Labor market reform and price stability: An application to the Euro Area

Carlos Thomas a,*, Francesco Zanetti b

a DG Economics, Statistics and Research, Bank of Spain, Calle Alcalá 48, 28014 Madrid, Spain
b Bank of England, UK

Abstract

Central bankers frequently suggest that labor market reform may be beneficial for inflation management. This paper investigates this topic by simulating the effects of reductions in firing costs and unemployment benefits on inflation volatility in the Euro Area, using an estimated New Keynesian model with search and matching frictions. Qualitatively, changes in labor market policies alter the volatility of inflation in response to shocks, by affecting the volatility of the three components of real marginal costs (hiring costs, firing costs and wage costs). Quantitatively, we find, however, that neither policy is likely to have an important effect on inflation volatility, due to the small contribution of hiring and firing costs to inflation dynamics.

1. Introduction

Policies aimed at regulating the labor market affect the incentives of workers and firms to form and keep employment relationships, thereby influencing the profit-maximizing behavior of firms. In particular, changes in labor market policies may affect the extent to which firms adjust their nominal prices in order to accommodate variations in cost and demand conditions, and hence may alter the response of the overall price level as the economy is hit by shocks. The view that labor market policies have an effect on price dynamics is also held in policy circles. For example, Jean Claude Trichet, the current president of the European Central Bank (ECB), has recently emphasized that structural reforms in the labor market may support stable inflation in the Euro Area: “the implementation of the reforms in the Lisbon agenda, by easing labor and product market rigidities, (...) will also improve the effectiveness of monetary policy by facilitating price stability.”

Despite the importance of this topic for policy-makers, surprisingly little academic work has focused on the effect of labor market reform on price stability. The aim of this paper is to contribute to the topic by studying how changes in...
unemployment benefits (UB) and firing costs (FC) may influence the volatility of inflation. We focus on UB and FC because they are generally considered to be important contributors to the rigidity of continental European labor markets. Therefore, a structural reform aimed at increasing the flexibility of the labor market would certainly involve modifications to these two labor market features.

In order to investigate this topic we set up a New Keynesian model with search and matching frictions in the labor market à la Mortensen and Pissarides (1994). In this framework, monopsonistically competitive firms set their nominal prices in a staggered fashion. They optimally adjust the size of their workforce both through job creation and job destruction. On the job creation side, firms post vacancies. On the job destruction side, firms destroy those jobs that become unprofitable and pay firing costs for each job destroyed. On the other side of the labor market, unemployed workers search for jobs and receive unemployment benefits in the meantime. Finally, vacancies and unemployed workers meet in the so-called matching function. This framework therefore provides a comprehensive treatment of the interaction between labor market policies, macroeconomic shocks and pricing decisions.

The mechanism by which unemployment benefits and firing costs affect the cyclical volatility of inflation is the following. In this model, hiring and firing are costly. As a result, hiring and firing costs become part of firms’ real marginal costs and therefore affect inflation dynamics. A reduction in unemployment benefits reduces workers’ outside option and thus increases the joint surplus of employment relationships. Since firms receive a constant fraction of the joint surplus, vacancy posting increases. This makes the labor market tighter, which in turn makes it more costly for firms to hire workers. As a result, the hiring component of real marginal costs experiences larger fluctuations, and inflation becomes more volatile. On the other hand, a reduction in firing costs automatically reduces the size of fluctuations in the firing component of real marginal costs. As a result, inflation becomes less volatile.

In order to assess the quantitative importance of this mechanism, we parameterize our model economy to Euro Area data, using a mixed method of calibration and maximum likelihood estimation. After showing that the model fits the data reasonably well, we simulate the effects of hypothetical reductions in UB and FC on inflation volatility. The baseline results suggest that these labor market reforms would have only small effects on inflation volatility. In particular, reducing the replacement ratio of UB by 10 percentage points would increase the annualized standard deviation of inflation by only 5 basis points (from 0.84% to 0.89%), whereas reducing firing costs as a fraction of the average wage by 10 percentage points would reduce inflation volatility by only 2 basis points (from 0.84% to 0.82%). We then test the robustness of these results to alternative model parameterizations, and show that the effects of labor market reform on inflation volatility remain small. The explanation for our results is the following. In the case of FC, job destruction rates barely fluctuate in the estimated model, such that the contribution of the firing component of marginal costs to inflation dynamics is very small. As a result, a certain percentage change in the volatility of the firing component has a very small absolute effect on inflation volatility. In the case of UB, the data favor model parameterizations in which hiring costs are small, which is necessary in order to match observed employment fluctuations. Since the hiring component contributes very little to inflation dynamics, even large percentage changes in the volatility of hiring costs will have again small absolute effects on inflation volatility.

Our analysis is closely related to earlier work by Campolmi and Faia (2006) and Zanetti (2007). Campolmi and Faia (2006) document a negative relationship between the replacement ratio of unemployment benefits and inflation volatility across Euro Area members. They subsequently build a two-country model of a currency union characterized by matching frictions and nominal price rigidities, and show that their model is able to reproduce the observed relationship between unemployment benefits and inflation volatility. Our model abstracts from international spill-overs, by treating the Euro Area as a single country, and extends the analysis of labor market policies by also considering the effects of firing costs. Zanetti (2007) sets up a New Keynesian model with labor market search to study how changes in unemployment benefits and firing costs affect aggregate fluctuations. After calibrating his model to UK data, he finds among other results that an increase in unemployment benefits reduces the volatility of inflation, while an increase in firing costs makes inflation more volatile, which is consistent with our results. Differently from Zanetti (2007), where the firms making the pricing decisions are different from the firms facing search frictions, in our framework firms are subject both to search frictions and staggered price adjustment, which makes the analysis more appealing from a theoretical point of view. Importantly, we differ from these two papers in that we estimate a number of key parameters that determine the transmission of shocks to inflation, such as the size and persistence of shocks, the duration of price contracts and the response of monetary policy to the state of the economy. In our view, this approach provides a more reliable assessment of the quantitative consequences of changes in labor market policies on inflation dynamics.

In a broader perspective, our paper is related to previous research that analyzes the effect of search frictions in the labor market on inflation dynamics. In particular, Krause et al. (2008) use US data on inflation, unit labor costs and several indicators of labor market activity in order to estimate the New Keynesian Phillips curve that arises in models with search frictions. In such models, the cost of hiring workers adds to the usual wage costs as a determinant of marginal costs. Our model features a similar expression for marginal costs, with the addition of a firing cost component. Krause et al. (2008)

2 See for instance Bentolila and Bertola (1990), Yashiv (2004), Layard et al. (2005) and Ljungqvist and Sargent (2006).

find that hiring costs make a small contribution to real marginal costs and hence to inflation, which points in the same direction as our results for the Euro Area.\footnote{They find, however, that search frictions reduce the role of backward-looking price setting for generating inflation persistence.}

The remainder of this paper is organized as follows. Section 2 lays out the model. Section 3 parameterizes the model to Euro Area data, using both calibration and maximum likelihood estimation. It then assesses the model’s ability to match the data and analyzes some of its transmission mechanisms. Section 4 presents the baseline results regarding the effect of labor market reform on price stability, and performs robustness exercises. Section 5 concludes.

2. Model

This section presents a New Keynesian model with search and matching frictions and endogenous job destruction à la Mortensen and Pissarides (1994). Our framework is therefore similar to those of Walsh (2005), Krause and Lubik (2007), Trigari (2009), Campolmi and Faia (2006) and Zanetti (2007).

The model economy is populated by four types of agents: households, firms, a fiscal authority and a monetary authority. Households consist of a large number of members, a fraction of which are unemployed and search for jobs. On the other side of the labor market, firms post a number of vacancies. Unemployed workers and vacancies, which are denoted by u_t and v_t, respectively, meet in the so-called matching function, $m(v_t, u_t)$. Normalizing the size of the labor force to 1, u_t also represents the unemployment rate. Under the assumption of constant returns to scale in the matching function, the matching probability for unemployed workers,

$$m(v_t, u_t) = m\left(\frac{v_t}{u_t}, 1\right) = p(\theta_t),$$

and for vacancies

$$m(v_t, u_t) = m\left(1, \frac{v_t}{u_t}\right) = q(\theta_t),$$

are functions of the ratio of vacancies to unemployment, $\theta_t = v_t/u_t$, also called labor market tightness. Notice that $p'(\theta_t) > 0$ and $q'(\theta_t) < 0$, i.e. in a tighter labor market jobseekers are more likely to find jobs and firms are less likely to fill their vacancies. Notice also that $p(\theta_t) = \theta_t q(\theta_t)$.

2.1. Firms

There exists a continuum of monopolistically competitive firms indexed on the unit interval. Inside any firm i, the timing of hiring and firing proceeds as follows. At the start of the period, a fraction χ^i of last period’s workers are exogenously separated from the firm. Aggregate shocks are then realized, after which the firm posts a number of vacancies. Firms are assumed to be large, such that the fraction of vacancies filled by the firm is given by $q(\theta_t)$. Once the hiring round has taken place, both newly hired and continuing workers receive an iid idiosyncratic productivity shock, z. Let $g(z)$ and $G(z)$ denote the cumulative distribution function and the density of z, respectively. Those workers whose new idiosyncratic productivity falls below a certain reservation productivity z^2_0 (to be determined later) become unprofitable and their jobs are destroyed, whereas the remaining workers start producing immediately.5 The law of motion of the firm’s workforce, n_{it}, is therefore given by

$$n_{it} = [1 - G(z^2_0)](1 - \chi^i)n_{it-1} + q(\theta_t)v_{it}, \quad \text{(1)}$$

where $G(z^2_0)$ is the fraction of new and continuing workers that are endogenously separated from the firm. The firm’s production function is given by

$$y_{it} = A_t n_{it} \int_{z^2_0}^{\chi^i} \frac{g(z)}{1 - G(z^2_0)} dz, \quad \text{(2)}$$

where A_t is an aggregate productivity shock with law of motion $\log A_t = \rho_A \log A_{t-1} + \xi^A_t$, $\xi^A_t \sim iid(0, \sigma_A)$.

2.1.1. Cost minimization

Subject to Eqs. (1) and (2), the firm minimizes its production costs

$$E_0 \sum_{t=0}^{\infty} \beta^t \left\{ n_{it} \int_{z^2_0}^{\chi^i} w_t(z) \frac{g(z)}{1 - G(z^2_0)} dz + \gamma v_{it} + G(z^2_0)[(1 - \chi^i)n_{it-1} + q(\theta_t)v_{it}] F \right\},$$

\footnote{We therefore assume that workers hired in period t start producing in the same period. This assumption has become standard in recent DSGE applications of the search and matching framework that assume a quarterly frequency, such as Blanchard and Gali (2009), Gertler et al. (2008), Sala et al. (2008) and Krause et al. (2008).}
where $\beta_s = \beta^{s-t} c_t / c_t$ is the stochastic discount factor between any two periods s and t ($s < t$), β is the subjective discount factor, $w_t(z)$ is the real wage paid to the worker with idiosyncratic productivity z (to be determined later), $\zeta > 0$ is the real cost of posting a vacancy and F is the real firing cost paid by the firm for each endogenous separation. Let ϕ_{it} and ϕ_s denote the Lagrange multipliers associated to Eqs. (1) and (2), respectively. Therefore, ϕ_{it} represents the real marginal value of employment, and ϕ_s the real marginal cost of production. The first-order conditions with respect to ν_{it}, n_{it} and z_{it} are given, respectively, by

$$\chi = q(\theta_t)(1 - G(z_{it}^s)) \phi_{it} - G(z_{it}^s) F,$$

Eq. (3) equalizes the marginal cost and the marginal benefit of posting a vacancy. With probability $q(\theta_t)$ the vacancy is filled, in which case two events are possible: either the new recruit is fired (which happens with probability $G(z_{it}^s)$), in which case the firm must pay firing costs, or she survives the job destruction round, in which case she generates value for the firm. The contribution of the worker with idiosyncratic productivity z to the flow of profits is given by $\phi_{it} A_t z - w_t(z)$, which is the gap between the cost reduction due to the worker and her real wage. Since workers have random idiosyncratic productivities, from Eq. (4) a worker that survives job destruction is expected to contribute the average gap between cost reduction and real wage, plus a continuation value which is the same for all workers in the firm. Finally, Eq. (5) states that the value of the worker with idiosyncratic productivity z_{it}^s is exactly equal to zero, i.e. the firm is indifferent between keeping this worker or not. Using Eqs. (4) and (5), Eq. (3) can be written as

$$\frac{\chi}{q(\theta_t)} = \int_{z_{it}^s} \left(\phi_{it} A_t (z - z_{it}) - (w_t(z) - w_t(z_{it}^s)) g(z) \right) dz - F.$$

Similarly, using Eq. (3), Eq. (5) can be expressed as

$$\phi_{it} A_t z_{it}^s = w_t(z_{it}^s) - F - (1 - \lambda^s) E_t \beta_{t+1} \frac{\chi}{q(\theta_{t+1})}.$$

2.1.2. Pricing decision

Due to imperfect substitutability between individual consumption goods, each firm faces the following demand curve for its product:

$$y_t = \left(\frac{P_{it}}{P_t} \right)^{-\gamma_t} y_t,$$

where P_{it} is the firm’s price, P_t is the overall price level, $\gamma_t > 1$ is the time-varying elasticity of substitution between individual goods in households’ consumption basket and y_t is aggregate demand. As is standard in the New Keynesian literature, we assume staggered price adjustment à la Calvo (1983). Let δ denote the probability of price adjustment common to all firms. A price-setting firm maximizes

$$E_t \sum_{T=1}^{\infty} \delta^{T-t} \beta_{tT} \left(\frac{P_{it}}{P_t} - \phi_{it} \right) \left(\frac{P_{it}}{P_t} \right)^{-\gamma_t} y_t$$

with respect to P_{it}. The first-order condition is given by

$$E_t \sum_{T=1}^{\infty} \delta^{T-t} \beta_{tT} \phi_{it} = \left(\frac{P_{it}}{P_t} \right)^{-\gamma_t} y_t,$$

where P_{it}^* is the optimal price decision and $\mu_t \equiv \gamma_t/(\gamma_t - 1)$ is a mark-up shock. The latter has law of motion $\log \mu_t = (1 - \rho_{\mu}) \log(\gamma_t/(\gamma_t - 1)) + \rho_{\mu} \log \mu_{t-1} + \epsilon_t^\mu$, where γ is the steady-state value of γ_t and $\epsilon_t^\mu \sim iid(0, \sigma^\mu)$.

2.2. Households

There exists a large, representative household with a measure-one continuum of members. A fraction $n_t = \int_0^1 n_t \, di$ of its members are employed. The remaining resources are engaged in home production, receive unemployment benefits and search for jobs. All members pool their resources so as to ensure equal consumption.7 The household consumes the following basket of differentiated goods,

$$c_t = \left(\int_0^1 \left(\frac{1}{\epsilon_{it}^{\gamma_t/(\gamma_t - 1)}} \right) \frac{c_{it}}{c_{it}} \, di \right)^{\gamma_t/(\gamma_t - 1)}.$$

7 The assumption of perfect insurance of unemployment risk is standard in the search and matching literature. See e.g. Merz (1995) and Andolfatto (1996).
Cost-minimization by the household implies that nominal consumption expenditure equals \(P_t c_t \), where

\[
P_t = \left(\int_0^1 p^{1-\gamma_1}_t \, dt \right)^{1/(1-\gamma_1)}
\]

is the overall price index. The household maximizes utility from consumption,

\[
E_0 \sum_{t=0}^{\infty} \beta^t \log(c_t),
\]

subject to the following period budget constraint:

\[
(1+\delta_{t-1}) \frac{B_t}{P_{t-1}} + \int_0^1 \frac{1}{n_d} \int_{x^*}^1 w_d(z) \frac{g(z)}{1-G(c_{it}^{t+1})} \, dz \, dt + (1-n_t) \rho_b w + \Pi_t = c_t + \frac{B_t}{P_{t-1}} + \tau_t,
\]

where \(B_{t-1} \) are holdings of one-period nominal bonds, \(i_t \) is the nominal interest rate, \(\tilde{w} = \int_{x^*} w(z) g(z)/1-G(z^R) \, dz \) is the steady-state average real wage, \(\rho_b \) is the replacement ratio of unemployment benefits, \(\Pi_t \) are real profits reverted from the firm sector to households in a lump-sum manner, and \(\tau_t \) are real lump-sum taxes. The first-order conditions with respect to \(B_t \) and \(c_t \) can be combined into the following consumption Euler equation:

\[
c_t^{-1} = \beta(1+i_t)E_t \left[\frac{P_t}{P_{t+1}} c_{t+1} \right].
\]

2.3. Wage bargaining

Each firm negotiates wages with its employees on a period-by-period basis. As is standard in the search and matching literature, we assume Nash wage bargaining, which implies that the firm and each worker split the joint surplus of their employment relationship. The joint surplus is the sum of the firm’s surplus and the worker’s surplus. The worker with idiosyncratic productivity \(z \) enjoys the following surplus:

\[
S^w_t(z) = w_t(z) - w_t + (1 - \lambda^x) E_t \beta_{t+1} \int_{x^*}^{1} S^w_{t+1}(x) g(x) \, dx,
\]

where

\[
\tilde{w} = h + \rho_b \tilde{w} + (1 - \lambda^x) E_t \beta_{t+1} p(\theta_{t+1}) \int_0^1 \frac{U_{\theta_{t+1}}}{U_{t+1}} \int_{x^*}^{1} S^w_{t+1}(x) g(x) \, dx \, dj
\]

is the outside option of the worker. The latter is the sum of home production, \(h \), unemployment benefits, \(\rho_b \tilde{w} \), and the value of searching for other jobs, where \(p(\theta_{t+1})U_{\theta_{t+1}}/U_{t+1} \) is the probability of being matched to any firm \(j \) in period \(t+1 \).

The surplus enjoyed by the firm from the job with idiosyncratic productivity \(z \) is given by \(J_{it}(z) + F \), where

\[
J_{it}(z) = \varphi_{it} A_{it} z - w_t(z) + (1 - \lambda^x) E_t \beta_{t+1} \int_{z^R_{it+1}}^{1} J_{it+1}(x) g(x) \, dx - G(z^R_{it+1}) F
\]

is the value of the job for the firm. The worker’s contribution to current profits is given by the amount of product produced by the worker, \(A_{it} z \), times the real marginal cost of production, \(\varphi_{it} \): given that the firm must always meet its demand, should the worker quit her job the firm would have to make up for the lost production, which would come at the cost \(\varphi_{it} A_{it} z \). In the following period, should the worker draw an idiosyncratic productivity \(x \) below the new reservation productivity \(z^R_{it+1} \), her job is destroyed and the firm pays firing costs \(F \); otherwise, the worker keeps on generating value for the firm.

Let \(\zeta \in (0, 1) \) denote the firm’s bargaining power. Nash bargaining implies the following surplus-sharing rule:

\[
(1 - \zeta) J_{it}(z) + F = \zeta S^w_{it}(z).
\]

The latter equation and the expressions for \(J_{it}(z) \) and \(S^w_{it}(z) \) yield the following solution for the real wage:

\[
w_t(z) = (1 - \zeta) \left[(\varphi_{it} A_{it} z + (1 - E_t \beta_{t+1}^x) F) + \zeta \tilde{w}_t \right]
\]

where \(\beta_{t+1}^x \equiv \beta_{t+1}(1 - \lambda^x) \). The worker therefore receives a weighted average of her outside option, \(w_t \), and the sum of her contribution to current profits and a firing-cost component. Firing costs affect wage payments in the following way: the

7 Notice that the worker’s surplus does not depend on \(F \). As is well known, those components of the cost of firing a worker that represent a transfer from the firm to the worker (such as severance payments) leave the joint match surplus unaffected and therefore have no effect on job creation and job destruction under Nash wage bargaining; see e.g. Mortensen and Pissarides (2003). The parameter \(F \) therefore includes only the non-transfer components of firing costs, such as legal costs, sanctions for delayed payments, as well as foregone health insurance and social security contributions.

8 Since the outside option for the firm in wage negotiations is firing the worker and paying firing costs, the firm’s surplus equals \(J_{it}(z) - (\cdot F) = J_{it}(z) + F \). See e.g. Mortensen and Pissarides (2003).
firm rewards the worker for the saving in firing costs today, but penalizes her for the fact that it may incur firing costs tomorrow. As shown in the appendix, it is possible to write the real wage equation as follows:

\[w_t(z) = (1 - \zeta)(\varphi_t A_t z + [1 - E_t(1 - p(\theta_{t+1}))\beta_t^z]F + E_t\beta_{t+1}^z \theta_{t+1} + \zeta(h + \rho_y \bar{w})]. \] (14)

2.4. Fiscal and monetary policy

Assume for simplicity that firing costs revert to the government. The fiscal authority is assumed to adjust lump-sum taxes, \(\tau_t \), so as to balance its budget in every period,

\[\tau_t = (1 - n_t)\rho_y \bar{w} + g_t - F \int_0^1 G(z_t^B) [(1 - \lambda^x) n_{t-1} + q(\theta_t) v_t] \, dt, \]

where \(g_t \) is exogenous government expenditure, with law of motion \(\log(g_t/g) = \rho_g \log(g_t/g) + \epsilon_t^g, \epsilon_t^g \sim iid(0, \sigma_g) \). On the other hand, the monetary authority sets interest rates according to a Taylor-type rule,

\[i_t = \phi_{it-1} + (1 - \phi_i)\beta_t \log(P_{t+1}/P_t) + \phi_y \log(y_t/y_t) + \epsilon_t^m, \]

where \(\phi_i \in [0, 1], \phi_y > 0, y \) is steady-state output and \(\epsilon_t^m \sim iid(0, \sigma_m) \).

2.5. Equilibrium

At this point we guess that all firms face the same real marginal cost, \(\varphi_t = \varphi, \) and choose the same reservation productivity, \(z_t^B = z_t^* \). Eq. (14) implies that \(w_t(z) - w_t(z_t^*) = (1 - \zeta)\varphi_t A_t (z - z_t^*) \). This allows us to write Eq. (6) as

\[\frac{X}{q(\theta_t)} = \zeta \varphi A_t \int (z - z_t^*) g(z) \, dz - F. \] (16)

Evaluating the real wage function at \(z_t^* \) and using the resulting expression in Eq. (7), the latter can be written as

\[\zeta A_t z_t^* \varphi = E_t \beta^z \frac{C_t}{C_{t+1}} [(1 - \zeta)\lambda^x \theta_{t+1} - \frac{X}{q(\theta_{t+1})}] + \zeta(h + \rho_y \bar{w}) - \left[\zeta + (1 - \zeta)E_t \beta^z \frac{C_t}{C_{t+1}} (1 - p(\theta_{t+1})) \right] F, \] (17)

where \(\beta^z = \beta(1 - \lambda^x) \). Eqs. (16) and (17) jointly determine the firm’s real marginal cost, \(\varphi_t \), and reservation productivity, \(z_t^* \), given the evolution of the aggregate variables \(A_t, \theta_t \) and \(C_t \). Since the latter are common to all firms, our previous guess that \(\varphi_t \) and \(z_t^* \) are equalized across firms is verified.\(^9\) A common real marginal cost also implies that all price-setters make the same price decision, that is, \(P_{t}^u = P_{t}^* \) in Eq. (9). The law of motion of aggregate employment can be obtained by aggregating Eq. (1) across firms,

\[n_t = [1 - G(z_t^B)](1 - \lambda^x) n_{t-1} + q(\theta_t) v_t, \] (18)

where \(v_t = \int_0^1 v_t \, dt \) is the aggregate number of vacancies. The stock of jobseekers at the start of the period evolves according to

\[u_t = 1 - n_{t-1} + \lambda^x n_{t-1}. \] (19)

Aggregate demand is given by

\[y_t = c_t + \lambda^y u_t + g_t. \] (20)

Eqs. (2) and (8) imply that \(A_t n_t \int_0^1 z [g(z)/(1 - G(z_t^B))] \, dz = (P_{t}^u/P_{t}^*)^{\gamma_t} y_t \), that is, each firm’s supply must meet its own demand. Integrating this condition across all firms yields the following:

\[A_t n_t \int_0^1 z [1 - G(z_t^B)] \, dz = y_t A_t, \] (21)

where \(A_t = \int_0^1 (P_{t}^u/P_{t}^*)^{\gamma_t} \, dt \) is a measure of price dispersion with law of motion\(^11\)

\[A_t = (1 - \delta) \left(\frac{P_{t}^u}{P_{t-1}^u} \right)^{\gamma_t} A_{t-1}. \] (22)

Finally, the price level evolves according to

\[P_t = [\delta P_{t-1}^{1-\gamma_t} + (1 - \delta)(P_{t}^u)^{1-\gamma_t}]^{1/(1 - \gamma_t)}. \] (23)

\(^9\) For supportive evidence on the plausibility of the Taylor rule as a description of actual ECB monetary policy, see e.g. Christoffel et al. (2008), Rabanal (2009) and Christoffel and Kuester (2009).

\(^10\) This does not mean, however, that all firms are symmetric in equilibrium. Given the price dispersion created by staggered price adjustment, firms will also differ in their output levels, \(y_t \), the size of their workforce, \(n_t \), and their number of vacancies, \(v_t \).

\(^11\) See e.g. Yun (1996).
Equilibrium in this economy is defined as the path \((i_t, c_t, y_t, n_t, u_t, A_t, z_t, \theta_t, \phi_t, v_t, P_t, P^*_t) \) that satisfies Eq. (9) (without \(i \) subscripts), (10), (15)–(23), and the relationship \(v_t = \theta_t u_t \), for all \(t \geq 0 \), given the evolution of the exogenous shocks, \((e^1_t, e^2_t, e^3_t, e^4_t) \), the laws of motion of \([A_t, g_t, h_t] \) and the initial values of the endogenous state variables, \([i_{-1}, n_{-1}, A_{-1}, P_{-1}] \).

For future reference, we also define after-hiring unemployment, \(U_t \equiv 1 - n_t \), which is the fraction of the labor force that is left without a job after hiring has taken place in period \(t \). Job creation and job destruction are defined as \(j_{C_t} \equiv q(t) v_t \) and \(j_{D_t} \equiv \lambda_t n_{t-1} + G(z_t) j_{C_t} \), respectively, where \(\lambda_t \equiv \lambda^r_t + (1 - \lambda^r_t) G(z_t) \) is the total separation rate. Eq. (18) can then be written as \(n_t = n_{t-1} + j_{C_t} - j_{D_t} \).

3. Model parameterization and assessment

The model is partly calibrated and partly estimated with quarterly Euro Area data. Our strategy consists of calibrating those parameters that affect the steady state and estimating the remaining parameters. The calibration is discussed first.

3.1. Calibration

As is common in real business cycle studies, the quarterly discount rate \(\beta \) is set to 0.99. Following Blanchard and Gali (2009), we set the steady-state after-hiring unemployment rate, \(U_t \), to 0.10 and the steady-state quarterly job finding rate, \(p(\theta_t) \), to 0.25. The employment rate is then given by \(n = 1 - U = 0.90 \). Eq. (18), together with \(q(\theta_t) v_t = p(\theta_t) u_t \) and Eq. (19), imply that the following condition must hold in the steady state:

\[
\ell = (1 - \ell^0) p(\theta)/[\ell + (1 - \ell)p(\theta)], \tag{24}
\]

where \(\ell^0 \equiv G(z^0) \) and \(\ell = \lambda^x + (1 - \lambda^x) \ell^0 \) are, respectively, the endogenous separation rate and the total separation rate in the steady state. The values of \(\ell^0 \) estimated for the US are typically centered around one half of the total separation rate.\(^{12}\) Lacking similar evidence for the Euro Area, we assume \(\ell^0 = \ell/2 \). Using this in Eq. (24), and given the values of \(p(\theta) \) and \(n \), we obtain \(\ell = 0.0312 \), which implies \(\lambda^x = 0.0156 \) and \(\lambda^r_t = (\ell - \lambda^x)/(1 - \ell^0) = 0.0159 \). The stock of jobseekers equals \(u = 1 - (1 - \ell)n \approx 0.11 \). We adopt Andolfatto's (1996) calibration of the US quarterly vacancy-filling rate, \(q(\theta) = 0.90 \). It then follows that \(\theta = p(\theta)/q(\theta) = 0.28 \). This implies \(\nu = \theta u = 0.032 \). The matching function is assumed to be Cobb–Douglas, \(m(\nu, u) = \zeta^\nu u^{1-\nu} \). Extrapolating again from US evidence, we set \(\zeta \) to 0.6 (Blanchard and Diamond, 1989). Since \(p(\theta) = \zeta^\theta \), the scale parameter \(\zeta \) must equal \(p(\theta)/\theta^\ell = 0.54 \). Following common practice, the bargaining power parameter is set equal to the elasticity of the matching function, \(\zeta = \ell \).\(^{13}\) The elasticity of demand curves, \(\gamma \), is set to 6 following Blanchard and Gali (2009), which implies a steady-state real marginal cost of \(\varphi = (\gamma - 1)/\gamma = 0.83 \).

The parameters controlling labor market reform are calibrated as follows. In the model, \(F \) is the part of the total cost of firing a worker that does not represent a transfer from the firm to the worker. Given the lack of a reliable estimate of this cost for the Euro Area as a whole, we set it to 20% of the quarterly average real wage. Expressing firing costs as \(f \) instead of \(1 - f \) represents the approach inapplicable.

For future reference, we also define after-hiring unemployment, \(U_t \equiv 1 - n_t \), which is the fraction of the labor force that is left without a job after hiring has taken place in period \(t \). Job creation and job destruction are defined as \(j_{C_t} \equiv q(t) v_t \) and \(j_{D_t} \equiv \lambda_t n_{t-1} + G(z_t) j_{C_t} \), respectively, where \(\lambda_t \equiv \lambda^r_t + (1 - \lambda^r_t) G(z_t) \) is the total separation rate. Eq. (18) can then be written as \(n_t = n_{t-1} + j_{C_t} - j_{D_t} \).

12 Den Haan et al. (2000) set \(\ell^0 / \ell \) to 32%, whereas Pissarides (2007) estimates that endogenous separations account for 60% of all separations. The midpoint of these estimates is 46%.

13 Our choice of \(\zeta \) does not affect our quantitative conclusions. Robustness results in this respect are available upon request from the authors.

14 See e.g. Den Haan et al. (2000), Walsh (2005), Krause and Lubik (2007) and Trigari (2009).

15 For values of \(\sigma_r \) lower than 0.18, the model’s steady-state equations imply negative values for \(\zeta \), which violates the non-negativity constraint on this parameter. This is why we choose 0.20 as the lowest value in the grid.

16 While it would be desirable to directly estimate this parameter by maximum likelihood, such an approach is very problematic. The reason is that many of the steady-state values which appear in the coefficients of the log-linear approximation (and which are not being estimated) depend on the value of \(\sigma_r \). Therefore, when iterating on \(\sigma_r \) in the estimation algorithm, we would in fact be changing the system of equations being estimated, which renders the approach inapplicable.
3.2. Estimation

The remaining structural parameters \((\sigma_A, \sigma_g, \sigma_p, \sigma_m, \rho_A, \rho_g, \rho_p, \psi_q, \phi_1, \delta)\) are estimated by constrained maximum likelihood.18 In particular, we impose an upper bound of 10% on the standard deviation of all shocks. In order to match the number of shocks in the model, we choose four observable variables: real output \((y_t)\), employment \((n_t)\), year-on-year inflation \((\pi_t)\) and the nominal interest rate \((i_t)\). The Euro Area as such exists since 1999:Q1. This leaves us with a relatively short sample. We follow the argument in Rabanal (2009) that by 1997 convergence in national nominal interest rates had been nearly reached. We therefore use data from 1997:Q1 to 2007:Q4, which gives us 44 observations.19 Employment and real GDP are logged and linearly detrended, whereas inflation and nominal interest rates are demeaned.

Table 1 displays the estimation results. Overall, parameter estimates are fairly precise, with the exception of the standard error of the government shock \((\sigma_p)\), and the coefficient on expected inflation in the Taylor rule \((\phi_1)\). The productivity and government shocks turn out to be quite persistent, whereas the data favor a mark-up shock with no persistence. The estimated Calvo parameter implies an average duration of price contracts, \(1/(1 - \delta)\), of about seven and a half quarters, i.e. almost two years. This is clearly too long in the light of micro evidence for the Euro Area, but is a common result in models that lack a real price rigidity mechanism.20 Finally, the upper bound on the shock standard deviations becomes binding in the case of \(\sigma_p\).

3.3. Model assessment

We next assess the estimated model’s ability to match the data in our sample. Fig. 1 compares each observed series with the corresponding one-period-ahead forecast obtained by applying the Kalman filter on the state-space representation of

\[
\begin{align*}
\frac{\mathcal{L}}{q(t)} &= \xi \phi \int_{-\infty}^{\infty} (z - z^p)g(z) dz - \rho_p \bar{w}, \\
\xi z^p \phi &= \beta(1 - \delta^s) \left[1 - \xi(1 - \delta^s) \frac{\mathcal{L}}{q(t)} + \xi(h + \rho_p \bar{w}) - [\xi + (1 - \xi) \beta(1 - \delta^s)(1 - p(t)) \rho_p \bar{w}]
ight], \\
\bar{w} &= (1 - \xi) \left\{ \phi \int_{-\infty}^{\infty} \frac{g(z)}{1 - G(2\xi)} dz + [1 - (1 - p(t)) \beta(1 - \delta^s) F + \beta(1 - \delta^s) \phi_1] + \xi(h + \rho_p \bar{w}) \right\}.
\end{align*}
\]

which can be used to solve for home production, \(h = 0.48\), the cost of posting a vacancy, \(\chi = 0.013\), and the average real wage, \(\bar{w} = 0.85\). Aggregate output equals \(y = n \bar{z} = 0.92\). Finally, assuming a ratio of government spending to GDP of \(g/y = 0.20\), consumption is given by \(c = y(1 - g/y) - \chi v = 0.74\).

Table 1

Maximum likelihood estimation results.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimate</th>
<th>Standard error</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_A)</td>
<td>0.0026</td>
<td>0.0003</td>
<td>Standard dev., productivity shock</td>
</tr>
<tr>
<td>(\sigma_g)</td>
<td>0.0810</td>
<td>0.0428</td>
<td>Standard dev., government shock</td>
</tr>
<tr>
<td>(\sigma_p)</td>
<td>0.0100</td>
<td>-</td>
<td>Standard dev., mark-up shock</td>
</tr>
<tr>
<td>(\sigma_m)</td>
<td>0.0010</td>
<td>0.0001</td>
<td>Standard dev., interest rate shock</td>
</tr>
<tr>
<td>(\rho_A)</td>
<td>0.86</td>
<td>0.0382</td>
<td>Autocorrelation, productivity shock</td>
</tr>
<tr>
<td>(\rho_g)</td>
<td>0.97</td>
<td>0.0165</td>
<td>Autocorrelation, government shock</td>
</tr>
<tr>
<td>(\rho_p)</td>
<td>0.00</td>
<td>-</td>
<td>Autocorrelation, mark-up shock</td>
</tr>
<tr>
<td>(\phi_q)</td>
<td>3.15</td>
<td>1.1990</td>
<td>Taylor rule coefficient, inflation</td>
</tr>
<tr>
<td>(\phi_1)</td>
<td>0.02</td>
<td>0.0662</td>
<td>Taylor rule coefficient, output</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.70</td>
<td>0.0640</td>
<td>Interest rate smoothing</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.88</td>
<td>0.0061</td>
<td>Fraction of sticky prices</td>
</tr>
</tbody>
</table>

Data for maximum likelihood estimation: GDP at constant prices, total domestic employment, year-on-year growth rate of GDP deflator (all three seasonally adjusted) and 3-month Euribor; source: ECB Statistical Data Warehouse; sample period: 1997:Q1–2007:Q4. Upper bound of 10% imposed on the standard deviation of all shocks.

17 We are normalizing the steady-state level of exogenous productivity, \(A\), to 1.

18 The estimation and all the subsequent simulations are based on a log-linear approximation of the model around a zero-inflation steady state. We use the software DYNARE in all the exercises.

19 The data are obtained from the ECB Statistical Data Warehouse. The series are GDP at constant prices, total domestic employment, the GDP deflator (all three seasonally adjusted) and the 3-month Euribor. We also estimated the model using the rate of change of the Harmonized CPI as our measure of inflation (the CPI and the GDP deflator are equivalent in the model). We found the estimation results to be nearly identical.

20 Real price rigidities arise in situations in which individual marginal cost curves are upward-sloping, which is not the case in the present framework. Such rigidities have the effect of slowing price adjustment for a given average frequency of price adjustment. Equivalently, they reduce the amount of price stickiness that is needed to match inflation dynamics. On this question, see Altig et al. (2004) or Woodford (2005).
the model. The latter can be loosely interpreted as the in-sample fit of the model, as discussed by Adolfsson et al. (2007). Overall, the fit is reasonably good, especially for output, employment and year-on-year inflation. As a further check, we compared the autocovariance function of the observable variables in the estimated model with that of the actual data. The results can be found in the appendix to this paper. Overall, such results indicate that the fit is fairly good. In particular, the variance and the autocovariances of each individual variable are well captured. In other words, the model replicates well the size and persistence of fluctuations in the observable variables. Regarding the cross-covariances between all four observable variables, in virtually all cases the model confidence interval contains the corresponding sample moment.

3.4. Impulse-response analysis

In order to illustrate the transmission mechanisms in the model, we now simulate the economy's response to productivity shocks (as an example of supply shock) and to government spending shocks (as an example of demand shock).\footnote{The impulse-responses to nominal interest rate shocks can be found in the appendix. Regarding mark-up shocks, since they are estimated to be white noise (such that their effects on inflation last for one period) and nominal interest rates respond to expected inflation, such shocks have no effect on any endogenous variable other than inflation.}

Fig. 2 displays the response to a positive productivity shock. Following the shock, inflation goes down and the central bank cuts nominal interest rates, which boosts consumption spending. The upsurge in demand is strong enough that firms still need to increase employment despite the improvement in labor productivity. As shown in the lower-right panel, most of the employment adjustment takes place along the job creation margin. In particular, vacancies experience a large

Fig. 1. Data versus fitted values of the observable variables. Data description: GDP at constant prices, total domestic employment, year-on-year growth rate of GDP deflator and 3-month Euribor; source: ECB Statistical Data Warehouse; sample period: 1997:Q1–2007:Q4. Nominal interest rates are shown in annualized terms. Fitted values correspond to one-period-ahead forecasts performed by Kalman-filtering the state-space representation of the estimated model.
increase after the impact period. This produces a negative correlation with after-hiring unemployment \((U_t)\), i.e. a downward-sloping Beveridge curve.

Fig. 3 shows the response to a positive government spending shock. Following the shock, output and employment increase. The response of both variables is almost identical, which implies that average idiosyncratic productivity, \(\bar{z}_t\), barely changes. Once again, employment adjusts mainly along the job creation margin, due in particular to a large expansion of vacancy posting in the impact period. While vacancies return quickly to their steady state, the correlation with unemployment is again negative \((-49\% \text{ conditional on this shock})\). The expansion in economic activity puts upward pressure on real marginal costs, leading to a persistent increase in inflation.

4. Effects of labor market reform on price stability

This section simulates the effects on price stability of hypothetical labor market reforms in our estimated model of the Euro Area. It is useful first to take a closer look at the determinants of inflation. Once the model is log-linearized, the dynamics of quarterly inflation \(\left(\frac{p_t}{1+p_t} \log P_t\right)\) are described by the standard New Keynesian Phillips curve

\[
\pi_t = \kappa \bar{\phi}_t + \beta E_t \pi_{t+1} + \kappa \bar{\mu}_t,
\]

where \(\kappa \equiv (1-\delta)/(1-\delta_\beta)/\delta\) and hats denote log-deviations from steady state. Inflation is thus driven by real marginal costs and mark-up shocks. Eqs. (3) and (4) allow us to express real marginal costs as

\[
\varphi_t = \left[\frac{\chi}{q(t)\{(1-\lambda^*_t)\}} + \frac{\lambda^*_t}{1-\lambda^*_t} \right] F + \bar{w}_t - (1-\lambda^*_t) E_t \beta_{t+1} \frac{\chi}{q(t_{t+1})} \frac{1}{A_t Z_t},
\]

where \(\bar{w}_t \equiv \int_{\mathbb{R}} w_t(z)g(z)/(1-G(z^*_t)) dz\) and \(Z_t \equiv \int_{\mathbb{R}} z[g(z)/(1-G(z^*_t))] dz\) are the average real wage and the average idiosyncratic productivity, respectively, and \(\lambda^*_t \equiv G(z^*_t)\) is the endogenous job destruction rate. Therefore, the real marginal cost equals the ratio of the effective cost of increasing employment at the margin (the expression in square brackets) over the increase in production due to the new hires \((A_t Z_t)\). The effective cost of increasing employment equals the cost of hiring workers corrected by the probability that they do not survive job destruction, \(\chi/[q(t)\{(1-\lambda^*_t)\}]\), plus the cost of firing those who fall below the reservation productivity, \(\lambda^*_t/(1-\lambda^*_t) F\), plus the average wage paid to those who stay in the firm, \(\bar{w}_t\).
minus their continuation value for the firm, $E_t b_{t+1} z / q(\theta_{t+1})$. Using the aggregate production function, $y_t = A_t n_t z_t$, real marginal costs can be written as

$$\varphi_t = \frac{n_t / y_t}{1 - \lambda_t^u} \left[\frac{\chi}{q(\theta_t)} - (1 - \lambda_t) E_t b_{t+1} \frac{\chi}{q(\theta_{t+1})} \right] + \frac{\lambda_t^u n_t F}{y_t} + \frac{n_t \tilde{w}_t}{y_t},$$

where we have also used the fact that $(1 - \lambda_t^u)(1 - \lambda_t) = 1 - \lambda_t$. Therefore, marginal costs are the sum of a hiring component (the expression in square brackets), a firing component, and the labor share of GDP, $n_t \tilde{w}_t / y_t$. We now make use of an approximation similar to the one employed by Blanchard and Gali (2009). Notice first that vacancy posting costs, $\lambda^u = 0.013$, and separation rates, $\lambda^s = 0.016 = \lambda / 2$, are of the same order of magnitude as the fluctuations of the endogenous variables in the marginal cost expression, with the exception of \tilde{y}_t, which experiences larger fluctuations. Once the above equation is log-linearized, all terms multiplied by χ, λ^u or λ become second-order terms, except for those involving $\tilde{\theta}_t$. This yields the following first-order approximation of real marginal costs:

$$\frac{\gamma - 1}{\gamma} \tilde{\varphi}_t = \frac{\chi}{q(\theta_t) z} (1 - \varepsilon)(\tilde{\theta}_t - \beta \tilde{\theta}_{t+1}) + \frac{F}{z} (\lambda_t^u + \tilde{n}_t - \tilde{y}_t) + \frac{\tilde{w}}{z} (\tilde{w}_t + \tilde{n}_t - \tilde{y}_t).$$

Log-linearizing Eqs. (18) and (19) and combining the resulting expressions, we obtain the following law of motion of employment:

$$\tilde{n}_t = (1 - \lambda)(1 - \rho(\theta) - \lambda) \tilde{n}_{t-1} + \frac{1}{1 - \lambda} (\lambda_{t-1} - \tilde{x}) + \varepsilon \tilde{h}_t,$$

where $\varepsilon = 0.6$ in our calibration. Therefore, first-order fluctuations in employment and the endogenous job destruction rate must be accompanied by first-order fluctuations in $\tilde{\theta}_t$. Since λ is itself first-order, $\tilde{\theta}_t$ must experience fluctuations of a larger magnitude. Under our baseline calibration, the standard deviation of $\tilde{\theta}_t$ is 20.5%, versus 0.83% for \tilde{n}_t, 1.06% for \tilde{y}_t, and 0.05% for $\lambda_{t-1} - \tilde{x}$.22

22 Log-linearizing Eqs. (18) and (19) and combining the resulting expressions, we obtain the following law of motion of employment:
where $\lambda^n_t \equiv \lambda^n_t - \lambda^n$. Combining the latter equation with Eq. (26) finally yields the following approximate expression for inflation dynamics:

$$\pi_t^{approx} \equiv hc_t + fc_t + ls_t + \frac{K}{1-\beta\rho_t} \tilde{\mu}_t.$$

Inflation is (approximately) equal to the sum of a hiring component,

$$hc_t \equiv \frac{K^y}{\gamma - 1} \frac{\chi}{q(\theta)z}(1 - \epsilon) \hat{\theta}_t,$$

a firing component,

$$fc_t \equiv \frac{K^y}{\gamma - 1} \frac{F}{2} \sum_{t=0}^{\infty} \beta^{T-t} E_t (\lambda^n_t + \tilde{\eta}_t - \tilde{y}_t),$$

a labor share component,

$$ls_t \equiv \frac{K^y}{\gamma - 1} \frac{W}{2} \sum_{t=0}^{\infty} \beta^{T-t} E_t (\tilde{w}_t + \tilde{\eta}_t - \tilde{y}_t),$$

and the exogenous mark-up shock component, $K\tilde{\mu}_t/(1 - \beta\rho_t)$. The variance of approximate inflation can then be decomposed as follows:

$$\var(\pi_t^{approx}) = \var(hc_t) + \var(fc_t) + \var(ls_t) + \left(\frac{K}{1 - \beta\rho_t} \right)^2 \var(\pi) + \covs,$$

where \covs collects the sum of all covariances between the four components of inflation.

What is the effect on price stability that should be expected from reductions in unemployment benefits and firing costs? A reduction in unemployment benefits reduces the outside option of workers and thus increases the joint surplus of all jobs. Since firms receive a constant fraction of the joint surplus (by virtue of Nash wage bargaining), the expected benefit from new hires increases and so does vacancy posting. As the labor market becomes tighter, the steady-state probability of filling a vacancy, $q(\theta)$, falls and thus the steady-state cost of hiring, $\chi/q(\theta)$, increases. As a result, in response to shocks, the same percentage fluctuations in labor market tightness, $\hat{\theta}_t$, produce larger percentage fluctuations in hiring costs, $\chi/q(\theta)(1 - \epsilon) \hat{\theta}_t$. This should increase the volatility of the hiring component of inflation, hc_t, thus making inflation more volatile. This effect is reinforced by the effect of hiring costs on average real wages, \tilde{w}_t. The latter are increasing in $E_t(\tilde{w}_{t+1} + \tilde{\theta}_{t+1})$, which is the (expected discounted value of the) product of the probability of finding another job, $p(\tilde{\theta}_{t+1})$, times hiring costs, $\chi/q(\tilde{\theta}_{t+1})$. Since percentage fluctuations in $E_t(\tilde{w}_{t+1} + \tilde{\theta}_{t+1})$ are given by $\beta^2 \chi^0 E_t(\tilde{w}_{t+1} + \tilde{\theta}_{t+1})$, it follows that the increase in θ increases the size of percentage fluctuations in average real wages. As a result, we should observe an increase both in the variance of the labor share component of inflation, ls_t, and in its covariance with hc_t. This should reinforce the increase in inflation volatility.

Table 2

Effects of labor market reform on inflation volatility and its components.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>$\rho_B = 0.30$</th>
<th>$\rho_B = 0.10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\var(\pi)$</td>
<td>0.7063</td>
<td>0.8003</td>
<td>0.6722</td>
</tr>
<tr>
<td>$\var(\pi^{approx})$</td>
<td>0.7255</td>
<td>0.8047</td>
<td>0.6752</td>
</tr>
<tr>
<td>$\var(hc)$ + $2\var(hc, ls)$</td>
<td>0.0030</td>
<td>0.0144</td>
<td>0.0023</td>
</tr>
<tr>
<td>$\var(fc)$ + $2\var(fc, ls + hc)$</td>
<td>0.0258</td>
<td>0.0241</td>
<td>0.0054</td>
</tr>
<tr>
<td>$\var(ls)$</td>
<td>0.1766</td>
<td>0.2462</td>
<td>0.1474</td>
</tr>
<tr>
<td>$\sigma(\pi)$</td>
<td>0.8404</td>
<td>0.8946</td>
<td>0.8199</td>
</tr>
</tbody>
</table>

Steady-state effects

$Z/[q(\theta)\tilde{z}]$
F/\tilde{z}
W/\tilde{z}
\tilde{z}

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>$\rho_B = 0.30$</th>
<th>$\rho_B = 0.10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0146</td>
<td>0.0335</td>
<td>0.0209</td>
<td></td>
</tr>
<tr>
<td>0.1660</td>
<td>0.1662</td>
<td>0.0815</td>
<td></td>
</tr>
<tr>
<td>0.8301</td>
<td>0.8311</td>
<td>0.8148</td>
<td></td>
</tr>
<tr>
<td>1.0268</td>
<td>1.0233</td>
<td>1.0704</td>
<td></td>
</tr>
</tbody>
</table>

Note: Standard deviations are multiplied by 400 (so as to express them in annualized terms and in %), variances by 400^2. In each column, the variance of π^{approx} (second row) is the sum of the elements in the third to fifth rows, plus an exogenous mark-up shock component.

23 As shown in Section 2.3, the worker surplus in alternative jobs is increasing in hiring costs.
On the other hand, a reduction in firing costs automatically decreases the size of fluctuations in the firing component of inflation, f_{ct}, for given fluctuations in the expected discounted path of endogenous separation rates, $\sum_{T=t}^{\infty} \beta^{T-t} E_t \pi_t^{\approx}$, and average labor productivity, $\sum_{T=t}^{\infty} \beta^{T-t} E_t (y_T - n_T)$. This should make inflation less volatile.

4.1. Baseline results

Table 2 displays the effects of reducing the replacement ratio of unemployment benefits (ρ_y, from 40% to 30%) and firing costs (ρ_f, from 20% to 10%) on the variance of π_t^{\approx} and its components (except the variance of the mark-up shock component, which remains constant). In order to check the accuracy of our approximation, the actual variance of inflation in the log-linearized economy (π_t) is also computed.

In the case of a reduction in unemployment benefits, three results stand out. First, the variance of inflation increases, as anticipated, but it does so by a very small amount. Transforming the variance into a more informative metric such as the annualized standard deviation (sixth row of Table 2), we find that the latter increases by just 5 basis points, from 0.84% to 0.82% in terms of the annualized standard deviation. As expected, the variance of the firing component, which remains constant, barely changes following the reduction in firing costs. However, the fact that the endogenous separation rate, λ_t, barely fluctuates in the estimated model (with a 0.05% standard deviation) implies that the firing component makes a negligible contribution to inflation volatility. As a result, a certain percentage change in $\text{var}(\pi_t^{\approx})$ will have a small absolute effect on $\text{var}(\pi_t)$.

In the case of a reduction in firing costs, inflation volatility falls, as hypothesized. However, the change is again very small: from 0.84% to 0.82% in terms of the annualized standard deviation. As expected, the variance of the firing component of inflation, f_{ct}, and its covariance with the other components fall. However, the fact that the endogenous separation rate, λ_t, barely fluctuates in the estimated model (with a 0.05% standard deviation) implies that the firing component makes a negligible contribution to inflation volatility. As a result, a certain percentage change in $\text{var}(f_{ct})$ will have again small absolute effects on $\text{var}(\pi_t^{\approx})$.

Note: σ_2 represents the standard deviation of idiosyncratic productivity shocks. Standard deviations are multiplied by 400 (so as to express them in annualized terms and in %), variances by 400². In each column, the variance of π_t^{\approx} (second row) is the sum of the elements in the third to fifth rows, plus an exogenous mark-up shock component.

Table 3
Effects of labor market reform on inflation volatility, alternative parameterizations.

<table>
<thead>
<tr>
<th></th>
<th>$\sigma_2 = 0.30$</th>
<th></th>
<th>$\sigma_2 = 0.40$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>$\rho_y = 0.30$</td>
<td>$\rho_f = 0.10$</td>
</tr>
<tr>
<td>$\text{var}(\pi)$</td>
<td>0.7376</td>
<td>0.9051</td>
<td>0.7090</td>
</tr>
<tr>
<td>$\text{var}(\pi^{\approx})$</td>
<td>0.7478</td>
<td>0.8700</td>
<td>0.7068</td>
</tr>
<tr>
<td>$\text{var}(\text{hc}) + 2\text{cov}(\text{hc}, \text{ls})$</td>
<td>0.0142</td>
<td>0.0996</td>
<td>0.0069</td>
</tr>
<tr>
<td>$\text{var}(f_{ct}) + 2\text{cov}(f_{ct}, \text{ls} + \text{hc})$</td>
<td>0.0310</td>
<td>0.0323</td>
<td>0.0088</td>
</tr>
<tr>
<td>$\text{var}(\text{ls})$</td>
<td>0.1875</td>
<td>0.2230</td>
<td>0.1759</td>
</tr>
<tr>
<td>$\sigma(\pi)$</td>
<td>0.8588</td>
<td>0.9514</td>
<td>0.8420</td>
</tr>
</tbody>
</table>

Steady-state effects

$\bar{z}/[q(0)^{\bar{z}}]$ 0.0823 0.1483 0.0972 0.1372 0.2244 0.1527
F/\bar{z} 0.1655 0.1659 0.0814 0.1650 0.1655 0.0811
\bar{w}/\bar{z} 0.8273 0.8293 0.8140 0.8250 0.8275 0.8108
\bar{z} 1.0551 1.0466 1.0896 1.0946 1.0834 1.1319

Note: σ_2 represents the standard deviation of idiosyncratic productivity shocks. Standard deviations are multiplied by 400 (so as to express them in annualized terms and in %), variances by 400². In each column, the variance of π_t^{\approx} (second row) is the sum of the elements in the third to fifth rows, plus an exogenous mark-up shock component.

24 In the estimated model, the covariance between mark-up shocks and the other components of inflation is zero. The reason is that, since mark-up shocks are estimated to be white noise (such that their effects on inflation are transitory) and nominal interest rates respond to expected inflation, such shocks have no effect on any endogenous variable other than inflation. It follows that the term covs in Eq. (27) is simply the sum of covariances between hc, f_{ct}, and ls.

25 The labor share component also depends on the steady-state labor share, $\bar{w}/\bar{z} = m/y$, and the expected discounted path of average labor productivity, $\sum_{T=t}^{\infty} \beta^{T-t} E_t (y_T - \bar{n}_t)$. These terms, however, have a negligible effect. First, \bar{w}/\bar{z} barely changes following the reduction in ρ_f, as shown in the “steady-state effects” part of Table 2. Also, since $\bar{y}_t - \bar{n}_t = \log(\bar{A}_t + \bar{z})$ and average idiosyncratic productivity (\bar{z}) is nearly acyclical, the expected path of labor productivity is basically exogenous and thus its variance remains virtually unaffected.
4.2. Robustness analysis

As discussed in Section 3, we estimated the model under four different values of the standard deviation of idiosyncratic productivity shocks (0.20, 0.30, 0.40 and 0.50) and found that the model’s fit of the data was best for \(\sigma_z = 0.20 \). In fact, the likelihood function evaluated at the estimated parameters decreases monotonically as we increase \(\sigma_z \) in our grid. A feature of the baseline calibration is that the value of vacancy posting costs (\(\chi \)) consistent with the steady state of the model is very small, such that hiring costs play almost no role in inflation dynamics. As \(\sigma_z \) increases and the distribution of idiosyncratic productivity shocks becomes more spread out, the distance between the average and the reservation productivity increases, which from Eq. (25) increases the marginal benefit of hiring in the steady state. As a result, the value of \(\chi \) consistent with the steady state of the model increases, and with it the relevance of hiring costs for inflation volatility. As a robustness check, we now simulate the effect of labor market reform on price stability under two alternative values of \(\sigma_z \): 0.30 and 0.40.26 The results are displayed in Table 3.

Compared to the baseline results in Table 2, the effects of the reduction in unemployment benefits are now somewhat more pronounced. In the case of \(\sigma_z = 0.30 \), the annualized standard deviation of inflation increases by 9 basis points, from 0.86% to 0.95%. For \(\sigma_z = 0.40 \), the increase is of 20 basis points, from 0.89% to 1.09%. The reason is that hiring costs are now higher in the baseline economy (\(\chi / q(\theta)z \) now equals 8.23% and 13.72%, respectively), such that a certain percentage change in the volatility of hiring costs has a larger absolute effect on inflation volatility. Indeed, most of the rise in the variance of inflation is now explained by the rise in the variance of \(h_c \) and its covariance with \(ls \).

Regarding the effects of a reduction in firing costs, the message barely changes with respect to the baseline results. In both cases, inflation volatility falls but it does so by a very small amount: 2 basis points in the case of \(\sigma_z = 0.30 \), and 2.5 basis points for \(\sigma_z = 0.40 \).

To summarize the robustness results, increasing the variance of the distribution of idiosyncratic shocks magnifies the effect of reductions in unemployment benefits on inflation volatility, due to the greater importance of hiring costs for inflation dynamics. However, these results should be taken with caution, because the model’s fit of the data also worsens as \(\sigma_z \) increases, as indicated by the value of the likelihood function. And in any case, the effects remain small.

5. Conclusions

This paper has studied the effect that changes in labor market policies, in the form of unemployment benefits and firing costs, may have on price stability. Our analysis is based on a New Keynesian model in which the labor market is subject to search and matching frictions. We take the theoretical model to Euro Area data and provide a quantitative answer to our question. We find that changes in unemployment benefits or firing costs are unlikely to have a significant impact on the volatility of inflation. As far as firing costs are concerned, job destruction rates are nearly acyclical in the estimated model, such that changes in firing costs have very little effect on the firing component of real marginal costs and hence on inflation. Changes in unemployment benefits can have important effects on the volatility of the hiring component of real marginal costs. This, however, has a small effect on inflation volatility, because Euro Area data favor model parameterizations in which hiring costs are small.

The analysis of this paper is conducted using a search and matching model of the labor market, which is only one possible way of analyzing the effect of labor market reforms on inflation dynamics. It would be interesting to establish whether the same results carry over to other environments such as the search-island model (Lucas and Prescott, 1974; Ljungqvist and Sargent, 1998, 2006), the insider–outsider model (Blanchard and Summers, 1986; Lindbeck and Snower, 1988), or a model where firms fire workers only in certain states (Bentolila and Bertola, 1990).

Within the realm of the search and matching framework, an important extension of the analysis presented here would be to incorporate stickiness in real wages, which is likely to interact with labor market policies in shaping the behavior of inflation. This will prove to be a difficult task, however, because of the theoretical requirement known as the “Barro critique”, namely that wage stickiness should not lead to the destruction of jobs that command a positive joint surplus. Hall (2005) derived the analytical conditions under which such a requirement holds in a simple matching model, and Gertler and Trigari (2009) and Thomas (2008) show numerically that more complex DSGE models with matching frictions can also be virtually immune to the Barro critique. All these papers, however, assume exogenous job destruction. Developing a tractable model with endogenous job destruction and wage stickiness that avoids the Barro critique is therefore an important task for future research.

References

26 For brevity, we omit the results in the case of \(\sigma_z = 0.50 \), which go in the same direction as those displayed for \(\sigma_z = 0.30 \) and \(\sigma_z = 0.40 \).