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This paper studies the impact of the volatility of monetary policy using a
structural vector auroregression (SVAR) model enriched along two dimen-
sions. First, it allows for time-varying variance of monetary policy shocks via
a stochastic volatility specification. Second, it allows a dynamic interaction
between the level of the endogenous variables in the VAR and the time-
varying volatility. The analysis establishes that the nominal interest rate,
output growth, and inflation fall in reaction to an increase in the volatility of
monetary policy. The analysis also develops a dynamic stochastic general
equilibrium model enriched with stochastic volatility to monetary policy
that generates similar responses and provides a theoretical underpinning of
these findings.
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A VAST BODY OF EMPIRICAL research has focused on estimating
the impact of structural economic shocks on the economy, with a large proportion of
papers studying the impact of monetary policy shocks. Structural vector auroregres-
sion (SVAR) models, originally proposed by Sims (1980), have featured prominently
in this literature as they offer a flexible data-driven approach to modeling the trans-
mission mechanism. Results from these models have been used as a benchmark for
the performance of more structural economic models such as dynamic stochastic
general equilibrium (DSGE) models.

While the transmission mechanism of monetary policy shocks has been studied
extensively, the role played by changes in the volatility of these shocks has been
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largely ignored in the SVAR literature. Most of the adopted SVAR models assume
homoskedastic shocks. Studies that do allow for time-varying shock volatility (see,
e.g., Primiceri 2005, Sims and Zha 2006) do not incorporate a direct impact of the
shock variance on the endogenous variables. This paper proposes an extension to
the monetary SVAR model by (i) allowing for time-varying variance of monetary
policy shocks via a stochastic volatility specification, and (ii) allowing a dynamic
interaction between the level of the endogenous variables in the VAR and the time-
varying volatility. This extended VAR model can therefore be used to not only gauge
the effect of shocks such as the monetary policy shock but also the impact of changes
in the volatility of the shock in question.

Changes in the volatility of monetary policy are important because of three con-
siderations. First, a growing number of studies have demonstrated that the volatility
of structural shocks such as monetary policy, supply, and demand has fluctuated
substantially in industrialized countries. For example, the estimated volatility of the
(U.S.) monetary policy shock in Primiceri (2005) increases by more than 100% dur-
ing the early 1980s. Second, the recent financial crisis has highlighted the fact that
volatility cannot be regarded as a “pre–Great Moderation phenomenon.” In other
words, fluctuations in volatility and their potential impact is a relevant concern for
policymakers. Third, there is a growing body of theoretical work that has identified
channels through which changes in volatility can affect the real economy. For ex-
ample, Bloom (2009) presents simulations from a model where higher uncertainty
causes firms to pause their hiring and investment, leading to a drop in real activity.
Using a nonlinear small open economy DSGE model, Fernandez-Villaverde et al.
(2011) suggest a channel through which changes in real interest rate volatility can
affect open economies that use foreign debt to smooth consumption and to hedge
against idiosyncratic productivity shocks. As real interest rate volatility increases and
as countries are increasingly exposed to variations in marginal utility, they reduce the
level of foreign debt by cutting consumption. Investment falls as foreign debt becomes
a less attractive hedge for productivity shocks leading to a fall in real activity.1

The contribution of this paper is twofold. First, it develops a data-driven approach
to estimating the impact of volatility shocks. These methods therefore complement
the more structural analyses in Bloom (2009) and Fernandez-Villaverde et al. (2011).
The advantage of the extended SVAR is that it retains the flexibility of the stan-
dard homoskedastic SVAR—that is, it is applicable to a variety of identified shocks
and has the potential to fit the data better than a DSGE model that is subject to
stringent theoretical restrictions. In other words (in an analogous manner to standard
VARs), the extended SVAR can be used to provide estimates of the impact of changes
in structural shock volatility without making strong assumptions about the driving
force behind such effects. This flexibility and potential for better data fit, of course,
comes with the cost that the model has little to say about the various channels of
shock transmission. Hence, the second contribution of the paper is to develop a

1. Other recent studies that focus on the role of policy uncertainty are those by Fernandez-Villaverde
et al. (2011) and Born and Pfeifer (2012).
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nonlinear DSGE model solved by a third-order perturbation around the steady state
in order to rationalize the effect of an increase in volatility of monetary policy on
macroeconomic aggregates.

The results of the analysis show that an increase in the volatility of the monetary
policy shock generates a fall in the nominal interest rate, inflation, and output growth.
The findings are robust to perturbations to the benchmark VAR specification, such as
the addition of extra lags and the inclusion of additional endogenous variables. The
analysis also shows that the estimated volatility of monetary policy shocks reaches
its peak during the Great Inflation of the mid-1970s and the Volker’s experiment
of targeting nonborrowed reserves at the end of the 1970s. As expected, the Great
Moderation period, starting from the mid-1980s, was associated with less volatile
monetary policy shocks. However, high volatility of monetary policy characterizes
the most recent recessions in 2000 and 2009.

We conclude the analysis by developing a DSGE model that resembles those by
Ireland (2004) and Sargent and Surico (2011), but solved by a third-order perturba-
tion around the steady state, which therefore encompasses the effect of stochastic
volatility to monetary policy. We then use the framework to investigate the transmis-
sion mechanism of an increase in the volatility of the monetary policy. We establish
that the qualitative responses to an increase in the volatility of monetary policy are
similar to those in the SVAR model, as the nominal interest rate, inflation, and out-
put growth fall in the aftermath of the shock. The use of a DSGE model advances
our understanding of the mechanism that induces the contemporaneous fall in these
variables. In particular, higher monetary policy uncertainty that generates a greater
interest rate spread implies higher dispersion of inflation, which, due to Jensen’s in-
equality, as detailed in the paper, reduces its expected value. Hence, the rate at which
bonds gain value due to movements in inflation increases on average with the level of
uncertainty. As a result, holders of nominal assets demand a smaller compensation to
keep bonds in their portfolio when uncertainty rises. Thus, the nominal interest rate
falls in response to an increase in the volatility of monetary policy. If the monetary
authority follows the Taylor rule, which dictates that the nominal interest rate adjusts
to movements in inflation and output, the fall in the interest rate must be associated
with a decrease in either inflation, or output, or both of them. Since the Phillips
curve generates a positive relation between fluctuations in inflation and output, both
variables must fall in response to a decrease in the nominal interest rate. Thus, an
increase in monetary policy uncertainty causes the nominal interest rate, inflation and
output growth to fall.

The remainder of the paper is structured as follows. Section 1 sets up the SVAR
model with stochastic volatility. Section 2 details the estimation procedure and the
identification of the monetary policy shock. Section 3 reports the estimated vari-
ables’ volatilities and impulse responses to the monetary policy volatility. Section
4 develops a DSGE model with stochastic volatility shocks to study the trans-
mission mechanism of an increase in the volatility of monetary policy. Section 5
concludes the paper.
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1. EXTENDED SVAR MODEL WITH STOCHASTIC VOLATILITY

The VAR model with stochastic volatility is given by the following equation:

Zt = c +
P∑

j=1

β j Zt− j +
P∑

j=0

γ j h̃t− j + �
1/2
t et , et

∼ N (0, 1), (1)

where

�t = A−1 Ht A−1′
, (2)

and Zt denotes the N macroeconomic variables, while h̃t = [h1t , h2t . . . hNt ] refers
to the log volatility of the N structural shocks in the VAR. This latter feature can be
seen more clearly by considering an example where N = 3, as in our application.
The structure of Ht in equation (2) is

Ht =
⎛
⎝ exp (h1t ) 0 0

0 exp (h2t ) 0
0 0 exp (h3t )

⎞
⎠ . (3)

The structure of the A matrix is chosen to model the contemporaneous relation-
ship among the reduced-form shocks, and the transition equation for the stochastic
volatility is given by

h̃t = θ h̃t−1 + ηt , ηt
∼ N (0, Q), E(et , ηt ) = 0, (4)

where θ is a diagonal matrix implying that each element of h̃t follows an AR(1)
process.

There are three noteworthy features about the complete system defined by equations
(1), (2), and (4). First, equation (1) allows the volatility of the structural shocks h̃t to
have an impact on the endogenous variables Zt .2 Second, the structure of the matrix
A in equation (2) determines the interpretation of structural shocks and hence their
volatility h̃t . The ability to place an economic interpretation on some or all of the
shocks is important as it allows the model to tackle the analysis of the impact of
volatility in a theoretically consistent manner. Third, the system proxies the reduced
form of a DSGE model approximated to the third order around the steady state, since
it involves a direct effect of the volatility of monetary policy shocks on the level of
the endogenous variables, as shown in Fernandez-Villaverde et al. (2011). Hence, the
SVAR model is an approximation of the reduced form of the DSGE model, which
abstracts from terms that involve the cross-product of the shock to volatility with the
endogenous variables.

Note that equation (4) makes the simplifying assumption that the shocks to the
volatility equation ηt and the observation equation et are uncorrelated and Q is a

2. In our specification the log volatility enters the VAR equations rather than its level. This is primarily
because the former specification proved to be substantially more computationally stable than the latter in
our experiments. In particular, the level specification is sensitive to the scaling of the variables with the
possibility of overflow whenever the scale of the variables is somewhat large.
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diagonal matrix. With these assumptions in place, one can interpret an innovation in
an element of ηt as a shock to the volatility of the structural shock of interest and
then calculate the response of h̃t and Zt . On the other hand, if these assumptions are
relaxed, further identifying restrictions are required to distinguish among the volatility
shocks and to separate the innovation to the volatility from the innovation to the level.
Note that in this more general scenario (i.e., with a full covariance matrix among the
volatility and level innovations), identification of the volatility shocks is substantially
more involved. In particular, there is no simple way to assign elements of h̃t to a
particular structural shock (as done in the proposed model above) and the researcher
has to take a stand on the restrictions to place on the contemporaneous relationships
among the volatilities. In contrast, the assumptions in equation (4) allow the use
of standard identification schemes (that apply to the contemporaneous relationships
among the levels of the reduced form shocks rather than their volatility). To retain
this ease of interpretation of h̃t we incorporate the assumption of a diagonal Q and
no correlation between et and ηt in the proposed empirical model.

The model proposed above is related to a number of recent contributions. In
particular, the structure of the stochastic volatility model used above closely resembles
the formulations used in time-varying VAR models (see Primiceri 2005). Our model
differs from these studies in that it allows the volatilities to have a direct impact on
the levels of the endogenous variables. The model proposed above can be thought
of as a multivariate extension of the stochastic volatility in mean model proposed
in Koopman and Uspensky (2002) and applied in Berument, Yalcin, and Yildirim
(2009), Kwiatkowski (2010), and Lemoine and Mougin (2010). In addition, our
model has similarities with the stochastic volatility models with leverage studied in
Asai and McAleer (2009). However, unlike these contributions, the model proposed
in this study is formulated with the aim of characterizing the dynamic effects of the
volatility of structural shocks.

2. ESTIMATION

2.1 The Gibbs Sampling Algorithm

The nonlinear state space model consisting of the observation equation (1) and
transition equation (4) is estimated using a Gibbs sampling algorithm. Appendix A
presents details of the priors and the conditional posterior distributions while a
summary of the algorithm is presented below.

The Gibbs sampling algorithm proceeds in the following steps:

(i) Conditional on a draw for the stochastic volatility h̃t , and the matrix A, equation
(1) represents a VAR model with heteroskedastic disturbances. We rewrite the
VAR as a state space model and draw from the conditional distribution of
� = [β, γ ] using the Carter and Kohn (2004) algorithm.

(ii) Conditional on a draw for h̃t and �, the elements of the matrix A can be drawn
using a series of linear regression models among the elements of the residual
matrix vt = �

1/2
t et as shown in Cogley and Sargent (2005). Conditional on
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h̃t , the autoregressive parameters θ and variances in Q can be drawn using
standard results for linear regressions.

(iii) Conditional on �, A, θ , and Q, the stochastic volatilities are simulated using
a date by date independence Metropolis step as described in Jacquier, Polson,
and Rossi (2004) (see also Carlin, Polson, and Stoffer 1992).

We use 1,000,000 replications and base our inference on the last 10,000 repli-
cations. The recursive means of the retained draws (see Appendix A) show little
fluctuation, providing support for convergence of the algorithm.

2.2 Model Specification and the Identification of the Monetary Policy Shock

In our application, the vector of endogenous variables Zt contains U.S. quarterly
data on the 3-month Treasury bill rate, real quarterly GDP growth, and quarterly CPI
inflation over the period 1957Q1 to 2011Q4.3 We use the following benchmark VAR
specification:

Zt = c +
2∑

j=1

β j Zt− j +
1∑

j=0

γ j h̃t− j + �
1/2
t et . (5)

The lag length of the endogenous variables is set at two, reflecting convention in
studies employing similar VAR models to quarterly data (see Cogley and Sargent
2005, Primiceri 2005). In our benchmark model, the contemporaneous and the lagged
values of h̃t are allowed to affect Zt . Since we employ quarterly data, we allow the
possibility of an impact of h̃t within a 3-month period. We show in the sensitivity
analysis below that the benchmark results are not affected if longer lags of volatility
are included in the mean equations.

In order to identify the monetary policy shock we consider the following structure
for Ã = A−1:

Ã =
⎛
⎝ 1 0 0

ã(−)
1 1 0

ã(−)
2 ã3 1

⎞
⎠ , (6)

where the superscript (−) denotes the fact this element is restricted to be less than
zero. Given the ordering of the endogenous variables (3-month Treasury bill rate,
real GDP growth, and CPI inflation), this structure for Ã implies that an increase
in interest rates is assumed to lead to a contemporaneous fall in inflation and GDP
growth. These sign restrictions are implied by standard DSGE models including
the model we discuss in Section 4.4 We impose these sign restrictions via rejection

3. The data are from the FRED database. The FRED mnemonics are as follows: real GDP: GDPC96,
CPI: CPIAUCSL, and 3-month Treasury bill rate: TB3MS. The bottom row in Figure 1 reports the data
series used in the estimation.

4. An appendix that presents evidence on the sign restrictions from the theoretical model is available
upon request from the authors.
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sampling. In particular, we repeat the draw of the A matrix in the second step of the
algorithm outlined above until the restrictions on Ã are (jointly) satisfied.5

3. EMPIRICAL RESULTS: MONETARY POLICY SHOCK UNCERTAINTY
AND THE MACROECONOMY

This section uses the empirical model to produce estimated volatilities of shocks
to monetary policy, GDP growth, and inflation, and studies the effect of an increase
in the volatility of monetary policy on the endogenous variables.

3.1 Estimated Volatility

The first column in Figure 1 presents the estimated volatility of the monetary policy
shock. The evolution of the volatility is similar to the estimate in Benati and Mumtaz
(2007), with large increases during the Great Inflation of the mid-1970s and then
during Paul Volcker’s experiment of targeting nonborrowed reserves at the end of
the 1970s. Note that the Great Moderation period—starting from the mid-1980s—
is associated, on the whole, with less volatile policy shocks. Two exceptions to this
stability are the recessions of 2000 and 2009. The second and third columns in Figure 1
present the standard deviation of the shocks to the GDP growth and inflation equation
in the VAR—that is, shocks that we do not place a direct economic interpretation on.
The volatility of the GDP growth equation shock is highest in the pre-1985 period,
reaching its peak during the early 1980s. The post-1985 period contains smaller peaks
at the time of the first Gulf war during the early 1990s, the recession of 2000 and then
toward the end of the sample coinciding with the recent financial crisis. The profile
for the volatility of the shock to the inflation equation is similar with the highest
variance concentrated in the pre-1985 sample. One noticeable feature, however, is
the substantial increase in the volatility of this shock during the recent crisis.

Figure 2 plots the estimated posterior densities for the parameters of the AR(1)
transition equation for the stochastic volatilities (see equation (4)). It is interesting
to note that the volatility associated with the monetary policy shock is estimated to
be the most persistent, as the mean estimate of θ1 is equal to 0.98 approximately.
In contrast, the posterior for θ2 (the AR parameter associated with the stochastic
volatility of the shock to GDP growth) is centered around a lower mean. Finally,
the posterior estimates for the variance of the shock to the volatility of the structural
shocks, Qi , show that the estimates associated with the interest rate is higher than the
corresponding number associated with inflation and GDP growth.6

5. Note that the shocks in front of the GDP growth and inflation equation are not of direct interest in
our application and a recursive structure is assumed for the block of Ã that applies to these shocks. Note
that having a triangular structure for A implies that step 2 of the Gibbs algorithm is simplified and each
row of the A matrix can be drawn separately.

6. Note that this reflects a scaling effect—the interest rate enters the model as an annual percentage
while inflation and GDP growth are quarterly percentages.
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FIG. 1. Estimated Standard Deviation of the Structural Shocks.

NOTES: The top row shows volatility estimates of a monetary policy shock, GDP growth shock and inflation shock. Each
entry shows the median, and the 68% confidence band. The bottom row shows the time series used in the estimation.

3.2 Impulse Response to Monetary Policy Shock Volatility

Figure 3 plots the impulse response to a 100% increase in the variance of the
monetary policy shock. This was approximately the estimated increase in monetary
policy shock volatility during the recent financial crisis. The response of the volatility
is fairly persistent and dissipates after about 90 quarters. The 3-month Treasury bill
rate falls in response to this shock, reaching a trough of –0.4% at around the 5-year
horizon. CPI inflation follows a similar pattern, falling by 0.1% at the 1- to 2-year
horizon with the decrease persisting over a fairly long time period.7 There is a sharp
fall in GDP growth in response to the shock with a decline of around 0.15%. The
estimated 68% error bands indicate that these responses are different from zero over
horizons considered by policymakers. In Appendix B, we present impulse responses
to this volatility shock using a version of the benchmark model that restricts the

7. The persistence in these impulse responses is largely driven by the fact that θ1 is estimated to be
close to 1. If the impulse responses are calculated fixing a smaller value for θ1 (while keeping the other
coefficients fixed at the estimated values) the persistence of the responses drops dramatically. The results
of this counterfactual experiment are available on request.
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FIG. 2. Estimates of the Posterior Densities.

NOTES: Each entry shows the estimated posterior density for the elements of the transition equation (4). The top row
shows the estimated posterior densities for the parameters of the AR(1) transition equation for the stochastic volatilities.
The bottom row shows the posterior estimates for the variance of the volatility of the structural shocks.

coefficients on the volatility terms, γ j , to be equal to zero. Therefore, this restricted
model allows only an indirect impact of volatility through the (nonlinear) interaction
between the covariance matrix �t and the structural shocks (see equation (2)).8 The
figure in Appendix B shows that this indirect effect is negligible, highlighting the
importance of allowing for a direct impact of volatility in the VAR equations.

In Figure 4, we show the estimated impulse responses from the following extended
version of the benchmark VAR model:

Zt = c +
2∑

j=1

β j Zt− j +
4∑

j=0

γ j h̃t− j + �
1/2
t et . (7)

In this extended specification h̃t and its four lags are allowed to enter the mean
equations. This model has a larger number of parameters and subsequently the impulse
responses are less precisely estimated. However, the results support those from the

8. From a numerical point of view, this indirect impact can be calculated via Monte Carlo integration.
See Koop, Pesaran, and Potter (1996) for details.
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FIG. 3. Impulse Responses to a 100% Increase in the Variance of the Monetary Policy Shock.

NOTES: The entries show the response to a 100% increase in the variance of the monetary policy shock. Each plot shows
the median response (solid line) and 68% confidence band (shaded area).

benchmark specification. In particular, the responses of inflation and the 3-month
Treasury bill rate are negative and persistent. Similarly, GDP growth declines by
about 0.2% and returns to base at around the 10-quarter horizon.

The top panel of Figure 5 presents the impulse responses from an expanded system
that includes M2 growth and the growth of the Standard & Poor’s Composite Index.9

These variables are included in order to better proxy the central bank’s information
set. As argued in Leeper and Roush (2003), having a measure of money helps in
the identification of the monetary policy shock. Similarly, the change in stock prices
proxies forward-looking information and expectations. In this expanded VAR system
we retain the same identification scheme—that is, requiring the policy shock that
increases interest rates to have a contemporaneous negative impact on CPI inflation
and GDP growth. The figure shows that an increase in monetary policy shock volatility
leads to a fall in M2 growth of around 0.3% at the 3-year horizon. The response of
stock price growth is more volatile with a decline of 1% after the shock. The response
of the Treasury bill rate is similar to the benchmark case, with a decline of around
0.3% at the 3-year horizon. Similarly, GDP growth declines by around 0.15%, as in

9. The data for M2 are taken from the FRED database (FRED code M2SL). The data for the Standard
& Poor’s index are also obtained from FRED (FRED code SP 500).
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FIG. 4. Impulse Responses to a 100% Increase in the Variance of the Monetary Policy Shock, Four Lags.

NOTES: The entries show the response to a 100% increase in the variance of the monetary policy shock when four lags
of volatility are included in the VAR model. Each plot shows the median response (solid line) and 68% confidence band
(shaded area).

the benchmark case. In contrast to the benchmark results, however, the response of
CPI inflation is imprecise with the error bands including zero almost immediately
after the shock.

The bottom panel of Figure 5 shows the impulse responses from a version of
the VAR model that includes the growth rate of government spending to nominal
GDP as an additional variable to proxy the role of fiscal policy and its volatility (see
Fernandez-Villaverde et al. 2011 for evidence on the role of fiscal volatility shocks).10

As above, we retain the same identification scheme in this alternative specification.
The response of the interest rate and GDP growth to a monetary policy volatility
shock in this expanded system is very close to the benchmark case. There is a persis-
tent estimated decline in the interest rate after this shock. GDP growth is estimated
to decline by 0.15%. Inflation declines but the response is imprecisely estimated.

Overall, these estimates represent strong evidence that an increase in the volatility
of monetary policy shocks leads to a fall in the short-term interest rate and GDP
growth. They also provide some evidence to suggest that this negative impact also
extends to CPI inflation.

10. Government spending is defined as government consumption expenditures and gross investment
(Bureau of Economic Analysis, Table 1.15, line 21) deflated by nominal GDP (FRED code GDP).
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FIG. 5. Impulse Responses to a 100% Increase in the Variance of the Monetary Policy Shock, Expanded System.

NOTES: The entries show the response to a 100% increase in the variance of the monetary policy shock when M2 growth
and the growth of the Standard & Poor’s Composite Index and government spending are included in the VAR model.
Each plot shows the median response (solid line) and 68% confidence band (shaded area).

4. THE DSGE MODEL WITH MONETARY POLICY VOLATILITY SHOCKS

This section develops a DSGE model to investigate how changes in the volatility
of monetary policy translate into movements in output growth, inflation, and the
nominal interest rate, in order to rationalize the responses in the SVAR model. To
implement the analysis, a standard New Keynesian model that resembles those by
Ireland (2004) and Sargent and Surico (2011) is enriched with time-varying volatility
to monetary policy. In addition, the model is solved by a third-order perturbation
around the steady state, since, as documented by Fernandez-Villaverde et al. (2011),
models with volatility shocks are inherently nonlinear and therefore linear methods
cannot be applied to compute them. The way we embed uncertainty about monetary
policy in the model complements the alternative approaches in the literature based
on regime switching and learning. In these settings, uncertainty about future policy
affects agents’ expectations or learning process such that expected or perceived
changes in policy are able to generate fluctuations in nominal and real variables.
Recent examples of studies that emphasize these channels are those by Bianchi
(Forthcoming) and Milani (2007).
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The model economy consists of a representative household, a production sector that
comprises a representative goods-producing firm and a continuum of intermediate-
goods-producing firms indexed by i ∈ [0, 1], and a monetary authority. The next
subsections describe the agents’ tastes, technologies, and the monetary policy rule in
detail.

4.1 The Representative Household

The representative household maximizes the expected utility function

E0

∞∑
t=0

β t
[
ln Ct − (1/η)hη

t

]
, (8)

where the variable Ct is consumption, ht is units of labor, β is the discount factor
0 < β < 1, and η is the inverse of the Frisch intertemporal elasticity, η > 0. The
representative household enters period t with bonds Bt−1. At the beginning of the
period, the household receives a lump-sum nominal transfer, Tt , from the monetary
authority and nominal profits Ft from the intermediate-goods-producing firms. The
household supplies ht units of labor at the wage rate, Wt , to each intermediate-
goods-producing firm i ∈ [0, 1] during period t . Then, the household’s bonds mature,
providing Bt−1 additional units of currency. The household uses part of this additional
currency to purchase Bt new bonds at nominal cost Bt/Rt , where Rt represents the
gross nominal interest rate between t and t + 1. The household uses its income
for consumption, Ct , and carries Bt bonds into period t + 1, subject to the budget
constraint

Pt Ct + Bt/Rt = Bt−1 + Wt ht + Ft + Tt , (9)

for all t = 0, 1, 2, . . . . Thus the household chooses {Ct , ht , Bt }∞t=0 to maximize its
utility (8) subject to the budget constraint (9) for all t = 0, 1, 2, . . . . Letting πt =
Pt/Pt−1 denote the gross inflation rate, the first-order conditions for this problem
yield

hη−1
t = (1/Ct )Wt/Pt (10)

and

1/Ct = β Rt Et [(1/Ct+1) (1/πt+1)] . (11)

Equations (10) and (11) are the standard household’s labor supply equation and
the Euler equation that describes the optimal consumption decision, respectively.

4.2 The Production Sector

The production sector comprises a representative goods-producing firm and a
continuum of intermediate-goods-producing firms indexed by i ∈ [0, 1]. The repre-
sentative finished-goods-producing firm uses Yt (i) units of each intermediate good
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i ∈ [0, 1], purchased at nominal price Pt (i), to manufacture Yt units of the fin-
ished product at constant returns to scale technology Yt = [

∫ 1
0 Yt (i)

θ−1
θ di]

θ
θ−1 , where

θ > 1. Hence, the finished-goods-producing firm chooses Yt (i) for all i ∈ [0, 1] to
maximize its profits Pt [

∫ 1
0 Yt (i)

θ−1
θ di]

θ
θ−1 − ∫ 1

0 Pt (i)Yt (i)di, for all t = 0, 1, 2, . . . .
The first-order conditions for this problem are

Yt (i) = [Pt (i)/Pt ]
−θ Yt , (12)

for all i ∈ [0, 1] and t = 0, 1, 2, . . . . Competition drives the finished-goods-
producing firm’s profit to zero at the equilibrium. This zero-profit condition implies
that Pt = [

∫ 1
0 Pt (i)1−θdi]

1
1−θ for all t = 0, 1, 2, . . . .

The representative intermediate-goods-producing firm hires ht (i) units of labor
from the representative household in order to produce Yt (i) units of intermediate
good i according to the constant returns to scale technology

Yt (i) = ht (i). (13)

Since the intermediate goods are not perfect substitutes in the production of the
final goods, the intermediate-goods-producing firm faces an imperfectly competitive
market. It sets the nominal price Pt (i) for its output, subject to satisfying the represen-
tative finished-goods-producing firm’s demand. The intermediate-goods-producing
firm faces a quadratic cost to adjusting nominal prices, measured in terms of the fin-
ished goods and given by (φ/2){Pt (i)/[π Pt−1(i)] − 1}2Yt , where φ > 0 is the degree
of adjustment cost and π is the steady-state gross inflation rate. This relationship, as
stressed in Rotemberg (1982), accounts for the negative effects of price changes on
customer–firm relationships. These negative effects increase in magnitude with the
size of the price change and with the overall scale of economic activity, Yt .

The problem for the intermediate-goods-producing firm is to choose
{Pt (i), ht (i)}∞t=0 to maximize its total market value given by

E0

∞∑
t=0

(β t/Ct )[Ft (i)/Pt ], (14)

subject to the constraints imposed by equations (12) and (13). In equation (14), the
term β t/Ct Pt measures the marginal utility value to the representative household of
an additional dollar in profits received during period t and

Ft (i) = Pt (i)Yt (i) − ht (i)Wt − (φ/2){Pt (i)/[π Pt−1(i)] − 1}2 Pt Yt , (15)

for all t = 0, 1, 2, . . . . Solving the first-order conditions for this problem yields

φ

[
πt (i)

π
− 1

]
πt (i)

π
= (1 − θ )

[
Pt (i)

Pt

]−θ

+ Wt

Pt
θ

[
Pt (i)

Pt

]−(1+θ)

(16)

+ βφEt

{
Ct

Ct+1

[
πt+1(i)

π
− 1

] [
πt+1(i)

π

Yt+1

Yt

]}
,
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where πt (i) = Pt (i)/Pt−1(i) is the gross inflation rate for all t = 0, 1, 2, . . . . Equation
(16) is the New Keynesian Phillips curve in its nonlinearized form, which states that
the firm sets prices as a markup over marginal cost, accounting for price adjustment
costs.

4.3 The Monetary Authority

As estimated in Ireland (2004), the monetary authority conducts monetary policy
using the Taylor rule

Rt = Rt−1(πt )
ρπ (gt )

ρg eσr t εr t , (17)

where gt = Yt/Yt−1 is the growth rate of output and the zero-mean, serially uncor-
related policy shock εr t is normally distributed, with standard deviation σεr . The
parameters ρπ and ρg capture the degree of reaction of the nominal interest rate to
inflation and output growth, respectively. The log of the standard deviation, σr t , of
the innovation to the Taylor rule is not a constant, as commonly assumed, but follows
the AR(1) process

σr t = ρσr σr t−1 + τεσr t , (18)

where the zero-mean, serially uncorrelated standard deviation shock εσr t is normally
distributed, with unit variance. According to equation (17), the monetary authority
gradually adjusts the nominal interest rate in response to movements in inflation and
output growth.11 In addition, the endogenous process for the interest rate allows for
stochastic volatility. The parameters σr t and τ control the degree of mean volatility
and stochastic volatility in the nominal interest rate: a high σr t implies a high mean
volatility of the nominal interest rate and a high τ implies a high degree of stochastic
volatility. Hence, in our formulation, two independent innovations affect the nominal
interest rate. The first innovation, εr t , changes the instrument itself, while the second
innovation, εσr t , determines the spread of values for the nominal interest rate.

4.4 Equilibrium, Solution, and Calibration

In equilibrium, all intermediate-goods-producing firms make identical decisions,
so that Yt (i) = Yt , ht (i) = ht , Ft (i) = Ft , and Pt (i) = Pt , for all i ∈ [0, 1] and t =
0, 1, 2, . . . . In addition, the market clearing condition Bt = Bt−1 = 0 must hold for
all t = 0, 1, 2, . . . . Equations (10), (13), and (15) can be used to solve for the real
wage Wt/Pt , hours worked ht , and real profits Ft/Pt . Consequently, the aggregate
resource constraint is

Yt = Ct + (φ/2)(πt/π − 1)2Yt , (19)

11. To ensure that the results are robust to alternative monetary policy rules we have replaced the
current inflation term in the Taylor rule with lagged or expected inflation and established that the results
remain broadly unchanged. Extending the analysis to investigate the affect of different assumptions on the
formation of expectations would certainly be a very useful task for future research.
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TABLE 1

PARAMETERS CALIBRATION

Parameter Value

β Discount factor 0.99
η Inverse of the Frisch intertemporal elasticity 16.2
θ Elasticity of substitution among goods 11
π Steady-state gross inflation rate 1.0086
φ Price adjustment cost parameter 1620.7
ρπ Taylor rule parameter, reaction to inflation 0.3597
ρg Taylor rule parameter, reaction to output growth 0.2536
σεr Standard deviation of the monetary policy shock 0.0031
ρσr Persistence parameter of the volatility shock 0.9846
τ Stochastic volatility parameter (0.6880)1/2

NOTE. The table shows the parameters calibration used to simulate the theoretical model. The values are the estimates in Ireland (2004), except
for the parameters {ρσr , τ } , which are from the estimated SVAR model.

and the first-order condition (16) can be written as

φ
(πt

π
− 1

) πt

π
= (1 − θ ) + Ct

Zt

(
Yt

Zt

)η−1

θ

+ βφEt

[
Ct

Ct+1

(πt+1

π
− 1

) (
πt+1

π

Yt+1

Yt

)]
. (20)

The model describes the behavior of five endogenous variables {Yt , Ct , gt , πt , Rt },
and two exogenous shocks {εr t , εσr t }. The equilibrium is then described by the repre-
sentative household’s Euler equation (11), the price setting equation (20), the mone-
tary authority policy rule (17), the aggregate resource constraint (19) and the definition
of the growth rate of output. We solve the model by a third-order perturbation method
around the steady state, as in Fernandez-Villaverde et al. (2011). We use a third-order
approximation since stochastic volatility shock, εσr t , enters as an independent argu-
ment in the policy function with a coefficient different from zero. For this reason,
cubic terms are important to investigate the direct role of volatility. To calibrate the
model we use the parameters’ values estimated in Ireland (2004) and summarized in
Table 1. In addition, we calibrate the parameters related to the stochastic volatility
process in equation (18) by using the mean estimates in the SVAR model. Hence,
we calibrate the correlation parameter, ρσr , equal to 0.9846, and the parameter that
determines the degree of stochastic volatility, τ , equal to (0.6880)1/2.

4.5 The Effect of Volatility Shocks

To investigate the impact of the volatility shock, Figure 6 plots the impulse re-
sponses of selected variables to a 100% increase to the volatility of the nominal
interest rate. In reaction to the shock the nominal interest rate, inflation, and output
growth fall. These are the same qualitative responses generated by the SVAR model
with stochastic volatility, thereby showing that both the empirical and theoretical
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FIG. 6. Impulse Responses to a 100% Increase in the Variance of the Monetary Policy Shock, DSGE Model.

NOTE: The entries show the response to a 100% increase in the variance of the monetary policy shock.

models lead to the same qualitative responses to the shock. Interestingly, the theo-
retical model generates highly persistent responses of the nominal interest rate and
inflation to a 100% increase to the volatility of the nominal interest rate, similar to the
SVAR model. Output growth shows similar dynamics across the two models, since
its reaction is negative on impact and then becomes positive before returning to the
equilibrium. However, the persistence of output growth is lower in the theoretical
model, as the response reverts to zero after 6 quarters in the DSGE model compared
to 25 quarters in the SVAR model. This is an inherent feature of the theoretical
framework, since, in order maintain the closest mapping between the theoretical and
empirical model and to keep the model simple and tractable, it abstracts from capital
accumulation.

We can now use the theoretical model to understand what drives these responses.
Consider the Euler equation for consumption (11),

1/Ct = β Rt Et [(1/Ct+1)(1/πt+1)],

which relates the intertemporal changes in consumption with the real return on
bonds (defined as the ratio between the nominal interest rate and expected in-
flation, Rt/Etπt+1). The higher interest rate spread implies higher dispersion of
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FIG. 7. Expected Utility and the Dispersion of Consumption.

NOTE: The graph relates the utility function and the expected consumption with the level of consumption.

consumption and inflation.12 Since the utility function (8) is concave in consump-
tion, Jensen’s inequality implies that a higher volatility of consumption induces
a fall in the level of expected consumption, Et Ct+1, thereby increasing the term
1/Et Ct+1 on the right-hand side (RHS) of equation (11). To see this, consider the
graph in Figure 7, which relates the utility function and expected consumption to
the level of consumption. The figure shows that for a given level of consumption
the expected value of consumption is inversely related with the dispersion of con-
sumption. For instance, if the level consumption is expected to fluctuate between
7 and 3, the expected value of consumption is equal to 1.52, whereas if the shifts
in consumption are wider, between 2 and 8, the expected value of consumption is
lower and equal to 1.39. Similarly, since the production technology and adjustment
costs function are concave, Jensen’s inequality implies that a higher volatility of
inflation induces a fall in expected inflation, Etπt+1, thereby increasing the term
1/Etπt+1 on the RHS of equation (11). The rise in these two terms must be associ-
ated with a fall in the current nominal interest rate Rt . The intuition is that the rate at
which bonds gain value due to movements in inflation increases on average with the
level of uncertainty. As a result, holders of nominal assets demand a smaller compen-
sation to keep bonds in their portfolio when uncertainty rises. In turn, if the monetary
authority follows the Taylor rule (17), the fall in the interest rate must be associated
with a fall in either inflation or output, or both of them. Since fluctuations in inflation

12. Numerical simulations of the model show that a rise in the standard deviation of the monetary
policy shock increases the volatility of consumption and inflation.
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and output are positively related, as from the New Keynesian Phillips curve (20),
both variables fall in response to a decrease in the nominal interest rate. Thus, a rise
in monetary policy uncertainty causes the nominal interest rate, inflation, and output
growth to fall. It is interesting to note that the dynamics of the nominal interest rate
closely follows changes in inflation due to the monetary authority’s strong response
to fluctuations in inflation, as dictated by equation (17).

4.6 Parameter Values in the Nonlinear DSGE Model

In the sections above we work with a calibrated version of the DSGE model.
An alternative approach would be to estimate the parameters of the model. The
estimation of the model can be implemented in two ways. First, we can use likelihood-
based approaches, as described in Fernandez-Villaverde and Rubio-Ramirez (2010).
However, since the model is nonlinear, standard techniques such as the Kalman filter
cannot be applied to evaluate the likelihood function. Hence, the estimation needs
to rely on computationally intensive sequential Monte Carlo methods to compute
the likelihood, as described in Fernandez-Villaverde and Rubio-Ramirez (2007).
This sequential Monte Carlo step is then embedded within a Markov chain Monte
Carlo (MCMC) algorithm to approximate the posterior density of the parameters.
Despite their theoretical appeal, likelihood-based methods have a number of practical
shortcomings in our application. In particular, combining model solution via third-
order perturbation with likelihood computation via sequential Monte Carlo methods
increases the computational burden to such a degree as to make a satisfactory and
reliable application of likelihood maximization or MCMC infeasible.

An alternative approach to estimate the parameters of the model is to match some
moments in the data with the same simulated moments in the model, as described
in Ruge-Murcia (2012). Practically, in DSGE models this method minimizes the
weighted distance between the empirical moments or impulse response functions
and the moments or impulse response functions resulting from the simulated model.
This approach is less computationally involved than likelihood-based methods, since
it does not rely on the particle filter and sequential Monte Carlo methods. However,
despite being computationally convenient, it has an important shortcoming. It is not
obvious which moments to select to estimate the parameters of the model, and the
experience is that parameter values are sensitive to the chosen moments.13

We believe that our analysis based on a calibrated DSGE model is appropriate since
we use the model to investigate the theoretical mechanism that generates the empirical
results. In order to provide accurate parameter estimates a more detailed theoretical
model is needed to match the data closely, as detailed in Christiano, Eichenbaum, and
Evans (2005) and Smets and Wouters (2007). Extending the analysis using a more
elaborate DSGE model that embeds both nominal and real rigidities as well as a more
detailed description of the economy would certainly be a very useful task for future
research.

13. Note that since the calibrated model produces impulse responses that are very similar to those from
the VAR model, a simulated method of moments estimation that tried to match the VAR impulse responses
would be quite likely to produce estimates of the model parameters close to the calibrated values.
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5. CONCLUSION

This paper develops an SVAR model that allows for time-varying variance of
monetary policy via stochastic volatility and also allows for a dynamic interaction
between the level of endogenous variables in the VAR and the time-varying volatility.
The model is used to estimate the impact of an increase in the volatility of monetary
policy. The analysis shows that movements in the volatility of monetary policy have
a nontrivial impact on the economy. In particular, the estimation establishes that in
the aftermath of an increase in the volatility of monetary policy the nominal interest
rate, inflation and output growth fall. These findings are then interpreted through the
lens of a nonlinear DSGE model solved by third-order perturbation around the steady
state. The theoretical model generates responses that are qualitatively similar to those
of the VAR model and provides a consistent explanation for the findings.

The analysis puts forward a number of interesting avenues for future research. In
particular, the proposed model is unable to quantify to what extent the responses of
the endogenous variables change through time, perhaps due to the different monetary
policy regimes. Hence, a natural extension would be to allow for time variation
in the responses of endogenous variables to shocks to volatility. In addition, the
methodology developed in the paper could also be applied to studying the effect of
changes in volatility to a wider set of shocks, which could complement the findings
in recent studies based on DSGE models, and could further advance understanding
of the role played by uncertainty in macroeconomics.

APPENDIX A: THE GIBBS SAMPLING ALGORITHM

A.1 Prior Distributions and Starting Values

VAR coefficients. The initial conditions for the VAR coefficients �0 (to be used in
the Kalman filter as described below) are obtained via an OLS estimate of equation
(1) using an initial estimate of the stochastic volatility. The covariance around these
initial conditions, P0, is set to a diagonal matrix with diagonal elements equal to 0.1.
This initial estimate of stochastic volatility is obtained via a simpler version of the
benchmark model where the stochastic volatility does not enter the mean equations.
This simpler version of the VAR model is estimated using a version of the Gibbs
algorithm described in Primiceri (2005). The estimated volatility from this model
is added as exogenous regressors to a VAR using the data described in the text to
provide a rough guess for initial conditions for the VAR coefficients.

Elements of Ht . The prior for h̃t at t = 0 is defined as h̃0 ∼ N (ln μ0, I3), where
μ0 are the first elements of the initial estimate of the stochastic volatility described
above.

Elements of A. The prior for the off-diagonal elements A is A0 ∼ N (â, V (â)), where
â are the elements of this matrix from the initial estimation described above. V (â) is
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assumed to be diagonal with the elements set equal to 0.1 times the absolute value of
the corresponding element of â.

Parameters of the transition equation. Following Cogley and Sargent (2005), we
postulate an inverse-gamma distribution for the elements of Qi ∼ I G( Qi0

2 , 5
2 ) where

Qi0 are the scale matrices obtained from the initial estimation described above. The
prior for θi is given as N (θi,0, 0.1), where θi,0 are the AR(1) coefficients obtained
using the initial estimate of stochastic volatility.

A.2 Simulating the Posterior Distributions

VAR coefficients. The distribution of the VAR coefficients � conditional on all other
parameters � and the stochastic volatility h̃t is linear and Gaussian: �\Zt , h̃t , � ∼
N (�T \T , PT \T ) where �T \T = E(�T \Zt , h̃t , �), PT \T = Cov(�T \Zt , h̃t , �). Fol-
lowing Carter and Kohn (2004), we use the Kalman filter to estimate �T \T and PT \T

where we account for the fact that the covariance matrix of the VAR residuals changes
through time. The final iteration of the Kalman filter at time T delivers �T \T and
PT \T . The Kalman filter is initialized using the initial conditions (�0, P0) described
above. This application of the Carter and Kohn algorithm to the heteroskedastic VAR
model is equivalent to a GLS transformation of the model.

Element of At . Given a draw for � and h̃t the VAR model can be written as A′(Z̃t ) =
et , where Z̃t = Zt − c + ∑P

j=1 β j Zit− j + ∑J
j=0 γ j h̃i t− j = vt and VAR(et ) = Ht .

This is a system of linear equations with known form of heteroskedasticity. The
conditional distributions for a linear regression apply to this system after a simple
GLS transformation to make the errors homoskedastic. More details on this step can
be found in Cogley and Sargent (2005).

Elements of Ht . Conditional on the VAR coefficients and the parameters of the
transition equation, the model has a multivariate nonlinear state-space representation.
Carlin, Polson, and Stoffer (1992) show that the conditional distribution of the state
variables in a general state-space model can be written as the product of three terms:

h̃t\Zt , � ∝ f (h̃t\h̃t−1) × f (h̃t+1\h̃t ) × f (Zt\h̃t , �), (A1)

where � denotes all other parameters. In the context of stochastic volatility models,
Jacquier, Polson, and Rossi (2004) show that this density is a product of log normal
densities for h̄t and h̄t+1 and a normal density for Zt where h̄t = exp(h̃t ). Carlin,
Polson, and Stoffer (1992) derive the general form of the mean and variance of the
underlying normal density for f (h̃t\h̃t−1, h̃t+1, �) ∝ f (h̃t\h̃t−1) × f (h̃t+1\h̃t ) and
show that this is given as

f (h̃t\h̃t−1, h̃t+1, �)∼N (B2t b2t , B2t ), (A2)
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where B−1
2t = Q−1 + F ′ Q−1 F and b2t = h̃t−1 F ′ Q−1 + h̃t+1 Q−1 F. Note that due to

the nonlinearity of the observation equation of the model an analytical expression for
the complete conditional h̃t\Zt , � is unavailable and a metropolis step is required.

Following Jacquier, Polson, and Rossi (2004), we draw from equation (A1) using
a date-by-date independence metropolis step using the density in equation (A2) as
the candidate generating density. This choice implies that the acceptance probability
is given by the ratio of the conditional likelihood f (Zt\h̃t , �) at the old and the new
draw. In order to take endpoints into account, the algorithm is modified slightly for
the initial condition and the last observation. Details of these changes can be found
in Jacquier, Polson, and Rossi (2004).

Parameters of the transition equation. Conditional on a draw for h̃t the transition
equation (4) is simply a sequence of linear regressions where the standard normal and
inverse Gamma conditional posteriors apply. Note that when drawing θi we impose
the condition that |θi | ≤ 1.

A.3 Convergence

The MCMC algorithm is applied using 1,000,000 iterations, discarding the first
990,000 as burn-in. The figure below plots the recursive mean calculated using
intervals of 20 draws for the retained draws of the main VAR parameters. The
fact that there is very little fluctuation in the recursive mean provides evidence for
convergence of the MCMC algorithm.
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APPENDIX B: IMPULSE RESPONSES FROM THE RESTRICTED VAR MODEL
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