypotheses of

Lemma 5.17. However, as (C , x1, . . . , xn) is semistable with respect to l, all the other hy-

potheses of that lemma are verified, so we must conclude that µLm,m̂,m′ ((C , x1, . . . , xn), λ′
C ′ ) >

0 for all (m, m̂, m′) ∈ M. It follows by Lemma 4.4 that (C , x1, . . . , xn) is unstable with re-

spect to l. The contradiction implies that there do indeed exist some (m, m̂, m′) ∈ M such

that equation (31) is satisfied.
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Now, let C ′
1, . . . , C ′

b be the connected components of C ′. We may prove a version

of equation (31) for each Ci, for i = 1, . . . , b. When we sum these inequalities over i, it

follows that

e′ + k

2
<

h0e + (dh0 − d ′(e − g + 1)) m̂
m + (nh0 − n′(e − g + 1)) m′

m2

e − g + 1
+ bS

m
.

�

We summarize the results of Sections 5.2 to 5.5. Recall again that since e is defined

to be a(2g − 2 + n + cd), and since 2g − 2 + n + cd is always at least 1, the denominators

e − g + 1 − d and 2(e − g + 1) − n are both positive.

Theorem 5.19. Let a be sufficiently large that e − 9g + 7 > 0, and let M ⊂ M̃, where M̃

consists of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1),

}

with

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
,

while

m̂

m
> 1 +

3
2 g − 1 + d + n m′

m2

e − g + 1 − d

m′

m2
>

1

4
+ g + n

4 + d m̂
m

2(e − g + 1) − n
.

Let l ∈ HM(I ) and let (C , x1, . . . , xn) be a connected curve, semistable with respect to l.

Then (C , x1, . . . , xn) satisfies that

(i) (C , x1, . . . , xn) is a reduced, connected, nodal curve, and the marked points are

distinct and nonsingular;

(ii) the map C → P(W) collapses no component of C , and induces an injective

map

H0(P(W),OP(W)(1)) → H0(C , LW);

(iii) h1(C , LW) = 0;
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(iv) any complete subcurve C ′ ⊂ C with C ′ 	= C satisfies the inequality

e′ + k

2
<

h0e + (dh0 − d ′(e − g + 1)) m̂
m + (nh0 − n′(e − g + 1)) m′

m2

e − g + 1
+ bS

m

of Amplification 5.18, where C ′ consists of b connected components and S =
g + k(2g − 3

2 ) + q2 − ḡ + 1. ��

Definition 5.20. If (C , x1, . . . , xn) ⊂ P(W)× Pr satisfies conditions (i)–(iv) of Theorem 5.19,

then the corresponding map (C , x1, . . . , xn)
pr→ Pr is referred to as a potentially stable

map. �

Remark. Gieseker defines his “potentially stable curves” (which have no marked points)

using the analogous statements, and the additional condition if the curve is not a moduli

stable curve, then destabilizing components must have two nodes and be embedded

as lines. A similar condition can be given here, and shown to be a corollary of the

fundamental inequality (for a restricted range M).

Namely, for a certain M, we can show that if l ∈ HM(I ) and (C , x1, . . . , xn) is

semistable with respect to l, and if C ′ is a rational component of C which is collapsed

under projection to Pr, then C ′ has at least two special points; if it has precisely two,

then it is embedded in P(W) as a line. The proof of this follows ([9], Proposition 1.0.9) and

full details may be seen in ([2], Corollary 5.5.1), but it has been omitted here for brevity,

as it is not needed to prove Theorem 6.1.

5.6 GIT semistable maps represented in J are moduli stable

In the previous sections, we have been studying I ss. In this section, we focus on J
ss

.

Recall the definitions of I and J, given in Sections 3.1 and 3.2: the scheme I is the Hilbert

scheme of n-pointed curves in P(W)× Pr, and J ⊂ I is the locally closed subscheme such

that for each (h, x1, . . . , xn) ∈ J,

(i) (Ch, x1, . . . , xn) is prestable, i.e. Ch is projective, connected, reduced and nodal,

and the marked points are distinct and nonsingular;

(ii) the projection map Ch → P(W) is a nondegenerate embedding;

(iii) the invertible sheaves (OP(W)(1) ⊗ OPr (1))|Ch and (ω⊗a
Ch

(ax1 + · · · + axn) ⊗
OPr (ca + 1))|Ch are isomorphic, where c is a positive integer; see Section 2.4.
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Moreover, recall from the discussion at the end of Section 5.1 that we had set out to

find a linearization such that J
ss

(L) ⊆ J. This, together with nonemptiness of J
ss

(L), is

sufficient to show that J//L SL(W) ∼= Mg ,n (Pr, d ) (Theorem 3.6).

In this section, we find a range M of (m, m̂, m′) such that J
ss

(l) ⊆ J when l ∈ HM(I ).

This range is much narrower than those we have considered so far.

Here is the result we have been seeking.

Theorem 5.21 (cf. [11], 4.55). Let M consist of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

⎧⎪⎪⎨
⎪⎪⎩
(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

(6g + 2q2 − 2ḡ − 1)(2a − 1)

⎫⎪⎪⎬
⎪⎪⎭

with

m̂

m
= ca

2a − 1
+ δ (32)

m′

m2
= a

2a − 1
+ η, (33)

where

|nη| + |dδ| ≤ 1

4a − 2
− 3g + q2 − ḡ − 1

2

m
. (34)

In addition, ensure that a is sufficiently large that

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
. (35)

Let l ∈ HM(J). Then J
ss

(l) is contained in J. �

Remark. The final assumption on the magnitude of m ensures that the right-hand side

of equation (34) is positive, and so equation (34) may be satisfied. There may seem to be

many competing bounds on the ratios m̂
m and m′

m2 , and on a. However, one may show that

equation (35) is implied by equations (32), (33), and (34) for all g, n, and d as long as

a ≥ 10 (cf. [2], proof of Theorem 5.21.1). Smaller values of a are possible for most g, n,

and d. Once a large enough a has been chosen, it is always possible to satisfy the rest of

the inequalities; the simplest way is to set δ and η to zero and pick large m, m̂, m′ with

the desired ratios.
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Proof. The range M here is contained within the range for Theorem 5.19. We may

thus apply Theorem 5.19: if (h, x1, . . . , xn) ∈ I ss(l ′) for some l ′ ∈ HM(I ), then (Ch, x1, . . . , xn) is

nodal and reduced, and one can find (m, m̂, m′) ∈ M satisfying inequality (31). However,

this theorem in fact deals with HM(J) and not HM(I ); on the other hand, any l ∈ HM(J) may

be regarded as the restriction of some l ′ ∈ HM(I ) to J, and then J
ss

(l) = J ∩ I ss(l ′). Thus,

we may use all our previous results.

Suppose we can show that J ∩ J
ss

(l) is closed in J
ss

(l). Then if x ∈ J
ss

(l) − J ∩ J
ss

(l),

there must be an open neighborhood of x in J
ss

(l) − J ∩ J
ss

(l), but this is a contradiction

as x is in J, so x is a limit point of J. It follows that J ∩ J
ss

(l) = J
ss

(l), i.e. J
ss

(l) ⊆ J.

We shall proceed by using the valuative criterion of properness to show that the

inclusion J ∩ J
ss

(l) ↪→ J
ss

(l) is proper, whence J ∩ J
ss

(l) is closed in J
ss

(l), as required. Let R

be a discrete valuation ring, with generic point ξ and closed point 0. Let α : Spec R → J
ss

(l)

be a morphism such that α(ξ ) ⊂ J ∩ J
ss

(l). Then we will show that α(0) ∈ J ∩ J
ss

(l).

Define a family D of n-pointed curves in P(W)× Pr by the following pullback

diagram:

D → C̃|J
ss

(l)

↓↑ σi ↓↑ σi

Spec R
α→ J

ss
(l),

where σ1, . . . , σn : Spec R → D are the sections giving the marked points. The images of

the σi in D are divisors, denoted σi(Spec R). By definition of J, we have

(OP(W)(1) ⊗ OPr (1))|Dξ
∼= ω⊗a

Dξ
(aσ1(ξ ) + · · · + aσn(ξ )) ⊗ OPr (ca + 1)|Dξ

.

We will write (D0, σ1(0), . . . , σn(0)) =: (C , x1, . . . , xn), and show that its represen-

tative in the universal family I is in fact in J. The curve C is connected, as a limit

of connected curves. We assumed that α(0) ∈ J
ss

(l) = J ∩ I ss(l ′), where l ′ ∈ HM(I ), and so

(C , x1, . . . , xn) satisfies conditions (i) above, and the curve pW(C ) ⊂ P(W) is nondegenerate.

We will show that the line bundles in condition (iii) are isomorphic. It follows from this

that

OP(W)(1)|C ∼= ωa
C (ax1 + · · · + axn) ⊗ OPr (ca)|C , (36)

and so this line bundle has positive degree on every component of C . However, we know

that L = ωC (x1 + · · · + xn) ⊗ OPr (c) has positive degree on each component of C if and only
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if pr : C → Pr is a stable map, and that when this true then La is very ample. Hence La

embeds C in P(W), i.e. pW : C ∼= pW(C ), and we have verified condition (ii) in the definition

of J. Thus, checking condition (iii) is sufficient to show that (C , x1, . . . , xn) is represented

in J.

Decompose C =⋃Ci into its irreducible components. Then we can write

(OPW(1) ⊗ OPr (1))|D ∼= ω⊗a
D/Spec R

(aσ1(Spec R) + · · · + aσn(Spec R))

⊗ OPr (ca + 1)|D ⊗ OD
(∑

aiCi

)
,

where the ai are integers. As OD-modules, OD(C ) ∼= OD, so we can normalize the integers

ai so that they are all non-negative and at least one of them is zero. Separate C into two

subcurves Y :=⋃ai=0 Ci and C ′ :=⋃ai>0 Ci. Since at least one of the ai is zero, we have

Y 	= ∅ and C ′ 	= C . Suppose for a contradiction that C ′ 	= ∅ (hence Y 	= C ). Let k = #(Y ∩ C ′)

and let b be the number of connected components of C ′. Since C is connected, we must

have k ≥ b. We will obtain our contradiction by showing that k
b < 1.

Any local equation for the divisor OD(
∑

aiCi) must vanish identically on every

component of C ′ and on no component of Y. Such an equation is zero therefore at each

of the k nodes in Y ∩ C ′. Thus we obtain the inequality

k ≤ degY

(
OD
(
−
∑

aiCi

))
= degY

(
OP(W)(1) ⊗ ω⊗−a

D0
(−aσ1(0) − · · · − aσn(0)) ⊗ OPr (−ca)

)
= eY − a(2gY − 2 + nY + k) − cadY.

Substituting e′ = e − eY, d ′ = d − dY, g′ = g − gY − k + 1, and e = a(2g − 2 + n + cd), this

is equivalent to

e′ − a(2g′ − 2 + n′ + cd ′) ≤ (a − 1)k. (37)

The hypotheses of Amplification 5.18 are satisfied for C ′ and k = #(Y ∩ C ′), with M

as in the statement of this theorem, and l ′ ∈ HM(I ): there exist (m, m̂, m′) ∈ M satisfying

equation (25). Write m̂
m = ca

2a−1 + δ and m′
m2 = a

2a−1 + η, assuming that δ and η satisfy the

hypotheses above.

e′ + k

2
<

(e′ − g′ + 1)e + m̂
m ((e′ − g′ + 1)d − (e − g + 1)d ′)

e − g + 1

+
m′
m2 ((e′ − g′ + 1)n − (e − g + 1)n′)

e − g + 1
+ bS

m
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⇔ k

2
(e − g + 1) < e′(g − 1) − e(g′ − 1) + a

2a − 1
((e′ − g′ + 1)(n + cd) − (e − g + 1)(n′ + cd ′))

+ η((e′ − g′ + 1)n − (e − g + 1)n′) + δ((e′ − g′ + 1)d − (e − g + 1)d ′)

+ bS

m
(e − g + 1). (38)

The final terms of the right-hand side are already in the form we want them, so for

brevity we shall only work on the first line.

e′(g − 1) − e(g′ − 1) + a

2a − 1
((e′ − g′ + 1)(n + cd) − (e − g + 1)(n′ + cd ′))

= e′
(

(g − 1) + a

2a − 1
(n + cd)

)
− (g′ − 1)

(
e + a

2a − 1
(n + cd)

)

− a

2a − 1
(e − g + 1)(n′ + cd ′)

= e′

2a − 1
((2a − 1)(g − 1) + a(n + cd)) − (g′ − 1)(e − g + 1)

+ 1

2a − 1
((2a − 1)(g − 1) + a(n + cd)) − a

2a − 1
(e − g + 1)(n′ + cd ′)

= e′

2a − 1
(e − g + 1) − (g′ − 1)(e − g + 1)

(
1 + 1

2a − 1

)
− a

2a − 1
(e − g + 1)(n′ + cd ′),

where for the last equality we have recalled that (2a − 1)(g − 1) + a(n + cd) = e − g + 1.

We substitute this in line (38) and then multiply by 2a−1
e−g+1 to obtain

(2a − 1)
k

2
< e′ − a(2g′ − 2 + n′ + cd ′) + (2a − 1)nη

(
e′ − g′ + 1

e − g + 1
− n′

n

)

+ (2a − 1)dδ

(
e′ − g′ + 1

e − g + 1
− d ′

d

)
+ (2a − 1)

bS

m
.

Now use equation (37) to see

k

2
< (2a − 1)nη

(
e′ − g′ + 1

e − g + 1
− n′

n

)
+ (2a − 1)dδ

(
e′ − g′ + 1

e − g + 1
− d ′

d

)
+ (2a − 1)

bS

m

⇒ k

2b
< (2a − 1)nη

(
e′ − g′ + 1

e − g + 1
− n′

n

)
+ (2a − 1)dδ

(
e′ − g′ + 1

e − g + 1
− d ′

d

)
+ (2a − 1)

S

m
.

(39)
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We must take care as S varies with k; explicitly, S = g + k(2g − 3
2 ) + q2 − ḡ + 1. Thus the

inequality we wish to contradict becomes

k

b

(
1

4a − 2
−
(
2g − 3

2

)
m

)
< nη

(
e′ − g′ + 1

e − g + 1
− n′

n

)
+ dδ

(
e′ − g′ + 1

e − g + 1
− d ′

d

)
+ g + q2 − ḡ + 1

m
.

(40)

It is time to use our bounds for η and δ. Note that

−1 ≤ e′ − g′ + 1

e − g + 1
− n′

n
≤ 1 − 1 ≤ e′ − g′ + 1

e − g + 1
− d ′

d
≤ 1.

We assumed that |nη| + |dδ| ≤ 1
4a−2 − 3g+q2−ḡ− 1

2
m . It follows that

nη

(
e′ − g′ + 1

e − g + 1
− n′

n

)
+ dδ

(
e′ − g′ + 1

e − g + 1
− d ′

d

)
≤ 1

4a − 2
− 3g + q2 − ḡ − 1

2

m
.

Hence line (40) says

k

b

(
1

4a − 2
−
(
2g − 3

2

)
m

)
<

1

4a − 2
− 2g − 3

2

m
.

By hypothesis, m > (6g + 2q2 − 2ḡ + 1)(2a − 1) > (2g − 3
2 )(4a − 2), and so we know that

1
4a−2 − 2g− 3

2
m > 0. Thus we have proved that k

b < 1, a contradiction.

The contradiction implies that we cannot decompose C into two strictly smaller

sub-curves C ′ and Y as described. Thus all the coefficients ai must be zero, and we have

an isomorphism

(OP(W)(1) ⊗ OPr (1))|D ∼= ω⊗a
D/Spec R

(aσ1(Spec R) + · · · + aσn(Spec R)) ⊗ OPr (ca + 1)|D.

In particular, (D0, σ1(0), . . . , σn(0)) satisfies condition (iii) of Definition 3.2. We conclude as

described that it is represented in J, and so α(0) ∈ J ∩ J
ss

. Hence J ∩ J
ss

(l) is closed in

J
ss

(l), which completes the proof. �

Remark. A slightly larger range of values for m′
m2 and m̂

m is possible; note that in fact
e′−g′+1
e−g+1 − n′

n > −1, enabling us to drop our lower bound to below 1
4a−1 . It is not clear

whether the upper bound can be improved.

Let us review what we know, given this result. It is time to apply the theory of

variation of GIT, to show that the semistable set J
ss

(l) is the same for all l ∈ HM(J), where
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M is as in the statement of Theorem 5.21. Recall the definitions from Section 2.3. In

particular, we will make use of Proposition 2.12.

Corollary 5.22. Let M be as given in the statement of Theorem 5.21. Let l ∈ HM(I ).

(i) If l ∈ HM(J), then J
ss

(l) = J
s
(l) ⊆ J.

(ii) If (m, m̂, m′) ∈ M and if J
ss

(Lm,m̂,m′ ) 	= ∅ then, when we work over C,

J//Lm,m̂,m′ SL(W) ∼= Mg ,n (Pr, d ).

(iii) The semistable set J
ss

(l) is the same for all l ∈ HM(J). �

Proof. Parts (i) and (ii) follow from Proposition 3.5, Theorem 3.6, and Theorem 5.21.

Part (iii): The region HM(J) is by definition convex, and lies in the ample cone

AG (X). Part (i) has shown us that if l ∈ HM(J), then J
ss

(l) = J
s
(l). Now the result follows

from Proposition 2.12. �

We have completed the first part of the proof. By Corollary 5.22, it only remains

to show that J
ss

(l) 	= ∅ for at least one l ∈ HM(J).

6 The Construction Finished

6.1 Statement of theorems

We are now in a position to state the main theorem of this paper: for a specified range

M of values (m, m̂, m′), the GIT quotient J//Lm,m̂,m′ SL(W) is isomorphic to Mg ,n (Pr, d ). First

we recall the notation from Section 3.1. The vector space W is of dimension e − g + 1,

where e = a(2g − 2 + n + cd), the integer c being sufficiently large that this is positive.

We embed the domains of stable maps into P(W). We denote by I the Hilbert scheme

of n-pointed curves in P(W)× Pr of bidegree (e, d). The subspace J ⊂ I corresponds to

a-canonically embedded curves, such that the projection to Pr is a moduli stable map;

this is laid out precisely in Definition 3.2.

The constants m1, m2, m3, q1, q2, q3, µ1, and µ2 are all defined in Section

4.4. In particular, we recall m3 and q2: if m, m̂ ≥ m3, then the morphism from I to

projective space, defined by (h, x1, . . . , xn) �→ Ĥm,m̂,m′ (h, x1, . . . , xn), is a closed immersion.

The constant q2 is chosen so that h0(C , IC ) ≤ q2, for any curve C ⊂ P(W)× Pr. We also

defined ḡ,
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ḡ := min{0, gȲ | Ȳ is the normalization of a complete subcurve Y contained

in a connected fiber Ch for some h ∈ Hilb(P(W)× Pr)}.

Recall that ḡ is bounded below by −(e + d) + 1.

In the statement of the theorem, note that the conditions on m explicitly ensure

that 1
4a−2 − 3g+q2−ḡ− 1

2
m > 0, and hence that the condition on η and δ is satisfied when η

and δ are sufficiently small. Further remarks on the bounds for m, m̂, m′, and a are given

after the statement of Theorem 5.21, which concerns the same range of linearizations.

Theorem 6.1. Fix integers g, n, and d ≥ 0 such that there exist smooth stable n-pointed

maps of genus g and degree d. Suppose m, m̂ > m3 and

m > max

⎧⎪⎪⎨
⎪⎪⎩
(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

(6g + 2q2 − 2ḡ − 1)(2a − 1)

⎫⎪⎪⎬
⎪⎪⎭

with

m̂

m
= ca

2a − 1
+ δ,

m′

m2
= a

2a − 1
+ η,

where

|nη| + |dδ| ≤ 1

4a − 2
− 3g + q2 − ḡ − 1

2

m
,

and in addition, let a be sufficiently large that

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
.

Then over C,

J//Lm,m̂,m′ SL(W) = Mg ,n (Pr, d ).
�

Corollary 6.2 (cf. [8], Lemma 8). Let m, m̂, m′ satisfy the conditions of Theorem 6.1. Let

X
ι

↪→ Pr be a projective variety. Let β ∈ H2(X)+ be the homology class of some stable

map. If β = 0, suppose that 2g − 2 + n ≥ 1. Write d := ι∗(β) ∈ H2(Pr)+. Then there exists a

closed subscheme JX,β of J such that over C,

JX,β//Lm,m̂,m′ |J X,β
SL(W) ∼= Mg,n(X, β),

where J X,β is the closure of JX,β in J. �
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Theorem 6.1 and Corollary 6.2 will have been proved when we know that J
ss

(l) =
J

s
(l) = J for l ∈ HM(J). By Corollary 5.22, it only remains to show nonemptiness of J

ss
(l)

for one such l. This nonemptiness is proved by induction on n, the number of marked

points. The base case, n = 0, closely follows Gieseker’s method, ([9], Theorem 1.0.0), and

was given in Swinarski’s thesis [28].

The inductive step is different. We take a stable map f : (C0, x1, . . . , xn) → Pr, and

remove one of the marked points, attaching a new genus 1 component to C0 in its place.

We extend f over the new curve by defining it to contract the new component to a point.

The result is a Deligne–Mumford stable map of genus g + 1, with n − 1 marked points.

This is inductively known to have a GIT semistable model, and semistability of a model

for f : (C0, x1, . . . , xn) → Pr follows.

In fact, the inductive step shows directly that J
ss

(l) = J for all l ∈ HM(J). It

follows from Proposition 5.21 that J
ss

(l) = J
s
(l) = J for such l. Hence we know that

J//Lm,m̂,m′ SL(W) ∼= Mg ,n (Pr, d ) for (m, m̂, m′) ∈ M, without needing to appeal to indepen-

dent constructions. Of course, such constructions are still needed for the base case.

However, when r = d = 0, the base case is Mg, constructed by Gieseker over Spec Z. The

theory we are using is valid over any field, as we have extended the results we need from

variation of GIT. Thus Mg,n is constructed over Spec k for any field k. As we shall show,

this is sufficient to show that Mg,n is in fact constructed over Spec Z.

As the constant m̂ is irrelevant in the case r = d = 0, we set it to zero and suppress

it in the notation Lm,m̂,m′ .

Theorem 6.3. Let g and n ≥ 0 be such that 2g − 2 + n > 0. Set e = a(2g − 2 + n). Suppose

m > m3 and

m > max

⎧⎪⎪⎨
⎪⎪⎩
(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

(6g + 2q2 − 2ḡ − 1)(2a − 1)

⎫⎪⎪⎬
⎪⎪⎭

with

m′

m2
= a

2a − 1
+ η,

where

|nη| ≤ 1

4a − 2
− 3g + q2 − ḡ − 1

m
,
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and in addition, ensure a is sufficiently large that

n
m′

m2
<

1

8
e − 9

8
g + 7

8
.

Then, as schemes over Spec Z,

J//Lm,m′ SL(W) = Mg,n. �

6.2 The base case: no marked points

Before we can state the theorem that maps from smooth domain curves are semistable,

there is a little more notation to mention. The constant ε is found by Gieseker in the

following lemma, which is based on ([18], Theorem 4.1). Note that the hypothesis printed

in [9] is that e ≥ 20(g − 1), but careful examination of the proof and [18] shows that

e ≥ 2g + 1 suffices.

Lemma 6.4 ([9], Lemma 0.2.4). Fix two integers g ≥ 2, e ≥ 2g + 1 and write N = e − g.

Then there exists ε > 0 such that for all integers r0 ≤ · · · ≤ rN (not all zero) with
∑

ri = 0,

and for all integers 0 = e0 ≤ · · · ≤ eN = e satisfying

(i) if ej > 2g − 2, then ej ≥ j + g;

(ii) if ej ≤ 2g − 2, then ej ≥ 2 j;

there exists a sequence of integers 0 = i1 ≤ · · · ≤ ik = N verifying the following inequality:

k−1∑
t=1

(
rit+1 − rit

)(
eit+1 + eit

)
> 2rNe + 2ε(rn − r0).

�

Now the statement of the theorem is as follows.

Theorem 6.5 (cf. [9], 1.0.0). For all K > 0 there exist integers p, b satisfying m = (p+
1)b > K, such that for any m̂1 > 2g − 1 satisfying m̂ := bm̂1 > m3, if C ⊂ P(W)× Pr → Pr

is a stable map, if C is nonsingular, if the map

H0(P(W),OP(W)(1))
ρ→ H0(pW(C ),OpW (C )(1)

)

is an isomorphism, and if LW is very ample (so that C ∼= pW(C )), then C ∈ I ss(Lm,m̂). �
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Remark. The values that m and m̂ must take will be made clear in the course of the

proof.

Proof. Let C ⊂ P(W)× Pr→Pr be such a map. Let λ be a 1-PS of SL(W). There exist a basis

{w0, . . . , wN} of H0(P(W),OP(W)(1)) and integers r0 ≤ · · · ≤ rN such that
∑

ri = 0 and the ac-

tion of λ is given by λ(t )wi = tri wi. By our hypotheses, the map pW∗ρ : H0(P(W),OP(W)(1)) →
H0(C , LW) is injective. Write w′

i := pW∗ρ(wi). Let E j be the invertible subsheaf of LW gener-

ated by w′
0, . . . , w′

j for 0 ≤ j ≤ N = e − g, and write ej = deg E j. Note that EN = LW, since

LW is very ample, hence generated by global sections, h0(C , LW) = e − g + 1 and w′
0, . . . , w′

N

are linearly independent. The integers e0, . . . , eN = e satisfy the following two properties:

(i) If ej > 2g − 2, then ej ≥ j + g.

(ii) If ej ≤ 2g − 2, then ej ≥ 2 j.

To see this, note that since by definition E j is generated by j + 1 linearly inde-

pendent sections, we have h0(C , E j) ≥ j + 1. If ej = deg E j > 2g − 2 then H1(C , E j) = 0, so

by Riemann–Roch, ej = h0 − h1 + g − 1 ≥ j + g. If ej ≤ 2g − 2 then H0(C , ωC ⊗ E−1
j ) 	= 0,

so by Clifford’s theorem, j + 1 ≤ h0 ≤ ej

2 + 1.

The hypotheses of Lemma 6.4 are satisfied with these ri and ej, so there exist

integers 0 = i1, . . . , ik = N such that

k−1∑
t=1

(
rit+1 − rit

)(
eit+1 + eit

)
> 2rNe + 2ε(rN − r0).

Suppose p and b are positive integers, and set m = (p+ 1)b; assume that m > m3.

Recall that H0(P(W),OP(W)((p+ 1)b)) has a basis consisting of monomials of degree (p+ 1)b

in w0, . . . , wN . For all 1 ≤ t ≤ k, let

Vit ⊂ H0(P(W),OP(W)(1))

be the subspace spanned by {w0, . . . , wit }. Let m̂1 be another positive integer such that

m̂ := bm̂1 > m3, so that

ρ̂C
(p+1)b,m̂ : H0(P(W)× Pr,OP(W)((p+ 1)b) ⊗ OPr (m̂)) → H0(C , L (p+1)b

W ⊗ Lm̂
r

)

is surjective. For all triples (t1, t2, s) with 1 ≤ t1 < t2 ≤ k and 0 ≤ s ≤ p, let

V p−s
it1

Vs
it2

VN ⊂ H0(P(W)× Pr,OP(W)(p+ 1) ⊗ OPr (m̂1))
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be the subspace spanned by monomials of bidegree (p+ 1, m̂1), where the degree p+ 1

part has the following form:

xj1 · · · xjp−s yj1 · · · yjs z j, where xjk ∈ Vit1
, yjk ∈ Vit2

, zj ∈ VN = W.

We write (V p−s
it1

Vs
it2

VN )b for Symb(V p−s
it1

Vs
it2

VN ), which consists of monomials of bidegree

((p+ 1)b, bm̂1) in H0(P(W)× Pr,OP(W)((p+ 1)b) ⊗ OPr (m̂)). Now set

(
V p−s

it1
Vs

it2
VN
)b

:= ρ̂C
(p+1)b,m̂

((
V p−s

it1
Vs

it2
VN
)b)

.

We have obtained a filtration of H0(C , L (p+1)b
W ⊗ Lm̂

r ),

0 ⊂ (V p
i1 V0

i2 VN
)b ⊂ (V p−1

i1 V1
i2 VN

)b ⊂ · · · ⊂ (V1
i1 V p−1

i2 VN
)b

⊂ (V p
i2 V0

i3 VN
)b ⊂ (V p−1

i2 V1
i3 VN

)b ⊂ · · · ⊂ (V1
i2 V p−1

i3 VN
)b

...
...

...
...

...
...

...
...

⊂ (V p
ik−1

V0
ik VN

)b ⊂ (V p−1
ik−1

V1
ik VN

)b ⊂ · · · ⊂ (V1
ik−1

V p−1
ik VN

)b
⊂ (V0

ik−1
V p

ik VN
)b = H0(C , L (p+1)b

W ⊗ Lm̂
r

)
.

(41)

Claim 6.6 ([9], p. 29). There exists an integer b′ which is independent of C , t1, and t2

such that if b ≥ b′, then

(
V p−s

it1
Vs

it2
VN
)b = H0(C ,

(
E p−s

it1
⊗ Es

it2
⊗ LW

)b ⊗ Lm̂
r

)
. �

Proof of Claim 6.6. By hypothesis, LW is very ample. Note that deg Lr = d > 0, since C

is nonsingular, hence irreducible. Thus if m̂1 > 2g + 1, then Lm̂1
r is very ample.

By definition of the sheaves E j, it follows that the linear system (V p−s
it1

Vs
it2

VN )b

restricted to C generates

(
E p−s

it1
⊗ Es

it2
⊗ LW

)b ⊗ Lm̂
r

and

ρ̂C
(p+1)b,m̂

((
V p−s

it1
Vs

it2
VN
)b) ⊆ H0(C ,

(
E p−s

it1
⊗ Es

it2
⊗ LW

)b ⊗ Lm̂
r

)
. (42)
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Recall that m̂ = bm̂1 and suppose m̂1 > 2g + 1, so that Lm̂1
r is very ample, hence

generated by global sections. Eit1
and Eit2

are generated by global sections, so it follows

that ρ̂C
p+1,m̂1

(V p−s
it1

Vs
it2

VN ) is a very ample base point free linear system on C .

Let ψ = ψp+1,m̂1 be the projective embedding corresponding to the linear system

ρ̂C
p+1,m̂1

(V p−s
it1

Vs
it2

VN ). Let IC/P be the ideal sheaf defining C as a closed subscheme of P :=
P(ρ̂C

p+1,m̂1
(V p−s

it1
Vs

it2
VN )). There is an exact sequence of sheaves on P as follows:

0 → IC/P → OP → ψ∗OC → 0.

Tensoring by the very ample sheaf OP(b), we obtain

0 → IC/P(b) → OP(b) → (ψ∗OC )(b) → 0. (43)

Write

F := E p−s
it1

⊗ Es
it2

⊗ LW ⊗ Lm̂1
r

∼= ψ∗OP(1).

We have

(ψ∗OC )(b) := ψ∗OC ⊗OP OP(b)

∼= ψ∗(OC ⊗OC ψ∗OP(1)b)

∼= ψ∗(Fb) since ψ∗OP(1) ∼= F .

Now the exact sequence (43) reads

0 → IC/P(b) → OP(b) → ψ∗(Fb) → 0.

In the corresponding long exact sequence in cohomology, we have

· · · → H0(P,OP(b)) → H0(P, ψ∗Fb) → H1(P, IC/P(b)) → · · · . (44)

The so-called “Uniform m Lemma” (cf. [11], Lemma 1.11) ensures that there is an

integer b′ > 0 depending on the Hilbert polynomial P , but not on the curve C such that
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H1(P, IC/P(b)) = 0 if b > b′. Then for such b, the exact sequence (44) implies that the map

H0(P,OP(b)) → H0(C ,Fb)

is surjective. Recall that P := P(ρ̂C
p+1,m̂1

(V p−s
it1

Vs
it2

VN )). Then

H0(P,OP(b)) ∼= Symb(ρ̂C
p+1,m̂1

(
V p−s

it1
Vs

it2
VN
))

.

Also there is a surjection

Symb(V p−s
it1

Vs
it2

VN
)→ Symb(ρ̂C

p+1,m̂1

(
V p−s

it1
Vs

it2
VN
))

,

so putting this all together we have a surjection

Symb(V p−s
it1

Vs
it2

VN
)→ H0(C ,Fb),

that is,

ρ̂C
(p+1)b,m̂ :

(
V p−s

it1
Vs

it2
VN
)b → H0(C ,

(
E p−s

it1
⊗ Es

it2
⊗ LW

)b ⊗ Lm̂
r

)
(45)

is surjective. It follows from lines (42) and (45) that

(
V p−s

t1
Vs

t2
VN
)b = H0(C ,

(
E p−s

it1
⊗ Es

it2
⊗ LW

)b ⊗ Lm̂
r

)
,

completing the proof of Claim 6.6. �

Proof of Theorem 6.5 continued. Take b ≥ 2g + 1 so that we have the vanishing

H1(C , (E p−s
it1

⊗ Es
it2

⊗ LW)b ⊗ Lm̂
r ) = 0. We use Riemann–Roch to calculate

dim
(
V p−s

it Vs
it+1

V
)b = h0(C ,

(
E p−s

it ⊗ Es
it+1

⊗ LW
)b ⊗ Lm̂

r

)
= b((p− s)eit + seit+1 + e) + dm̂ − g + 1.

We assume for the rest of the proof that p, b, and m̂1 are sufficiently large that
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p > max

{
e + g,

3
2 e + 1

ε

}
,

b > max{p, (2g + 1)b′},
m := (p+ 1)b > max{m3, K},

m̂1 > 2g + 1,

m̂ := bm̂1 > m3.

Choose a basis B̂(p+1)b,m̂ of H0(P(W)× Pr,OP(W)((p+ 1)b) ⊗ OPr (m̂)) of monomials

M̂i of bidegree ((p+ 1)b, m̂). Pick monomials M̂1, . . . , M̂P ((p+1)b,m̂) in B̂(p+1)b,m̂ such that

ρ̂C
(p+1)b,m̂(M̂1), . . . , ρ̂C

(p+1)b,m̂(M̂P ((p+1)b,m̂)) is a basis of H0(C , L (p+1)b
W ⊗ Lm̂

r ), which respects the

filtration (41). Observe that if a monomial M̂ ∈ (V̄ p−s
i1 V̄s

i2 V̄ )b − (V̄ p−s+1
i1 V̄s−1

i2 V̄ )b, then M̂ has

λ-weight wλ(M̂) ≤ n((p− s)rit + srit+1 + rN ). Moreover, as our basis respects the filtration

(41), we may count how many such M̂ there are.

We now estimate the total λ-weight of M̂1, . . . , M̂P ((p+1)b,m̂), which gives an upper

bound for µLm,m̂ (C , λ) as follows:

µLm,m̂ (C , λ) ≤
P (m)+dm̂∑

i=1

wλ(M̂i) ≤ b
(
pri1 + rN

)
dim

(
V p

i1 V0
i2 V
)b

+
∑

0 ≤ s ≤ p
1 ≤ t ≤ k − 1

b
(
(p− s)rit + srit+1 + rN

) (
dim

(
V p−s

it Vs
it+1

V
)b − dim

(
V p−s+1

it Vs−1
it V

)b)
.

(46)

The first term on the right-hand side of equation (46) is

b
(
pri1 + rN

)(
b
(
pei1 + eik

)+ dm̂ − g + 1
) = b(pr0 + rN )dm̂ + b(pr0 + rN )(b(pe0 + e) − g + 1).

The factor dim (V p−s
it Vs

it+1
V )b − dim (V p−s+1

it Vs−1
it V )b of the summand is

(
b
(
(p− s)eit + seit+1 + e

)+ dm̂ − g + 1
)

− (b((p− s + 1)eit + (s − 1)eit+1 + e
)+ dm̂ − g + 1

) = b
(
eit+1 − eit

)
.

Note that nearly all of the terms having dm̂ as a factor have “telescoped.” We have
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µLm,m̂ (C , λ) ≤ db(pr0 + rN )m̂ + b(pr0 + rN )(b(pe0 + e) − g + 1)

+
∑

0 ≤ s ≤ p
1 ≤ t ≤ k − 1

b
(
(p− s)rit + srit+1 + rN

)(
b
(
eit+1 − eit

))
.

The sum of the second two terms is exactly the expression Gieseker obtains at the bottom

of page 30 in [9]. Following Gieseker’s calculations up to page 34, we see that

µLm,m̂ (C , λ) < db
(
pri1 + rN

)
m̂ + b2 p(rN − r0)

(
−εp+ 3e

2
+ e + g − 1

p

)
< db

(
pri1 + rN

)
m̂,

where the last inequality follows because p > max{e + g,
3
2 e+1

ε
}. Next, we may estimate

rN =∑N−1
i=0 −ri ≤ −Nr0, and we know that r0 < 0, so we have shown that

µLm,m̂ (C , λ) ≤ dbr0(p− N)dm̂ < 0,

as, by hypothesis, p > e − g = N.

Nowhere in the proof have we placed any conditions on the 1-PS λ, so the result

is true for every 1-PS of SL(W). Thus C is SL(W)-stable with respect to Lm,m̂. �

Note in particular that the hypotheses are satisfied by all smooth maps repre-

sented in J, by definition of L and a (cf. Section 3.1). We may state the base cases of our

induction.

Proposition 6.7. Fix n = 0. Let M consist of those (m, m̂, m′) such that m′ ≥ 1, and

m, m̂ > m3 with

m > max

⎧⎪⎪⎨
⎪⎪⎩
(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

(6g + 2q2 − 2ḡ − 1)(2a − 1)

⎫⎪⎪⎬
⎪⎪⎭ ,

while

m̂

m
= ca

2a − 1
+ δ,
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where

|dδ| ≤ 1

4a − 2
− 3g + q2 − ḡ − 1

2

m
,

and in addition a is sufficiently large that

d
m̂

m
<

1

8
e − 9

8
g + 7

8
.

Let l ∈ HM(J). Then, as schemes over C,

J
ss

(l) = J
s
(l) = J.

�

Proof. By Theorem 6.5, there exists (m, m̂, m′) ∈ M such that I ss(Lm,m̂,m′ ) is nonempty.

In particular, any smooth curve in J satisfies the hypotheses of Theorem 6.5, and

so J
ss

(Lm,m̂,m′ ) is nonempty. By Theorem 5.21, we know that J
ss

(Lm,m̂,m′ ) ⊆ J. Then by

Theorem 3.6(ii), we see that J
ss

(Lm,m̂,m′ ) = J
s
(Lm,m̂,m′ ) = J. The result follows for all

l ∈ HM(J) by Corollary 5.22. �

The base case for stable curves is proved over Spec Z.

Proposition 6.8. Fix n = 0, and r = d = 0. Let M consist of those (m, m′) ∈ N2 such that

m′ ≥ 1, and m > m3 with

m > max

{(
g − 1

2 + e(q1 + 1) + q3 + µ1m2
)
(e − g + 1),

(10g + 3q2 − 3ḡ)(e − g + 1)

}
.

Let l ∈ HM(J). Then, as schemes over Spec Z,

J
ss

(l) = J
s
(l) = J.

�

Proof. By Theorem 6.5, there exists (m, m′) ∈ M such that I ss(Lm,m̂) is nonempty. In par-

ticular, any smooth curve in J satisfies the hypotheses of Theorem 6.5, and so J
ss

(Lm,m′ )

is nonempty. However, by ([9], Theorem 2.0.2), the GIT quotient J//Lm,m′ SL(W) is isomor-

phic to the moduli space of stable curves, Mg. In particular, Gieseker proves here that
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every stable curve is represented in J//Lm,m′ SL(W). Then by Corollary 5.22(iii), we see that

J
ss

(l) = J for every l ∈ HM(J). �

6.3 The general case

We suppose that n > 0 and fix M as in the statement of Theorem 6.1, then use induction

to show that J
ss
g,n,d (l) = J

s
g,n,d (l) = J for all l ∈ HM(J). By Corollary 3.5, it follows that

J//Lm,m̂,m′ SL(W) ∼= Mg ,n (Pr, d ) for any (m, m̂, m′) ∈ M. As our inductive work uses various

spaces of maps with differing genera and numbers of marked points, we shall be more

precise about using the subscripts g, n, d in this section. Note that, indeed m1, m2, m3,

q1, q2, q3, µ1, and µ2 all depend on the genus. We may specify in addition that these are

increasing as functions of the genus.

The inductive hypothesis is given in the following proposition. We fix g, n, and

d such that n ≥ 1 and smooth stable n-pointed maps of genus g and degree d do exist.

Fix an integer c ≥ 2 (the case (g, n, d) = (0, 0, 1) does not arise here, so this will suffice

according to the remark in Section 2.4). We suppose that the theorem has been proved

to have stable maps of degree d, from curves of genus g + 1 with n − 1 marked points.

As the base case, where the map has no marked points, works for any genus, this is a

valid inductive hypothesis to make. Since our assumptions imply 2g − 2 + n + cd > 0, it

follows that 2(g + 1) − 2 + (n − 1) + cd > 0, so smooth stable maps of this type do exist.

Proposition 6.9. Let g, n, and d be such that 2g − 2 + n + cd > 0 and assume in addition

that n ≥ 1. Let Mg,n,d consist of those (m, m̂, m′) such that m, m̂ > m3 and

m > max

⎧⎪⎪⎨
⎪⎪⎩
(
g − 1

2 + eg,n,d (q1 + 1) + q3 + µ1m2
)
(eg,n,d − g + 1),

(10g + 3q2 − 3ḡ)(eg,n,d − g + 1)

(6g + 2q2 − 2ḡ − 1)(2a − 1)

⎫⎪⎪⎬
⎪⎪⎭ , (47)

where m1, m2, m3, q1, q2, q3, µ1, and µ2, are those defined in Section 4.4, taken to be

functions of the genus g; in addition,

m̂

m
= ca

2a − 1
+ δ

m′

m2
= a

2a − 1
+ η,

where

|nη| + |dδ| ≤ 1

4a − 2
− 3g + q2 − ḡ − 1

2

m
,
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and ensure in addition that a is sufficiently large that

d
m̂

m
+ n

m′

m2
<

1

8
e − 9

8
g + 7

8
.

Work over Spec k. Assume that

J
ss
g+1,n−1,d (l ′) = J

s
g+1,n−1,d (l ′) = Jg+1,n−1,d

for all l ′ ∈ HMg+1,n−1,d (Jg+1,n−1,d ). Then for all l ∈ HMg,n,d (Jg,n,d ),

J
ss
g,n,d (l) = J

s
g,n,d (l) = Jg,n,d

as schemes over an arbitrary field k. �

Proof. Note that if n ≥ 1, then

eg+1,n−1,d − (g+ 1) + 1 = (2a − 1)g+ a(n − 1 + cd) > (2a − 1)(g− 1) + a(n + cd) = e− g+ 1.

We conclude, by the definition and specifications given above, that Mg+1,n−1,d ⊆ Mg,n,d .

Fix specific integers (m, m̂, m′) ∈ Mg+1,n−1,d , satisfying

m̂

m
= ca

2a − 1

m′

m2
= a

2a − 1
,

and also such that m
n (1 − S14) is an integer, where S14 := g(a−1)

(2a−1)g+a(n−1+cd) . Our inductive

hypothesis implies in particular that

J
ss
g+1,n−1,d (Lm,m̂,m′ ) = Jg+1,n−1,d .

We shall now find m′′ such that (m, m̂, m′′) ∈ Mg,n,d , with J
ss
g,n,d (Lm,m̂,m′′ ) = Jg,n,d .

Fix some (h, x1, . . . , xn) ∈ Jg,n,d . Write C0 := Ch, so that (h, x1, . . . , xn) models a sta-

ble map pr : (C0, x1, . . . , xn) → Pr in Mg ,n (Pr, d ). Also fix an elliptic curve (C1, y) ⊂ P(W1,1,0)

represented in J1,1,0.

Let ev : H0(P(Wg,n,d ),OP(Wg,n,d )(1)) → k be the evaluation map at the closed point

pWg,n,d (xn) ∈ P(Wg,n,d ), and let Vg,n,d be its kernel so that Vg,n,d is the codimension 1 sub-

space of Wg,n,d consisting of sections vanishing at pWg,n,d (xn). Similarly, let V1,1,0 be the

codimension 1 subspace of W1,1,0 corresponding to sections vanishing at y.
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Now note that

dim Vg,n,d + dim V1,1,0 + 1 = a(2g − 2 + n + cd) − g + a · 1 − 1 + 1 = dim Wg+1,n−1,d .

Hence, if we let U be a dimension 1 vector space over k, we may pick an isomorphism

Wg+1,n−1,d
∼= Vg,n,d ⊕ U ⊕ V1,1,0.

We further choose isomorphisms Wg,n,d
∼= Vg,n,d ⊕ Uand W1,1,0

∼= U ⊕ V1,1,0 which fix Vg,n,d

and V1,1,0, respectively. Thus we regard Wg,n,d and W1,1,0 as subspaces of Wg+1,n−1,d . The

most important of these identifications we shall write as

Wg+1,n−1,d = Wg,n,d ⊕ V1,1,0.

We project Wg+1,n−1,d → Wg,n,d along V1,1,0 and induce an embedding

P(Wg,n,d ) ↪→ P(Wg+1,n−1,d );

similarly P(W1,1,0) ↪→ P(Wg+1,n−1,d ). Then we induce closed immersions pWg,n,d (C0) ↪→
P(Wg+1,n−1,d ) and C1 ↪→ P(Wg+1,n−1,d ); we shall consider the curves as embedded in this

space.

If s ∈ V1,1,0 ⊂ Wg+1,n−1,d is regarded as a section of OP(Wg+1,n−1,d )(1), then s(x) = 0

for any x in P(Wg,n,d ), and in particular s(x) = 0 for any x in pW(C0). In other words,

ρ pW (C0)(V1,1,0) = {0}, where we write ρ pW (C0) for restriction of sections to pW(C0). Similarly,

ρC1 (Vg,n,d ) = {0}.
The images of P(Wg,n,d ) and P(W1,1,0) meet only at one point, P(U ) ∈ P(Wg+1,n−1,d ).

We shall denote this point by P . If the curves C0 and C1 meet, it could only be at this

point. Consider pW(xn); by the definitions, we know s(pW(xn)) = 0 for all s ∈ V1,1,0 and for

all s ∈ Vg,n,d . We conclude that pW(xn) ∈ P(U ). Similarly, y ∈ P(U ). Thus, after the curves

have been embedded in P(Wg+1,n−1,d ), the points pW(xn) and y coincide at P . We define

(C , x1, . . . , xn−1) := (C0 ∪ C1, x1, . . . , xn−1).

As the curves C0 and C1 are smooth at xn and y, respectively, and they lie in two linear

subspaces meeting transversally at P , the singular point of C at P is a node.
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The map pr : (C0, x1, . . . , xn) → Pr may be extended over C if we define it to contract

C1 to the point pr(xn). Thus we have the graph of a prestable map,

(C , x1, . . . , xn−1) ⊂ P(Wg+1,n−1,d ) × Pr.

We wish to show that (C , x1, . . . , xn−1) is represented by a point in Jg+1,n−1,d , so we check

conditions (i)–(iii) of Definition 3.2. Clearly (i) is satisfied: C is projective, connected,

reduced, and nodal, and the n − 1 marked points are distinct and nonsingular. By con-

struction, C → P(Wg+1,n−1,d ) is a nondegenerate embedding, so (ii) is satisfied. We must

check (iii), the isomorphism of line bundles.

In general, if C is a nodal curve and C ′ ⊂ C is a complete subcurve, meeting the

rest of C in only one node at Q, then

ωC |C ′ = ωC ′ (Q).

Thus in our situation, as (C0, x1, . . . , xn) is represented in Jg,n,d ,

(
OP(Wg+1,n−1,d )(1) ⊗ OPr (1)

)∣∣
C0

= (OP(Wg,n,d )(1) ⊗ OPr (1)
)∣∣

C0

∼= ω⊗a
C0

(ax1 + · · · + axn) ⊗ OPr (ca + 1)|C0

= (ω⊗a
C (ax1 + · · · + axn−1) ⊗ OPr (ca + 1)|C

)∣∣
C0

. (48)

To analyze C1, we also observe that OPr (1)|C1 is trivial, as f contracts C1 to a point.

(
OP(Wg+1,n−1,d )(1) ⊗ OPr (1)

)∣∣
C1

= OP(W1,1,0)(1)|C1

∼= ω⊗a
C1

(ay)

= (ω⊗a
C (ax1 + · · · + axn−1) ⊗ OPr (ca + 1)|C

)∣∣
C1

. (49)

The curve C was defined as C0 ∪ C1. We have an induced isomorphism of line bundles

(
OP(Wg+1,n−1,d )(1) ⊗ OPr (1)

)∣∣
C\{P }

∼= (ω⊗a
C (ax1 + · · · + axn−1) ⊗ OPr (ca + 1)|C

)∣∣
C\{P }

found by excluding P from the two isomorphisms above. To extend this over P , we simply

need to insist that the isomorphisms over C0 and C1 are consistent at P . When we restrict

to the fiber over P , the two isomorphisms (48) and (49) are scalar multiples of one another,
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so we obtain consistency at P by multiplying the isomorphism (49) by a suitable nonzero

scalar, once the isomorphism (48) is given.

Thus, (C , x1, . . . , xn−1) is indeed represented in Jg+1,n−1,d , as required. Now we use

our inductive hypothesis: we know that J
ss
g+1,n−1,d (Lm,m̂,m′ ) = Jg+1,n−1,d , so in particular

(C , x1, . . . , xn−1) is GIT semistable with respect to Lm,m̂,m′ .

For the following analysis, we must clarify the notation for our standard line

bundles. For i = 1, 2, let

Ci
ιCi ,C−→ C

ιC−→ P(Wg+1,n−1,d ) × Pr

be the inclusion morphisms. Note that the composition

C0

ιC0,P(Wg,n,d )−→ P(Wg,n,d ) × Pr
ιP(Wg,n,d )−→ P(Wg+1,n−1,d ) × Pr

is equal to ιC0,C ◦ ιC . Thus

ι∗C0,P(Wg,n,d ) p
∗
Wg,n,d

OP(Wg,n,d )(1) = ι∗C0,C ι∗C p∗
Wg+1,n−1,d

OP(Wg+1,n−1,d )(1).

Therefore we may denote this line bundle by LW C0 , as we need not specify which “W”

space we have used. LW C1 is defined similarly. We let

Lr C0 := ι∗C0,C ι∗C p∗
rOPr (1) Lr C1 := ι∗C1,C ι∗C p∗

rOPr (1),

though Lr C1 is in fact trivial, since C1 is collapsed by projection to P(r).

For i = 0, 1, define restriction maps to our subcurves

ρ̂
Ci
m,m̂ : H0(P(Wg+1,n−1,d ) × Pr,OP(Wg+1,n−1,d )(m) ⊗ OPr (m̂)) → H0(Ci, Lm

W Ci
⊗ Lm̂

r Ci

)
.

We show that these are surjective for m and m̂ sufficiently large. The conditions on m

and m̂ imply m, m̂ > m3, so the restriction map

ρ̂
C0,P(Wg,n,d )
m,m̂ : H0(P(Wg,n,d ) × Pr,OP(Wg,n,d )(m) ⊗ OPr (m̂)

)→ H0(C0, Lm
W C0

⊗ Lm̂
r C0

)



94 E. Baldwin and D. Swinarski

is surjective by Grothendieck’s uniform m lemma (cf. Proposition 4.6(i)). The restriction

to a linear subspace

ρ̂
P(Wg,n,d )
m,m̂ : H0(P(Wg+1,n−1,d ) × Pr,OP(Wg+1,n−1,d )(m) ⊗ OPr (m̂)

)
→ H0(P(Wg,n,d ) × Pr,OP(Wg,n,d )(m) ⊗ OPr (m̂)

)

is surjective, hence by composition ρ̂
C0
m,m̂ = ρ̂

C0,P(Wg,n,d )
m,m̂ ◦ ρ̂

P(Wg,n,d )
m,m̂ is surjective. Surjectivity

of ρ̂
C1
m,m̂ is shown similarly. Moreover, for i = 0, 1, the restriction ρ̂

Ci
m,m̂ factors through

maps which restrict sections of C to those on one of the subcurves

ρ̂
Ci ,C
m,m̂ : H0(C , Lm

W C ⊗ Lm̂
r C

)→ H0(Ci, Lm
W Ci

⊗ Lm̂
r Ci

)
,

and thus the maps ρ̂
C0,C
m,m̂ and ρ̂

C1,C
m,m̂ are also surjective.

To relate GIT semistability of (C , x1, . . . , xn−1) to that of (C0, x1, . . . , xn), we shall

display the vector space H0(C , Lm
W C ⊗ Lm̂

r C ) as the direct sum of two subspaces. Recall

that we wrote

Wg+1,n−1,d = Wg,n,d ⊕ V1,1,0.

Fix a basis w0, . . . wNg+1,n−1,d for Wg+1,n−1,d respecting this decomposition. Let B̂m,m̂ be a

basis of H0(P(Wg+1,n−1,d ) ⊗ Pr,OP(Wg+1,n−1,d )(m) ⊗ OPr (m̂)) of monomials of bidegree (m, m̂),

where the degree m part is a monomial in w0, . . . wNg+1,n−1,d .

Let �
m,m̂
+ be the subspace of H0(P(Wg+1,n−1,d ) × Pr,OP(Wg+1,n−1,d )(m) ⊗ OPr (m̂))

spanned by all monomials in B̂m,m̂ which have at least one factor from V1,0,0. Namely,

�
m,m̂
+ is spanned by monomials of bidegree (m, m̂), where the degree m part has form

wi1wi2 · · ·wim , with wi1 ∈ V1,1,0. The remaining factors may come from either Wg,n,d or V1,0,0.

Similarly, let �
m,m̂
0 ⊂ H0(P(Wg+1,n−1,d ) × Pr,OP(Wg+1,n−1,d )(m) ⊗ OPr (m̂)) be the sub-

space spanned by monomials in B̂m,m̂ which have no factors from V1,0,0. In other words,

all of the factors in the degree m part come from Wg,n,d .

By inspecting the basis B̂m,m̂, we see that as vector spaces,

H0(P(Wg+1,n−1,d ) × Pr,OP(Wg+1,n−1,d )(m) ⊗ OPr (m̂)
) = �

m,m̂
+ ⊕ �

m,m̂
0 . (50)

We wish to show that this decomposition restricts to the curve C . Set

�
m,m̂
+ := ρ̂C

m,m̂

(
�

m,m̂
+
) ⊂ H0(C , Lm

W C ⊗ Lm̂
r C

)
�

m,m̂
0 := ρ̂C

m,m̂

(
�

m,m̂
0

) ⊂ H0(C , Lm
W C ⊗ Lm̂

r C

)
.
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We first make some technical observations on where such sections vanish.

Claim 6.10. Let �
m,m̂
+ and �

m,m̂
0 be defined as above.

(i) If 0 	= s ∈ �
m,m̂
+ , then ρ̂

C0,C
m,m̂ (s) = 0 and ρ̂

C1,C
m,m̂ (s) 	= 0.

(ii) The image ρ̂
C1,C
m,m̂ (�

m,m̂
0 ) is 1-dimensional, and if s ∈ �

m,m̂
0 with s(P ) = 0, then

ρ̂
C1,C
m,m̂ (s) = 0. �

Proof of Claim 6.10. (i) Recall that we observed that, for any w ∈ V1,1,0, the restriction

ρC0 (w) = 0. The space �
m,m̂
+ is spanned by monomials containing a factor from V0,1,1, so

it follows that if s ∈ �
m,m̂
+ , then ρ̂

C0,C
m,m̂ (s) = 0. However, if s ∈ �

m,m̂
+ ⊂ H0(C , Lm

W C ⊗ Lm̂
r C ) and

s 	= 0, then s must be nonzero on one of C0 and C1, whence ρ̂
C1,C
m,m̂ (s) 	= 0.

(ii) Recall that we wrote Wg,n,d
∼= Vg,n,d ⊕ U , where Vg,n,d consists of sections van-

ishing at pW(P ), and U is spanned by a section nonvanishing at pW(P ). We saw that

ρC1 (Vg,n,d ) = {0}, and so ρC1 (Wg,n,d ) = ρC1 (U ), which is 1-dimensional. Let u span this space;

u(pW(P )) 	= 0.

The component C1 collapses to the single point pr(P ) under pr. Thus we

have another decomposition: H0(Pr,OPr (1)) = VPr ⊕ Û , where sections in VPr vanish at

pr(P ) = pr(C1), and Û is 1-dimensional, spanned by a section nonvanishing at pr(P ). Again

ρC1 (H0(Pr,OPr (1))) = ρC1 (Û ), which is 1-dimensional. Let û span this space; û(pr(P )) 	= 0.

Thus, since �
m,m̂
+ = Symm(Wg,n,d ⊗ H0(Pr,OPr (m̂))), we have

ρ̂
C1,C
m,m̂

(
�

m,m̂
+
) = ρ̂

C1
m,m̂

(
�

m,m̂
+
) = ρ̂

C1
m,m̂(SymmU ⊗ Symm̂Û ),

which is 1-dimensional, since U and Û are. Finally, if s ∈ �
m,m̂
0 then ρ̂

C1,C
m,m̂ (s) = αum ⊗ ûm̂

for some α ∈ k. We know that um ⊗ ûm̂(P ) 	= 0. Since s(P ) = ρ̂
C1,C
m,m̂ (s)(P ), it follows that if

s(P ) = 0 then α = 0, and so ρ̂
C1,C
m,m̂ (s) = 0, and the proof of Claim 6.10 is complete. �

We now give details of our decomposition of H0(C , Lm
W C ⊗ Lm̂

r C ).

Claim 6.11. Restriction to C respects the decomposition (50), and enables us to identify

the spaces �
m,m̂
+ and �

m,m̂
0 . Precisely,

(i) H0
(
C , Lm

W C ⊗ Lm̂
r C

) = �
m,m̂
0 ⊕ �

m,m̂
+ ;

(ii) �
m,m̂
0

∼= H0
(
C0, Lm

W C0
⊗ Lm̂

r C0

)
;

(iii) �
m,m̂
+ ∼= H0

(
C1, Lm

W C1
(−P )

)
. �



96 E. Baldwin and D. Swinarski

Proof of Claim 6.11. (i) By restricting equation (50) to C , we see that

H0(C , Lm
W C ⊗ Lm̂

r C

) = �
m,m̂
0 + �

m,m̂
+ .

It remains to show that these spaces have zero intersection.

Suppose s ∈ �
m,m̂
0 ∩ �

m,m̂
+ . Since s ∈ �

m,m̂
+ , it follows by Claim 6.10(i) that ρ̂

C0,C
m,m̂ (s) =

0; in particular, as P ∈ C0, we see that s(P ) = 0. We know in addition that s ∈ �
m,m̂
0 , so

Claim 6.10(ii) implies that ρ̂
C1,C
m,m̂ (s) = 0. Thus s restricts to zero on the whole of C , and we

conclude that s = 0, proving (i).

(ii) Recall that the morphism

ρ̂
C0,C
m,m̂ : H0(C , Lm

W C ⊗ Lm̂
r C

)→ H0(C0, Lm
W C0

⊗ Lm̂
r C0

)

is surjective. However, if s ∈ �
m,m̂
+ then by Claim 6.10(i), we know that ρ̂

C0,C
m,m̂ (s) = 0. Thus,

since H0(C , Lm
W C ⊗ Lm̂

r C ) ∼= �
m,m̂
0 ⊕ �

m,m̂
+ , we conclude that ρ̂

C ,C0
m,m̂ |

�
m,m̂
0

is surjective.

On the other hand,

ρ̂
C0,C
m,m̂

∣∣
�

m,m̂
0

: �
m,m̂
0 → H0(C0, Lm

W C0
⊗ Lm̂

r C0

)

is injective. For if s ∈ �
m,m̂
0 and ρ̂

C0,C
m,m̂ (s) = 0, then s(P ) = 0; then by Claim 6.10(ii), it follows

that ρ̂
C1,C
m,m̂ (s) = 0. Thus s = 0, so ρ̂

C0,C
m,m̂ |

�
m,m̂
0

has zero kernel. We conclude that ρ̂
C0,C
m,m̂ |

�
m,m̂
0

is

an isomorphism of vector spaces.

(iii) To start with, note that if M ∈ �
m,m̂
+ then M has at least one factor from V0,1,1,

so M vanishes at P by definition; hence

ρ̂
C1,C
m,m̂

(
�

m,m̂
+
) ⊂ H0(C1, Lm

W C1
(−P )

)
.

Moreover, the map ρ̂
C1,C
m,m̂ |

�
m,m̂
+

is injective. For if s ∈ �
m,m̂
+ , then ρ̂

C0,C
m,m̂ (s) = 0, and so if in

addition ρ̂
C1,C
m,m̂ (s) = 0, then we must conclude that s = 0.

On the other hand, the unrestricted morphism

ρ̂
C1,C
m,m̂ : �

m,m̂
+ ⊕ �

m,m̂
0 → H0(C1, Lm

W C1

)

is surjective. In particular, the subspace H0(C1, Lm
W C1

(−P )) ⊂ H0(C1, Lm
W C1

) is in its image.

So for arbitrary s ∈ H0(C1, Lm
W C1

(−P )), we may write s = ρ̂
C1,C
m,m̂ (s0 + s+), where s0 ∈ �

m,m̂
0 and
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s+ ∈ �
m,m̂
+ . But then

ρ̂
C1,C
m,m̂ (s0) = s − ρ̂

C1,C
m,m̂ (s+) ∈ H0(C1, Lm

W C1
(−P )

)
,

so s0 vanishes at P . However by Claim 6.10(ii), it follows that ρ̂
C1,C
m,m̂ (s0) = 0, and so we

conclude that s = ρ̂
C1,C
m,m̂ (s+). In other words, the morphism ρ̂

C1,C
m,m̂ |

�
m,m̂
+

is also surjective,

showing

ρ̂
C1,C
m,m̂

∣∣
�

m,m̂
+

: �
m,m̂
+ ∼= H0(C1, Lm

W C1
(−P )

)
,

which completes the proof of Claim 6.11. �

Back to the proof of Proposition 6.9. We wish to show that (C0, x1, . . . , xn) is GIT

semistable, with respect to some l ∈ HMg,n,d (Jg,n,d ). Therefore, let λ′ be a 1-PS of SL(Wg,n,d )

acting on (C0, x1, . . . , xn) ⊂ P(Wg,n,d ) × Pr. Let w0, . . . , wNg,n,d be a basis for Wg,n,d diagonal-

izing the action of λ′, so that λ′ acts with weights r0, . . . , rNg,n,d . Let rij be the minimal

λ′-weight at xj, so

rij := min{ri|wi(xj) 	= 0}.

We wish to show that

µLm,m̂,m′′ ((C0, x1, . . . , xn), λ′) = µLm,m̂ (C0, λ′) + m′′
n∑

j=1

rij ≤ 0

for some m′′ such that (m, m̂, m′′) ∈ Mg,n,d .

We have identified Wg+1,n−1,d with Wg,n,d ⊕ V1,1,0. Extend w0, . . . , wNg,n,d to a basis

w0, . . . , wNg+1,n−1,d for Wg+1,n−1,d respecting this decomposition. We define λ to be the ex-

tension of λ′ over Wg+1,n−1,d , which acts with weight rin on all of V1,1,0. Note that λ is a

subgroup of GL(Wg+1,n−1,d ), but not necessarily of SL(Wg+1,n−1,d ), so we shall have to use

the formula in Lemma 4.5. We already calculated dim V1,1,0 = (a − 1), so we know the sum

of the weights

Ng+1,n−1,d∑
i=0

wλ(wi) = (a − 1)rin .



98 E. Baldwin and D. Swinarski

Let B̂m,m̂ be a basis of H0(P(Wg+1,n−1,d ) × Pr,OP(Wg+1,n−1,d )(m) ⊗ OPr (m̂)) consist-

ing of monomials of bidegree (m, m̂) such that the degree m part is a monomial

in w0, . . . , wNg+1,n−1,d . Semistability of (C , x1, . . . , xn−1) implies that there exists a subset

B ⊂ B̂m,m̂, such that

B := {ρ̂C
m,m̂(M) : M ∈ B

}

is a basis for H0(C , Lm
W C ⊗ Lm̂

r C ), with

⎛
⎝∑

M∈B
wλ(M) + m′

n−1∑
j=1

rij

⎞
⎠ (eg+1,n−1,d − g)

− (m(eg+1,n−1,dm + dm̂ − g) + (n − 1)m′)(a − 1)rin ≤ 0. (51)

We relate this to a weight for (C0, x1, . . . , xn) ∈ P(Wg,n,d ) × Pr. The basis B̂m,m̂ re-

spects the decomposition

H0(P(Wg+1,n−1,d ) ⊗ Pr,OP(Wg+1,n−1,d )(m) ⊗ OPr (m̂)
) = �

m,m̂
0 ⊕ �

m,m̂
+ ;

hence the basis B respects the decomposition

H0(C , Lm
W C ⊗ Lm̂

r C

) = �
m,m̂
0 ⊕ �

m,m̂
+

of Claim 6.11(i). We split B into two parts, B0 and B+, following this decomposition. We

will calculate the contribution to the weight coming from the corresponding subsets B0

and B+ of B.

First consider B0. We show that the weight of this collection of monomials is a

λ′-weight for C0. Recall that the map ρ̂
P(Wg,n,d )
m,m̂ which restricts sections to a linear subspace

is surjective; this map is zero on �
m,m̂
+ , so

ρ̂
P(Wg,n,d )
m,m̂

∣∣
�

m,m̂
0

: �
m,m̂
0 → H0(P(Wg,n,d ) × Pr,OP(Wg,n,d )(m) ⊗ OPr (m̂)

)

is an isomorphism of vector spaces (note we are speaking of the spaces without a bar,

those that have not been restricted to C ). Moreover, if M ∈ �
m,m̂
0 is in B0, then M is a

monomial whose degree m part is in the basis w0, . . . , wNg,n,d for Wg,n,d ; we may interpret

ρ̂P(Wg,n,d )(M) as the same monomial in this basis. Then, since the actions of λ′ and λ are
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identical on Wg,n,d ,

wλ′
(
ρ̂

P(Wg,n,d )
m,m̂ (M)

) = wλ(M). (52)

Now {ρ̂P(Wg,n,d )(M)|M ∈ B0} is a collection of monomials of bidegree (m, m̂) in

H0(P(Wg,n,d ) × Pr,OP(Wg,n,d )(m) ⊗ OPr (m̂)) such that when we restrict them to C0, we obtain

{
ρ̂

C0,P(Wg,n,d )
m,m̂ ◦ ρ̂

P(Wg,n,d )
m,m̂ (M)

∣∣M ∈ B0
} = {ρ̂C0,C

m,m̂ ◦ ρ̂C
m,m̂(M)

∣∣ρ̂C
m,m̂(M) ∈ B0

}
,

which by Claim 6.11(ii) is a basis for H0(C0, Lm
W C0

⊗ Lm̂
r C0

). It follows that the restricted

monomials, {ρ̂P(Wg,n,d )(M)|M ∈ B0}, give a λ′-weight of C0, that is,

µLm,m̂ (C0, λ′) ≤
∑

M∈B0

wλ′
(
ρ̂P(Wg,n,d )(M)

) =
∑

M∈B0

wλ(M),

where we have used equation (52) to relate this back to λ.

Now consider B+ ⊂ �
m,m̂
+ . If M ∈ B+ then by Claim 6.10(i), the restriction

ρ̂
C0
m,m̂(M) = 0; basis elements are nonzero, so ρ̂

C1
m,m̂(M) 	= 0. The monomial M has bide-

gree (m, m̂), where the degree m part is a monomial in the basis w0, . . . , wNg+1,n−1,d , which

respects the decomposition Wg+1,n−1,d = Wg,n,d ⊕ V1,1,0. Any factor in M from Wg,n,d must

be nonzero on C1, so by the proof of Claim 6.10(ii), these are nonzero at P . Hence the

λ-weight of such factors is bounded below by rin . Meanwhile, the remaining factors in M

come from V1,1,0, and all have λ-weight rin . We conclude that for such M,

wλ(M) ≥ rinm.

We count the number of such M using Claim 6.11(ii),

#B+ = #B+ = h0(C1, Lm
W C1

(−P )
) = am − 1.

Thus

∑
M∈B+

wλ′ (M) ≥ (am2 − m)rin .
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We may now insert these estimates into inequality (51),

(µLm,m̂ (C0, λ′) + (am2 − m)rin + m′(ri1 + · · · + rin−1

)
(eg+1,n−1,d − g)

≤ (m(eg+1,n−1,dm + dm̂ − g) + (n − 1)m′)(a − 1)rin

=
(

eg+1,n+1 + d
m̂

m
+ (n − 1)

m′

m2
− g

m

)
(a − 1)m2rin .

Recall that we set m̂
m = ca

2a−1 and m′
m2 = a

2a−1 . Further, one may expand: eg+1,n−1,d − g =
(2a − 1)g + a(n − 1 + cd). Thus we have shown that

µLm,m̂ (C0, λ′) + (am2 − m)rin + am2

2a − 1

(
ri1 + · · · + rin−1

)
≤
(

1 + g + d ca
2a−1 + (n − 1) a

2a−1 − g
m

(2a − 1)g + a(n − 1 + cd)

)
(a − 1)m2rin

=
(

1 + 1

2a − 1

)
(a − 1)m2rin − S14mrin ,

where S14 := g(a−1)
(2a−1)g+a(n−1+cd) < 1

2 . In conclusion,

µLm,m̂ (C0, λ′) + am2

2a − 1

(
ri1 + · · · + rin

)− (1 − S14)mrin ≤ 0. (53)

We may repeat the argument above, attaching the elliptic curve at the location

of any other of the points x1, . . . , xn−1. This will give us similar inequalities, but with the

role xn played by a different marked point. Adding up all such inequalities, and dividing

by n, yields

µLm,m̂ (C0, λ′) +
(

am2

2a − 1
− 1 − S14

n
m
) n∑

j=1

rij ≤ 0.

By the hypotheses on m, we know that 1−S14
n m is an integer, so if we set m′′ = am2

2a−1 −
1−S14

n m, then this is also an integer, and we have shown that

µLm,m̂,m′′ ((C0, x1, . . . , xn), λ′) ≤ 0.

Thus, as we made no assumptions about the 1-PS λ′,

(C0, x1, . . . , xn) ∈ J
ss

(Lm,m̂,m′′ ).
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It remains to show that (m, m̂, m′′) ∈ Mg,n,d , where Mg,n,d is as in the statement

of this proposition. We observed that Mg+1,n−1,d ⊂ Mg,n,d , and so the conditions on m

and m̂ are satisfied. We need to check that n|m′′
m2 − a

2a−1 | = n 1−S14
nm ≤ 1

4a−2 − 3g+q2−ḡ− 1
2

m . But
1−S14

m < 1
m , and

1

m
<

1

4a − 2
− 3g + q2 − ḡ − 1

2

m

⇐⇒ m >

(
3g + q2 − ḡ + 1

2

)
(4a − 2).

This is implied by (m, m̂, m′) ∈ Mg+1,n−1,d , for the final lower bound on m is m > (6(g + 1)

+ 2q2 − 2(g + 1) + 1)(2a − 1).

The choice of (h, x1, . . . , xn) ∈ J was arbitrary. Hence Jg,n,d ⊆ J
ss
g,n,d (Lm,m̂,m′′ ). We

proved the reverse inclusion in Theorem 5.21, and so J
ss
g,n,d (Lm,m̂,m′′ ) = Jg,n,d . Now by

Corollary 5.22, it follows that J
ss
g,n,d (l) = Jg,n,d for all l ∈ HMg,n,d (Jg,n,d ), and in par-

ticular for all Lm,m̂,m′ such that (m, m̂, m′) ∈ Mg,n,d . This completes the proof of

Proposition 6.9. �

Now our desired results are immediate corollaries. We no longer need to dis-

tinguish between different spaces of maps, so we stop using the subscripts for J

and M.

Proof of Theorem 6.1, Corollary 6.2, and Theorem 6.3. For Theorem 6.1 and Corollary 6.2,

we work over C. By Proposition 6.7 and Proposition 6.9, we see that J
ss

(l) = J
s
(l) = J,

as schemes over C, for any l ∈ HM(J). In particular, this holds for any Lm,m̂,m′ where

(m, m̂, m′) ∈ M. Then by Corollary 3.5, it follows that

J//Lm,m̂,m′ SL(W) ∼= Mg ,n (Pr, d ),

and by Corollary 3.7 it follows that there exists JX,β such that

J X,β//Lm,m̂,m′ |J X,β
SL(W) ∼= Mg,n,d (X, β).

For Theorem 6.3, we note that Theorem 6.3 has for convenience been phrased in

terms of vector spaces over a field k, and so we work at first over k. Now the equality

J
ss

(l) = J
s
(l) = J, for schemes over k, follows from Proposition 6.8 and Proposition 6.9,

where k is any field.
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It remains to check that the open subschemes J
ss

(l) ⊆ J and J ⊆ J are equal over

Z. As they are indeed open subschemes, it is sufficient to check that they contain the

same points, since they will then automatically have the same scheme structure. If x is a

point in J, then we may consider x as a point in J ×Z Spec k(x), where k(x) is the residue

field of x. We know that J and J
ss

(l) are equal over Spec k(x), so this provides J ⊆ J
ss

(l).

The converse is shown in the same way.

Corollary 3.5 now implies again that in this case,

J//Lm,m′ SL(W) ∼= Mg,n

over Z. �
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