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This article studies the dynamic response of labor input to neutral technology shocks. It uses benchmark dynamic,
stochastic, general equilibrium models enriched with labor market search and matching frictions and investment-specific
technological progress that enables a new, agnostic, identification scheme based on sign restrictions on a structural vector
autoregression (SVAR). The estimation supports an increase of labor input in response to neutral technology shocks.
This finding is robust across different perturbations of the SVAR model.

1. INTRODUCTION

This article studies the dynamic response of labor input to neutral technology shocks. Neutral
technology shocks are identified using the cyclical properties of benchmark dynamic, stochastic,
general equilibrium (DSGE) models of the business cycle enriched with labor market search
and matching frictions. Once the theoretical restrictions on the sign of the variables’ reaction to
shocks are imposed on the first period response of a structural vector autoregression (SVAR)
model, except on the reaction of labor input, the data robustly support that neutral technology
shocks increase labor input.

The theoretical frameworks used to inform the empirical investigation are standard DSGE
models characterized by flexible and staggered price setting, enriched with search and matching
frictions on the labor market and investment-specific technological progress. The addition of
these two features is motivated by their empirical relevance and theoretical appeal. Moreover,
importantly for the analysis of this article, as detailed below, they enable a new scheme to
identify neutral technology shocks. Empirically, Rogerson and Shimer (2010) show that labor
markets are characterized by frictions that prevent the competitive market mechanism from
determining labor market equilibrium allocations, thereby suggesting that their presence is
important for a realistic description of the functioning of the labor market. Additionally, the
analysis by Greenwood et al. (1997), Fisher (2006), and Justiniano et al. (2010) points out that
the inclusion of investment-specific technological progress is key to study the dynamics of the
technological progress.

Theoretically, labor market frictions introduce the extensive margin of labor (i.e.,
(un)employment) into the model, whereas this dimension is absent in standard models of
the labor market. In this way, the theoretical framework is able to detail the dynamics of hiring
and labor market tightness—defined as the ratio between hiring and unemployment—whose
reactions to shocks enable a new, agnostic, identification scheme that holds across models and
is robust to plausible parameterizations. In particular, the reaction of unemployment and hiring
provides two new short-run identification restrictions. First, neutral technology shocks increase
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the number of hirings and, second, raise labor market tightness. Investment-specific technology
shocks instead have a reverse effect on these variables. These restrictions together with the
opposite reaction of consumption to the two shocks enable us to uniquely identify neutral tech-
nology shocks. By imposing these sign restrictions on the impact responses of an SVAR model,
while leaving labor input to freely react to shocks, the data show that neutral technology shocks
increase labor input. This finding is robust across different perturbations of the model, such as
controlling for long cycles in the data, choosing different time lags in the SVAR, splitting the
sample period, using alternative measures of labor market variables, extending the length of
sign restrictions on the SVAR, and including additional variables in the estimation procedure.

The approach proposed in this article has a number of advantages. First, we conduct the
analysis without relying on low- or medium-frequency identification schemes, thereby imposing
a minimal set of constraints on the model. As Fernald (2007), Francis et al. (2007), and Canova
et al. (2010) point out, any procedure that includes low or medium frequencies generates
an artificial positive comovement between labor input and neutral technology shocks that
disappears once long cycles are controlled for. Second, Faust and Leeper (1997) argue that
long-run restrictions may generate unreliable structural estimates, as such an identification
scheme entails the use of finite sample information to approximate the infinite future with the
results heavily dependent on the specification of the reduced-form model. Chari et al. (2008) and
Ravenna (2007) demonstrate the relevance of this problem for identifying technology shocks
and show that structural VARs with long-run restrictions are fairly unsuccessful at accurately
recovering true underlying impulse response functions when estimated using data generated
from a structural model. In contrast, we show that our identification scheme performs well in a
Monte Carlo setting and is able to recover the impulse response functions associated with the
data-generating process. Third, by using high-frequency restrictions we identify the reaction
of labor input to technology shocks without incurring the estimation uncertainty and bias that
long-run identification schemes produce, as documented by Erceg et al. (2005). Finally, in
this setting the information from the theoretical framework is processed consistently with the
empirical investigation, since the business cycle properties of the theoretical model provide
short-run sign restrictions on the impulses of the SVAR. This allows us to effectively implement
an agnostic identification scheme since labor input is left unconstrained and the theoretical
restrictions are imposed on the first-period reactions of the SVAR, thereby leaving the data to
determine subsequent dynamics.2

The remainder of the article is organized as follows. Section 2 provides an overview of
the literature. Section 3 lays out the theoretical model and describes the model’s solution and
calibration. Section 4 details the sign restrictions from the theoretical model. Section 5 describes
the SVAR model and the implementation of the identification scheme. Section 6 presents the
results and robustness analysis. Section 7 concludes.

2. AN OVERVIEW OF THE LITERATURE

A growing number of studies identify technology shocks by imposing that they are the only
component that can affect the level of productivity in the long run, as originally proposed by
Blanchard and Quah (1989). Using this identification scheme Gali (1999), Gali et al. (2003),
Francis and Ramey (2005), Francis et al. (2005), Liu and Phaneuf (2007), Fisher (2006), and
Canova et al. (2010) find that technology shocks have a contractionary effect on employment. On
the other hand, despite using a similar methodology, Christiano et al. (2004) obtain the opposite
result. Irrespective of the findings, Fernald (2007) shows that such an analysis is sensitive to the
treatment of low-frequency trends, thereby calling into question the validity of this approach.
Moreover, Erceg et al. (2005) point out that long-run restrictions are subject to considerable
estimation uncertainty about the quantitative impact of technology shocks on macroeconomic

2 For a detailed assessment on the shortcomings of long-run restrictions, see Dedola and Neri (2007) and references
therein.



NEUTRAL TECHNOLOGY SHOCKS AND THE DYNAMICS OF LABOR INPUT 237

variables. We overcome these methodological pitfalls by using short-run restrictions, and we
show that the results are robust to controlling for long cycles in the data. In addition, unlike the
aforementioned studies, with the exception of Canova et al. (2010), we inform the empirical
investigation with a search and matching model of the labor market, which, as mentioned, allows
a new identification scheme and improves both the description of the functioning of the labor
market and the understanding of the reaction of labor input to technology shocks.

Uhlig (2004), Dedola and Neri (2007), and Peersman and Straub (2009) report related work,
using a medium-run identification scheme, where the sign of the variables’ responses to tech-
nology shocks are imposed for a number of periods on an SVAR to investigate the reaction
of labor input to technology shocks. Our article has two differences. First, it uses an agnostic
identification scheme, as labor input is left unconstrained while imposing sign restrictions on the
impact responses of other key variables, thereby leaving the data to freely inform the variables’
responses in the aftermath. Second, as described, it uses a novel identification scheme based on
labor market variables such as hiring and labor market tightness. In this way, differently from
related studies, the reaction of labor input is identified using the information provided by labor
market variables.

3. THE THEORETICAL MODEL

This section lays out the theoretical model and describes its solution and calibration. We
set up the model with nominal price rigidities, which, given certain restrictions, defined below,
nests the standard model with flexible prices. A standard New Keynesian model is enriched to
allow for labor market frictions, as in Blanchard and Gali (2010), and for investment-specific
technological progress, as in Greenwood et al. (1997). The model economy consists of a rep-
resentative household, a representative goods-producing firm, a continuum of intermediate-
goods-producing firms indexed by i ∈ [0, 1], and a central bank.

The labor market is based on the assumption that the processes of job search and recruitment
are costly for both the firm and worker. Job creation takes place when a firm and a searching
worker meet and agree to form a match at a negotiated wage, which depends on the parties’
bargaining power. The match continues until the parties exogenously terminate the relationship.
When this occurs, job destruction takes place and the worker moves from employment to
unemployment, and the firm can either withdraw from the market or hire a new worker.

The goods market is comprised of a representative finished-goods-producing firm, and a
continuum of intermediate-goods-producing firms indexed by i ∈ [0, 1]. During each period
t = 0, 1, 2, . . . , each intermediate-goods-producing firm hires workers and produces a distinct,
perishable good. It sells its output to the finished-goods-producing firm in a monopolistically
competitive market by setting the price as a markup over marginal cost, and it faces a cost
to adjusting its nominal price, as in Rotemberg (1982). During each period t = 0, 1, 2, . . . , the
finished-goods-producing firm uses intermediate goods from the intermediate-goods-producing
firms to produce a finished product and sells it to the household.

The central bank is modeled with a modified Taylor rule as in Clarida et al. (1998): It gradually
adjusts the nominal interest rate in response to deviations of output and inflation from their
steady-state levels.

The rest of this section describes the agents’ tastes, technologies, the policy rule, and the
structure of the labor and goods market in detail.

3.1. The Representative Household. During each period t = 0, 1, 2, . . . , the representative
household maximizes the expected utility function

E0

∞∑
t=0

βt[ ln Ct − χN1+φ
t

/
(1 + φ)

]
,(1)
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where the variable Ct is consumption, Nt is units of labor, and β is the discount factor 0 < β < 1.
The representative household enters period t with bonds Bt−1. At the beginning of the period,
the household receives nominal profits Ft from the intermediate-goods-producing firms. The
household supplies Nt units of labor and Kt units of capital at the wage rate Wt and the capital
remuneration rate Qt, respectively, to each intermediate-goods-producing firm i ∈ [0, 1] during
period t. Then, the household’s bonds mature, providing Bt−1 additional units of currency. The
household uses part of this additional currency to purchase Bt new bonds at nominal cost Bt/Rt,

where Rt represents the gross nominal interest rate between t and t + 1. The household uses its
income for consumption, Ct, and investment, It, and carries Bt bonds into period t + 1, subject
to the budget constraint

PtCt + PtIt + Bt/Rt = Bt−1 + WtNt + QtKt + Ft,(2)

for all t = 0, 1, 2, . . . . By investing It units of output during period t, the household increases
the capital stock Kt+1 available during period t + 1 according to

Kt+1 = (1 − δk)Kt + υtIt,(3)

where the depreciation rate satisfies 0 < δk < 1, and the disturbance υt is the Greenwood et al.
(1997) investment-specific technology shock, which follows the autoregressive process

ln(υt) = (1 − ρυ) ln(υ) + ρυ ln(υt−1) + ευt,(4)

with 0 < ρυ < 1, and where the zero-mean, serially uncorrelated innovation ευt is normally
distributed with standard deviation συ. Thus the household chooses {Ct, Kt+1, Bt}∞t=0 to maximize
its utility (1) subject to the budget constraint (2) and the law of capital accumulation (3) for
all t = 0, 1, 2, . . . . Letting πt = Pt/Pt−1 denote the gross inflation rate and �t the nonnegative
Lagrange multiplier on the budget constraint (2), the first-order conditions for this problem are

�t = 1/Ct,(5)

�t/υt = βEt�t+1[Qt+1/Pt+1 + (1 − δk)/υt+1],(6)

and

�t = βRtEt(�t+1/πt+1).(7)

According to Equation (5), the Lagrange multiplier equals the household’s marginal utility of
consumption. Equation (6) is the standard Euler equation for capital, which links the intertem-
poral marginal utility of consumption with the real remuneration of capital. Equation (7), once
Equation (5) is substituted in, is the representative household’s Euler equation that describes
the optimal consumption decision.

3.2. The Labor Market. During each period t = 0, 1, 2, . . . , in each intermediate-goods-
producing firm i, the flow into employment results from the number of workers who survive
the exogenous separation and the number of new hires, Ht(i). Hence, total employment evolves
according to

Nt(i) = (1 − δn)Nt−1(i) + Ht(i),(8)

where Nt(i) and Ht(i) represent the number of workers employed and hired by firm i in period
t, and δn is the exogenous separation rate and 0 < δn < 1. For all t = 0, 1, 2, . . . , the fraction
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of aggregate employment and hires supplied by the representative household must satisfy
Nt = ∫ 1

0 Nt (i) di and Ht = ∫ 1
0 Ht (i) di, respectively. Accounting for job destruction, the pool of

household’s members unemployed and available to work before hiring takes place is

Ut = 1 − (1 − δn)Nt−1.(9)

It is convenient to represent the job creation rate, xt, by the ratio of new hires over the number
of unemployed workers such that

xt = Ht/Ut,(10)

with 0 < xt < 1, given that all new hires represent a fraction of the pool of unemployed workers.
The job creation rate, xt, is also an index of labor market tightness, since it indicates the
proportion of hires over the number of workers in search for a job. The cost of hiring a worker
is equal to Gt and, as in Blanchard and Gali (2010), is a function of labor market tightness xt:

Gt = Bxα
t ,(11)

where α is the elasticity of labor market tightness with respect to hiring costs such that α ≥ 0, and
B is a scale parameter such that B ≥ 0. As pointed out in Rotemberg (2006), this formulation
expresses the idea that the tighter the labor market the more costly hiring may be. Note that
given the assumption of full participation, the unemployment rate, defined as the fraction of
household members left without a job after hiring takes place, is

ut = 1 − Nt.(12)

Let WN
t and WU

t denote the marginal value of the expected income of an employed and
unemployed worker, respectively. The employed worker earns a wage, suffers disutility from
work, and might lose her job with probability δn. Hence, the marginal value of a new match is

WN
t = Wt

Pt
− χNφ

t

�t
+ βEt

�t+1

�t

{
[1 − δn (1 − xt+1)]WN

t+1 + δn (1 − xt+1)WU
t+1

}
.(13)

This equation states that the marginal value of a job for a worker is given by the wage less the
marginal disutility that the job produces to the worker and the expected-discounted net gain
from being either employed or unemployed.

The unemployed worker expects to move into employment with probability xt. Hence, the
marginal value of unemployment is

WU
t = βEt

�t+1

�t

[
xt+1WN

t+1 + (1 − xt+1)WU
t+1

]
.(14)

This equation states that the marginal value of unemployment is made up of the expected-
discounted capital gain from being either employed or unemployed.

The structure of the model guarantees that a realized job match yields some pure economic
surplus. The share of this surplus between the worker and the firm is determined by the wage
level, in addition to compensating each side for its costs from forming the job. As in Pissarides
(2000), the wage is set according to the Nash bargaining solution. The worker and the firm
split the surplus of their matches with the absolute share 0 < η < 1. The difference between
Equations (13) and (14) determines the worker’s economic surplus. The firm’s surplus is simply
given by the real cost per hire, Gt, as in Blanchard and Gali (2010). Hence, the total surplus from
a match is the sum of the worker’s and firm’s surpluses. The wage bargaining rule for a match is
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ηGt = (1 − η)(WN
t − WU

t ). Substituting Equations (13) and (14) into the wage bargaining rule
produces the agreed wage:

Wt/Pt = χNφ
t /�t + ζ{Gt − β(1 − δn)Et(�t+1/�t)[(1 − xt+1)Gt+1]},(15)

where ζ = η/(1 − η) is the relative bargaining power of the worker. Equation (15) shows that
the wage equals the marginal rate of substitution between consumption and leisure together
with current hiring costs, and the expected savings in terms of the future hiring costs if the match
continues in period t + 1.

3.3. The Goods Market. As described above, the production sector is comprised of a rep-
resentative finished-goods-producing firm and a continuum of intermediate-goods-producing
firms indexed by i ∈ [0, 1], characterized by staggered price setting as in Rotemberg (1982).

During each period t = 0, 1, 2, . . . , the representative finished-goods-producing firm uses
Yt(i) units of each intermediate good i ∈ [0, 1], purchased at nominal price Pt(i), to produce

Yt units of the finished product at constant returns to scale technology [
∫ 1

0 Yt(i)
μ−1
μ di]

μ
μ−1 ≥ Yt,

where μ > 1 is the elasticity of substitution among different goods. By maximizing its profits
the firm’s demand for Yt(i) units of intermediate good i is

Yt(i) = [Pt(i)/Pt]
−μ Yt(16)

for all i ∈ [0, 1], where Pt = [
∫ 1

0 Pt(i)1−μdi]
1

1−μ for all t = 0, 1, 2, . . . .

During each period t = 0, 1, 2, . . . , the representative intermediate-goods-producing firm
hires Nt(i) units of labor from the representative household, in order to produce Yt(i) units of
intermediate good i according to the constant returns to scale production technology

Yt(i) = AtK(i)θ
t N(i)1−θ

t ,(17)

where 1 < θ < 0 represents the capital share of production. The disturbance At is the neutral
technology shock, which follows the autoregressive process

ln(At) = (1 − ρa) ln(A) + ρa ln(At−1) + εat,(18)

with 1 < ρa < 0, and where the zero-mean, serially uncorrelated innovation εat is normally
distributed with standard deviation σa.

Since the intermediate goods are not perfect substitutes in the production of the final goods,
the intermediate-goods-producing firm faces an imperfectly competitive market. During each
period t = 0, 1, 2, . . . it sets the nominal price Pt(i) for its output, subject to satisfying the rep-
resentative finished-goods-producing firm’s demand. The intermediate-goods-producing firm
faces a quadratic cost to adjusting nominal prices, measured in terms of the finished goods and
given by (φp/2) [Pt(i)/ (πPt−1(i)) − 1]2 Yt, where φp > 0 is the degree of adjustment cost and
π is the steady-state gross inflation rate.3 This relationship, as stressed in Rotemberg (1982),
looks to account for the negative effects of price changes on customer–firm relationships. These
negative effects increase in magnitude with the size of the price change and with the overall
scale of economic activity, Yt.

The problem for the firm is to maximize its total market value given by E0
∑∞

t=0 (βt�t/Pt) Ft(i),
where βt�t/Pt measures the marginal utility value to the representative household of an
additional dollar in profits received during period t and

Ft(i) = Pt(i)Yt(i) − Nt(i)Wt − Kt(i)Qt − Ht(i)Gt − φp

2

[
Pt(i)

πPt−1(i)
− 1

]2

YtPt(i)(19)

3 Note that when φp = 0 the model nests the standard model with flexible prices.
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for all t = 0, 1, 2, . . . . Thus the firm chooses {Nt(i), Kt(i), Pt(i)}∞t=0 to maximize its profits (19)
subject to the law of employment accumulation (8), the demand for goods (16), and the pro-
duction technology (17) for all t = 0, 1, 2, . . . . Letting �t denote the nonnegative Lagrange
multiplier on the production technology (17), the first-order conditions for this problem are

Wt/Pt(i) = �t(1 − θ)Yt/(Nt�t) − Gt + β (1 − δn) Et (�t+1/�t) Gt+1,(20)

�tQt/Pt(i) = �tθYt/Kt,(21)

and

φp

[
πt(i)
π

− 1
]

πt(i)
π

= (1 − μ)
[

Pt(i)
Pt

]−μ

+ μ

[
Pt(i)

Pt

]−(1+μ)

+βφp Et

{
�t+1

�t

[
πt+1(i)

π
− 1

] [
πt+1(i)

π

Yt+1

Yt

]}
.

(22)

Equation (20) equates the wage to the marginal rate of transformation. The marginal rate of
transformation depends on labor productivity, Yt/Nt, as in a model without labor market search,
but also, due to the presence of labor market frictions, on present and future forgone costs of
hiring. More specifically, the three terms composing the marginal rate of transformation are the
following. The first term, �t(1 − θ)Yt/Nt, corresponds to the additional output generated by the
marginal employed worker. The second term represents the cost of hiring an additional worker,
and the third term captures the savings in hiring costs resulting from the reduced hiring needs in
period t + 1. In a model without labor market search, only the first term appears. Equation (21)
equates the remuneration of capital to the additional output generated by a marginal unit of
capital. Finally, Equation (22) is the New Keynesian Phillips curve in its nonlinearized form, as
in Ireland (2003).

3.4. The Central Bank. During each period t = 0, 1, 2, . . . , the central bank conducts mon-
etary policy using a modified Taylor rule,

ln(Rt/R) = ρr ln(Rt−1/R) + ρy ln(Yt/Y) + ρπ ln(πt/π),(23)

where R, Y , and π are the steady-state values of the nominal interest rate, output, and gross
inflation rate, respectively. According to Equation (23), the central bank gradually adjusts the
nominal interest rate in response to movements in output and inflation. As pointed out in
Clarida et al. (1998), this modeling strategy for the central bank is broadly consistent with the
actual monetary policy in the United States.

3.5. Model Solution and Calibration. In a symmetric, dynamic equilibrium, all intermediate-
goods-producing firms make identical decisions, so that Yt(i) = Yt, Nt(i) = Nt, Ht(i) = Ht,
Ft(i) = Ft, and Pt(i) = Pt, for all i ∈ [0, 1] and t = 0, 1, 2, . . . . In addition, the market clear-
ing condition Bt = Bt−1 = 0 must hold for all t = 0, 1, 2, . . . . These conditions, together with the
firm’s profit conditions (19) and the household’s budget constraint (2), produce the aggregate
resource constraint

Yt = Ct + It + (φp/2) (πt/π − 1)2 Yt + GtHt.(24)

Substituting the Lagrange multiplier, �t, from Equation (5) into Equations (6), (7), (9),
(15), (20), and (22), equating the wage from Equation (15) to Equation (20), and equating
the remuneration of capital from Equation (6) to Equation (21), the model describes the
behavior of the 13 endogenous variables {Yt, Ct, Ht, Kt, It, Gt, xt, Ut, ut, Nt−1, �t, Rt, πt},
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TABLE 1
PARAMETERS RANGES

Parameter Range

α Elasticity of labor market tightness [0, 10]
β Discount factor [0.985, 0.995]
φ Inverse of the Frisch intertemporal elasticity [0.1, 4]
δn Job destruction rate [0, 0.1]
δk Capital destruction rate [0, 0.05]
θ Capital share [0.2, 0.4]
GH/Y Share of hiring costs over total output [0.01, 0.05]
φp Degree of nominal price rigidities [0, 50]
μ Degree of substitution among goods [5, 15]
ρr Interest rate inertia [0, 0.99]
ρy Interest rate reaction to output [0, 1]
ρπ Interest rate reaction to inflation [1, 3]
ρa Autoregressive coefficient, neutral technological progress [0.75, 0.99]
ρυ Autoregressive coefficient, investment specific technological progress [0.75, 0.99]

NOTES: The table shows the parameters’ ranges used to simulate the theoretical model.

and persistent autoregressive processes of the exogenous shocks {εat, ευt}. The equilibrium
conditions do not have an analytical solution. Consequently, the system is approximated by
loglinearizing its equations around the stationary steady state. In this way, a linear dynamic
system describes the path of the endogenous variables’ relative deviations from their steady-
state value, accounting for the exogenous shocks. The solution to this system is derived using
Klein (2000).4

The model is calibrated on quarterly frequencies using U.S. data. Since the model is used
to identify the sign of the variables’ response to shocks, we need to ensure that the reactions
are robust across a broad range of parameters’ calibration. For this reason, as in Dedola
and Neri (2007) and Pappa (2009), we assume that the parameters’ values are uniformly and
independently distributed over a wide range of plausible values. The range value for each
parameter is described below and reported in Table 1. As in Blanchard and Gali (2010), to
satisfy the Hosios condition, which ensures that the equilibrium of the decentralized economy
is Pareto efficient, we impose that the relative bargaining power of the worker, ς, is equal to the
elasticity of labor market tightness with respect to hiring costs, α, such that ς = α.5 The elasticity
of labor market tightness with respect to hiring costs, α, is allowed to vary between 0 and 10,
which covers a broad range of plausible values. We allow the real interest rate to vary between
2 and 6.5% annually, whose values are commonly used in the literature, and they pin down the
quarterly discount factor β to be between 0.985 and 0.995. We calibrate the inverse of the Frisch
intertemporal elasticity of substitution in labor supply, φ, to vary between 0.1 and 4, such that
the elasticity of labor supply is between 10 and 0.25, whose values are in line with micro- and
macro-evidence as detailed in Card (1994) and King and Rebelo (1999). Consistent with U.S.
data, as in Fujita and Ramey (2009), the steady-state value of the job destruction rate, δn, is
allowed to vary between 0 and 10%, and the steady-state value of the capital destruction rate,
δk, is set between 0 and 5%, as in King and Rebelo (1999). The parameter of the production
capital share, θ, is set between 0.2 and 0.4 in line with studies such as Ireland (2004) and King
and Rebelo (1999). We need to set a value for B, which determines the steady-state share
of hiring costs over total output, GH/Y . Since precise empirical evidence on this parameter is
unavailable, in line with Blanchard and Gali (2010), we choose B such that hiring costs represent
between 1 and 5% of total output, which covers reasonable lower and upper bounds for this
parameter. The degree of nominal price rigidities, φp , is allowed to cover values between 1 and

4 Note that the model with flexible prices is recovered by imposing that prices are flexible (φp = 0), there is no
imperfect competition on the goods market (μ = 0), and there is no role for the central bank (ρr = ρy = ρπ = 0).

5 See Hosios (1990) for the formal derivation of this condition.
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50, as suggested in Ireland (2000). We allow the degree of substitution among different goods,
μ, to vary between 5 and 15, which covers the values suggested in Rotemberg and Woodford
(1998). Similarly to Dedola and Neri (2007) and Peersman and Straub (2009), the monetary
policy parameters are allowed to vary in the following ranges: ρr ∈ [0, 0.99], ρy ∈ [0, 1], and
ρπ ∈ [1, 3].

The steady-state values of the neutral and investment-specific technological progresses, a
and υ, are conveniently set equal to 1, as they do not affect the dynamics of the system. The
autoregressive coefficients of the neutral and investment-specific technological progresses, ρa

and ρυ, are free to vary between 0.75 and 0.99 in line with King and Rebelo (1999) and Ireland
(2003). The standard deviation of the neutral and investment-specific technological progresses,
σa and συ, are normalized to be equal to 1%. Finally, in line with Blanchard and Gali (2010),
we calibrate the parameter of the disutility of labor, χ, to be equal to 1.5.

4. THE THEORETICAL RESTRICTIONS

To derive the sign restrictions to impose on the empirical SVAR model, we use the theoretical
model to determine how each variable reacts to shocks. To produce robust responses to one
positive percentage point neutral and investment-specific technology shocks, we simulate the
theoretical model by drawing 10,000 times from the parameters’ ranges. As in Dedola and Neri
(2007) and Pappa (2009), to eliminate extreme responses, we discard the regions of the two dis-
tributions below and above 2.5 and 97.5 percentiles, respectively. To illustrate how the variables
of the theoretical model react to each shock, Figures 1 and 2 plot impulse responses of variables
to one positive percentage-point deviation of neutral and investment-specific technology shock
for the model with flexible and staggered price setting, respectively. Independently from the
shock considered, capital and investment show similar dynamics, as they both rise. In addition,
the long-run response of output is positive for both shocks, although the impact response is
more pronounced in the case of a neutral technology shock, which corroborates the findings in
Greenwood et al. (1997) and Fisher (2006). The reactions of consumption, hiring, labor market
tightness, and the cost of hiring to a neutral technology shock are positive. The intuition for these
results is straightforward. In response to a positive technology shock, hiring increases as firms ex-
pand production by increasing labor input. Consequently, unemployment falls, which combined
with the increase in hiring generates a rise in labor market tightness and the cost of hiring. On the
other hand, in the face of an investment-specific technology shock, labor input falls since capital
is more productive and, as described, firms respond to this by expanding production. As a con-
sequence, hiring and the number of workers decrease, thereby softening labor market tightness
and reducing the cost of hiring. Importantly for the analysis of this article, the opposite theoret-
ical responses of hiring, labor market tightness, and consumption to the two shocks enable the
identification of neutral technology shocks. Note that the model with nominal price rigidities
provides two additional restrictions on the response of inflation and the nominal interest rate.
As shown in Figure 2, inflation and the nominal interest rate both fall in reaction to a neu-
tral technology shock, whereas they increase in response to an investment-specific technology
shock.

Since consumption, hiring, and labor market tightness have opposite reactions to neutral
or investment-specific technology shocks, we are able to disentangle the effect of these two
shocks in the data. To implement an agnostic identification scheme we impose the described
sign restrictions, as summarized in panel A of Table 2, on the first-period reaction of the SVAR
model, and subsequently the data can freely inform the dynamics of the response.6 Of course,
as described, the response of labor input is left unrestricted at all times.

6 To ensure that the sign restriction that labor market tightness increases after a neutral technology shock does not
rule out a decline in labor input, we have estimated the model relaxing this assumption and established that the results
remain unchanged.
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NOTES: Panel A (Panel B) shows the percentage-point response of one of the model’s variables to a one-percentage-
deviation neutral (investment-specific) technology shock. The solid line reports the median responses and the dashed
lines report the 2.5 and 97.5 percentiles of the responses.

FIGURE 1

MODEL WITH FLEXIBLE PRICES: THEORETICAL IMPULSE-RESPONSE FUNCTIONS. (A) NEUTRAL TECHNOLOGY SHOCK;
(B) INVESTMENT-SPECIFIC TECHNOLOGY SHOCK
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NOTES: Panel A (Panel B) shows the percentage-point response of one of the model’s variables to a one-percentage-
deviation neutral (investment-specific) technology shock. The solid line reports the median responses and the dashed
lines report the 2.5 and 97.5 percentiles of the responses.

FIGURE 2

MODEL WITH STAGGERED PRICES: THEORETICAL IMPULSE-RESPONSE FUNCTIONS. (A) NEUTRAL TECHNOLOGY SHOCK;
(B) INVESTMENT-SPECIFIC TECHNOLOGY SHOCK
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TABLE 2
SIGN RESTRICTIONS ON THE FIRST-PERIOD SVAR VARIABLES

Neutral Technological Investment-Specific
Variable Progress Technological Progress

A: Model with Flexible Prices
Real output + +
Investment + +
Consumption + −
Hiring + −
Labor market tightness + −

B: Model with Staggered Prices
Real output + +
Investment + +
Consumption + −
Hiring + −
Labor market tightness + −
Inflation − +
Nominal interest rate − +

NOTES: Entries show sign restrictions on the first-period SVAR variables to neutral and investment-specific technological
progresses.

5. THE BAYESIAN SVAR MODEL

In this section, we describe the empirical VAR model, the prior and the posterior distributions,
and the identification scheme based on sign restrictions.

Our analysis is based on the following standard VAR model:

Zt =
P∑

j=1

βj Zt−j + εt,(25)

where the variance of εt is equal to � and the T × N data matrix Zt contains the endogenous
variables. We adopt a Bayesian approach to the estimation of Equation (25). Following Kadiyala
and Karlsson (1997) and Sims and Zha (1998), we employ a Normal Inverted Wishart prior:

p (�) � IW
(
�0, T 0) and p

(
β̄/�

)
� N

(
β0, � ⊗ �0) ,(26)

where β̄ is the vector of coefficients, β0 is the prior mean for the VAR coefficients, �0 controls
the tightness around this prior, �0 is the prior scale matrix for the Inverse Wishart (IW)
distribution, and T 0 denotes the prior degrees of freedom. Essentially, the prior in Equation (26)
is a generalization of the Minnesota prior discussed in Litterman (1986) and assumes that the
variables included in the VAR follow a random walk or an AR(1) process. This is based on
the idea that recent lags provide more reliable information on the dynamics of the system and
therefore the estimation should assign them a higher weighting. Unlike the original formulation
in Litterman (1986) however, the prior in Equation (26) does not assume a diagonal, fixed, and
known covariance matrix, making it more suitable for VARs designed for structural analysis.

As described in Banbura et al. (2007) and commonly used in the literature, we impose the
prior by adding dummy observations to the data matrix Zt. That is, the prior in Equation (26)
is implemented by adding dummy observations Y0 and X0 of length Td to the system in Equa-
tion (25). It can be shown that β0 = (X0′X0)−1(X0′Y0) and �0 = (Y0 − X0β0)′(Y0 − X0β0).
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These dummy observations are defined as

Y0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

diag
(
β0

1σ1 . . . β0
NσN

)
�

0N×(P−1)×N

..............

diag (σ1...σN)

..............

01×N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, and X0 =

⎛
⎜⎜⎜⎜⎜⎝

JP ⊗ diag (σ1 . . . σN)
�

0NP×1

0N×NP 0N×1

..............

01×NP ξ

⎞
⎟⎟⎟⎟⎟⎠

,

where β0
1, β

0
2, . . . , β

0
N denote the prior mean for each VAR coefficient and 0k×j is a matrix of

zeros with dimension k × j . Note that the parameter � controls for the tightness of the prior
on the VAR coefficients, such that a large number for � corresponds to a loose prior. The
parameter ξ controls the prior on the intercept, such that a small number makes the prior
uninformative. Finally, following common practice, the parameters σ1, σ2, . . . , σN are scaling
parameters and are approximated using the variance of univariate autoregressions for each
variable in the VAR. The conditional posterior for the VAR parameters has the following
form:

g (�) � IW
(
�̂, Td + 2 + T − K

)
and g

(
β̄/�

)
� N

(
B̂, � ⊗ (X∗′X∗)−1

)
,(27)

where B̂ = (X∗′X∗)−1(X∗′Y∗) and �̂ = (Y∗ − X∗B̂)′(Y∗ − X∗B̂), T is the length of the time
series, K is the number of coefficients in each VAR equation, and the terms Y∗ and X∗ denote
the left- and the right-hand side of Equation (25) with the data Zt augmented by dummy
observations Y0 and X0. We use Gibbs sampling to draw 500,000 samples from this posterior.
We discard the first 400,000 iterations as burn-in and retain every 10th draw of the remaining
100,000 draws for inference.7

5.1. Identification. As mentioned, the structural analysis using the VAR model is based on
the identification of two shocks: neutral and investment-specific technology shocks. Following
Uhlig (2005) and Dedola and Neri (2007), we employ sign restrictions from the theoretical
model, described in the previous section, to identify these shocks. The identification scheme is
implemented as follows. We compute the structural impact matrix, A0, via the procedure intro-
duced by Rubio-Ramı́rez et al. (2008). Specifically, let � =PDP′ be the eigenvalue-eigenvector
decomposition of the VAR’s covariance matrix �, and let Ã0 ≡ PD

1
2 . We draw an N × N matrix

K from the N(0, 1) distribution and then take the QR decomposition of K. That is, we compute
Q and R such that K = QR. We then compute a structural impact matrix as A0 = Ã0 × Q′. If
A0 satisfies the sign restrictions we keep it. We repeat this algorithm until we recover 100 A0

matrices that satisfy the sign restrictions for each Gibbs iteration. Our structural analysis is
based on the A0 matrix closest to the median of the estimated distribution of A0 for each draw
from the VAR posterior.

6. FINDINGS

This section documents the findings. It uses the signs of the theoretical responses to constrain
the first-period reaction of an SVAR model and determine the dynamics of labor input.

To implement the estimation, before using these theoretical restrictions, we need
to specify the variables that enter in the SVAR model. To maintain the closest

7 An appendix that presents evidence on convergence of the Gibbs sampling algorithm is available upon request
from the authors.
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NOTES: The top row shows impulse responses from the SVAR model to a positive neutral technology shock. The
bottom row shows impulse responses from the SVAR model to a positive investment-specific technology shock. Each
plot shows the median and the 5th, 16th, 84th, and 95th percentiles of the posterior distribution of the impulse responses.

FIGURE 3

EMPIRICAL IMPULSE-RESPONSE FUNCTIONS TO A NEUTRAL AND INVESTMENT-SPECIFIC TECHNOLOGY SHOCK

mapping between the theoretical and the empirical models, we set up an SVAR that includes
all the variables that enter the theoretical model, with the exception of hiring costs, which
is unavailable, thereby using the level of real GDP, investment, consumption, hiring, labor
market tightness, and employment. The data for real GDP, investment, consumption and em-
ployment are from the FRED database.8 The data for hiring and labor market tightness are
from Shimer (2007). The data are quarterly, seasonally adjusted, and cover the period 1951:Q1
2006:Q3. We specify an SVAR in levels with two lags but, as detailed below, results are robust
to higher lags order. We present results based on the model with flexible prices, derived by
setting φp = 0, since it includes a lower number of variables and the identifying restrictions
rely solely on the responses of hiring, labor market tightness, and consumption. However, as
shown below, the qualitative results hold for the model with staggered price setting that uses
a larger data set, which includes series for marginal cost, inflation, and the nominal interest
rate and imposes additional restrictions on the responses of inflation and the nominal interest
rate.

Figure 3 plots the estimated impulse responses to a positive neutral and investment-specific
technology shock. Each plot shows the median and the 5th, 16th, 84th, and 95th percentiles
of the posterior distribution of the impulse responses. The top row shows that a positive neu-
tral technology shock produces a rise in real GDP, investment, consumption, vacancies, and
labor market tightness, which is statistically significant, as the 16th percentile is above zero for
approximately the initial two and a half years. As expected from theory, as in Fisher (2006),

8 The FRED mnemonics for the variables are GDPC96, PNFI, PCECC96, and CE16OV, respectively.
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NOTES: The top row shows the forecast error variance decompositions from the SVAR model to a positive neutral
technology shock. The bottom row shows forecast error variance decompositions from the SVAR model to a positive
investment-specific technology shock. Each plot shows the median and the 5th, 16th, 84th, and 95th percentiles of the
posterior distribution of the impulse responses.

FIGURE 4

FORECAST ERROR VARIANCE DECOMPOSITIONS

the response of investment is stronger than those of the other variables, and also the response
of consumption is lower than that of real GDP. Employment, which is left unconstrained by
the identification procedure, displays a positive and statistically significant response, as its 16th
percentile reaches zero after more than six years. Similarly to Dedola and Neri (2007) and
Christiano et al. (2004), the median response of labor input is hump shaped and reaches its peak
after approximately four quarters. The bottom row shows that a positive investment-specific
technology shock generates an impact fall on all the variables. In the case of consumption,
vacancies, labor market tightness, and labor input, the impact reaction is significantly different
from zero for about five years, whereas in the case of real GDP and investment, the 16th per-
centile reaches zero after approximately 12 quarters. It is interesting to note that the response
of employment in the SVAR is much larger than in the theoretical model. This is related to the
weak propagation mechanism of employment (or unemployment) in search and matching mod-
els of the labor market, as pointed out in Shimer (2005). Gertler and Trigari (2009) suggest that
staggered wage setting helps in magnifying the response of employment in reaction to shocks.
Enriching the theoretical model with staggered wage setting to produce a stronger response of
employment would certainly be a useful extension for future research.

To understand the extent to which the movements of each variable are explained by the
shocks, Figure 4 reports the forecast error variance decompositions for the SVAR model. Each
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graph reports the median and the 5th, 16th, 84th, and 95th percentiles error bands. The top row
shows that neutral technology shocks explain 60% of real GDP at high frequencies, whereas
their importance almost halves at low frequencies. Similarly, neutral technology shocks are the
main contributors to short-run fluctuations in investment, consumption, vacancies, labor market
tightness, and employment, although their contribution significantly declines at low frequencies.
As depicted in the bottom row, the contribution of the investment-specific technology shocks
is approximately 30% for investment in the short run, and then it quickly stabilizes at around
10%. In general, investment-specific technology shocks contribute significantly and steadily to
explain the variance of the variables, although their explanation power is lower than neutral
technology shocks, which corroborates the findings in Zanetti (2008) obtained by estimating
a standard real business cycle model. Both neutral and investment-specific technology shocks
contribute to explain around 55% of employment fluctuations at low frequencies, in line with
Fisher (2006) and Christiano et al. (2004). Moreover, both neutral and investment-specific
shocks are unable to explain the whole variance of the variables, therefore indicating that
other shocks, not included in the model, are important to describe the dynamics in the data.
For both shocks, the forecast error variance decompositions are always statistically significant,
albeit a sizable degree of uncertainty surrounds the estimates.

In order to establish whether the results are robust to perturbations to the benchmark speci-
fication of the model, we undertake a number of robustness checks. In particular, we deal with
long-run cycles by introducing a time varying trend in the specification of the SVAR, by filtering
the data, and by considering an SVAR specification in differences. We also establish that the
results hold if we split the sample period before and after 1980, if we use alternative variables
in the SVAR, if we extend the length of sign restrictions, and if we use the restrictions from the
model with staggered prices to identify shocks. Finally, we also enrich the theoretical frame-
work with additional shocks and establish that the identification of a neutral technology shock
is unique. We establish that the results hold to all the different perturbations to the benchmark
specification.9

In order to establish that results hold in a model based on staggered prices, we extend the data
set to include series for the marginal cost, inflation, and the nominal interest rate, and we impose
on these variables the additional restrictions identified by the theoretical model with nominal
price rigidities.10 In particular, as summarized in panel B of Table 2, we impose as additional
restrictions that inflation and the nominal interest rate both fall on the first-period reaction
to a neutral technology shock, although they increase in response to an investment-specific
technology shock.11 Figure 5 shows that the response of employment to a neutral technology
shock is positive, and the response of the variables is similar to the estimated responses based
on the model with flexible prices.12

Finally, in order to test the robustness of our sign identification scheme we conduct a
simple Monte Carlo experiment. We generate 5,000 samples of artificial data from the New

9 An appendix, which details the robustness of the results, is available upon request from the authors.
10 Inflation is defined as the quarterly growth rate of the CPI index, whereas the nominal interest rate is proxied

by the federal funds rate. Data on CPI and the federal funds rate are from the FRED database, whose mnemonics
are CPIAUCSL and FEDFUNDS, respectively. We proxy the marginal cost with the labor share using data on labor
income from the U.S. Bureau of Economic Analysis’s National Income and Product Accounts. Note that to include
these additional series we enrich the model with labor supply shocks, cost–push shocks, and monetary policy shocks.
Labor supply and cost–push shocks are embedded by allowing for time variation in the parameters χ and μ, respectively,
and by assuming that they follow an AR(1) process. Monetary policy shocks are embedded by adding a white noise
error to the Taylor rule equation (23). An appendix that details the construction of the labor share and provides further
details on the additional shocks is available upon request from the authors.

11 A companion appendix details how the alternative shocks are implemented in the data and it also performs
robustness analysis on the identification scheme.

12 Using the model with nominal price rigidities, we undertook the same robustness checks described for the model
with flexible prices, and we established that all the qualitative results hold.
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NOTES: The top row shows impulse responses from the SVAR model to a positive neutral technology shock. The
bottom row shows impulse responses from the SVAR model to a positive investment-specific technology shock. Each
plot shows the median and the 5th, 16th, 84th, and 95th percentiles of the posterior distribution of the impulse responses.
The identification is based on the model with staggered prices.

FIGURE 5

EMPIRICAL IMPULSE–RESPONSE FUNCTIONS TO A NEUTRAL AND INVESTMENT-SPECIFIC TECHNOLOGY SHOCK, MODEL WITH

STAGGERED PRICES

Keynesian model using the mean value of the benchmark parameters ranges is shown in Ta-
ble 1.13 At each iteration we simulate 300 observations for the model’s variables, discarding
the first 50 observations to reduce the impact of initial conditions. The generated data are
used to estimate the impulse response to neutral and investment-specific technology shocks
using the VAR model and benchmark contemporaneous sign restrictions implied by the New
Keynesian model. The left panels of Figure 6 show the distribution of the response of employ-
ment (across the Monte Carlo replications) to the neutral and investment-specific technology
shocks estimated using the VAR model, and the right panels show the impulse response to
these shocks in the theoretical model. The VAR responses match the model responses closely
in terms of magnitude and persistence. The median response to the neutral technology shock
in the VAR peaks at 0.19%, which is close to 0.18% suggested by the model, with both re-
sponses close to zero at the 35-quarter horizon. The VAR estimate of the response of em-
ployment to the investment-specific technology shock also captures the key features of the
model’s response. The median VAR response suggests a peak impact of −0.03%, which is
close to the model’s response estimated at −0.04%. These results suggest that the short-run
identification scheme we employ is capable of recovering the structural response to the two
technology shocks, which is in sharp contrast to the performance of the long-run identification
schemes.

13 Note that the autoregressive coefficients and the variances for all the shocks are set equal to 0.75 and 1, respectively.
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NOTES: The left panels show the estimated responses of employment to a neutral (top) and investment-specific (bottom)
technology shock using data simulated from the VAR model. The right panels show the responses of employment to
a neutral (top) and investment-specific (bottom) technology shock using the theoretical models. Each plot shows
the median and the 5th, 16th, 84th, and 95th percentiles of the posterior distribution of the impulse responses. The
identification is based on the model with staggered prices.

FIGURE 6

EMPIRICAL AND THEORETICAL IMPULSE–RESPONSE FUNCTIONS TO A NEUTRAL AND INVESTMENT-SPECIFIC TECHNOLOGY SHOCK,
MONTE CARLO EXPERIMENT

7. CONCLUSION

This article has investigated the dynamic response of labor input to neutral technology
shocks. Neutral technology shocks are identified using the cyclical properties of benchmark
DSGE models of the business cycle with flexible and staggered prices, characterized by labor
market search frictions and investment-specific technology shocks. The identification proce-
dure holds across models and additional shocks and is robust to plausible parameterizations.
By imposing the signs of the theoretical responses on the first-period reaction of an SVAR
model, the estimation supports an increase in labor input in response to neutral technol-
ogy shocks. The finding is robust across different perturbations of the SVAR model such
as controlling for long cycles in the data, choosing different time lags, using alternative mea-
sures of labor market variables, splitting the sample period, and extending the length of sign
restrictions.
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