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SUMMARY

Themedial frontal cortex and adjacent orbitofrontal cortex have been the focus of investigations of decision-
making, behavioral flexibility, and social behavior. We review studies conducted in humans, macaques, and
rodents and argue that several regions with different functional roles can be identified in the dorsal anterior
cingulate cortex, perigenual anterior cingulate cortex, anterior medial frontal cortex, ventromedial prefrontal
cortex, and medial and lateral parts of the orbitofrontal cortex. There is increasing evidence that the manner
in which these areas represent the value of the environment and specific choices is different from subcortical
brain regions and more complex than previously thought. Although activity in some regions reflects distribu-
tions of reward and opportunities across the environment, in other cases, activity reflects the structural re-
lationships between features of the environment that animals can use to infer what decision to take even if
they have not encountered identical opportunities in the past.
INTRODUCTION

It is well-established that the frontal cortex guides decision-

making and flexible behavior. This conviction is based on

more than half a century of investigations into how animals

and people adapt their behavior so that it is appropriate to

changing circumstances. For example, the most recent investi-

gations of the orbitofrontal cortex (OFC), employing the very

latest techniques (Banerjee et al., 2020), assess aspects of

behavior—the ability to switch and change which choice is

made—using a behavior reversal task with elements that would

have been familiar to researchers investigating the OFC more

than fifty years earlier (Mishkin et al., 1969). Similarly, the idea

that the OFC and brain areas on the medial surface of the fron-

tal cortex, such as the anterior cingulate cortex (ACC) and

ventromedial prefrontal cortex (vmPFC), guide decision-making

is bolstered by a series of investigations that show that their ac-

tivity reflects the value of choices, the process of decision-

making, and the value of the course of action pursued (Cai

and Padoa-Schioppa, 2014; Kable and Glimcher, 2009; Rude-

beck and Murray, 2014; Rushworth et al., 2011; Soltani and

Koechlin, 2022; Wallis, 2011).

It is, however, clear that the frontal cortex is far from being the

only brain region concerned with behavioral flexibility and

reward-guided decision-making. There are other very different

types of brain systems that control decision-making and behav-

ioral flexibility, for example, the striatum, dopaminergic (DA)

midbrain, and serotonergic (5HT) brainstem, and identifying the
special additional contribution made by areas such as the OFC

and ACC is not always straightforward. The ACC and parts of

the OFC are found in many mammals, but they are especially

extensive in primates. On the other hand, animals lacking the

OFC and ACC still exhibit changing patterns of decision-making

and behavioral flexibility. For example, larval zebrafish do not

possess frontal cortical areas and yet they switch between ex-

ploiting opportunities for predation and exploration for new sour-

ces of food. In humans, the balancing of exploitation against

exploration has been associated with the frontal cortex (Badre

et al., 2012; Daw et al., 2006; Trudel et al., 2021; Zajkowski

et al., 2017). In zebrafish, however, this pattern of reward-guided

decision-making depends on the dorsal raphe nucleus (DRN)

(Marques et al., 2020). In rodents and even in primates, DRN ac-

tivity also tracks aspects of the reward environment and indi-

cates when behavioral change might be necessary (Grossman

et al., 2022; Hayashi et al., 2015; Khalighinejad et al., 2022; Witt-

mann et al., 2020). Neurons in other subcortical nuclei, for

example, midbrain DA neurons, also have activity that reflects

the value of potential choices and the process of decision-mak-

ing (Wang et al., 2021; Yun et al., 2020). If subcortical systems

carry such signals, can we specify how frontal cortical contribu-

tions differ? In order to do this, might we need to distinguish be-

tween the types of behavioral flexibility observed in zebrafish and

humans?

Not only is it important to distinguish frontal cortical contribu-

tions from subcortical ones, but some recent results suggest a

need to rethink the precise nature of the frontal cortical
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Figure 1. Medial and orbital frontal cortex in rodents, macaques, and humans
Five functional regions, dorsal anterior cingulate cortex (dACC), perigenual anterior cingulate cortex (pgACC), dorsomedial prefrontal cortex (dmPFC), anterior
medial frontal cortex (amFC), and ventromedial prefrontal cortex/medial orbitofrontal cortex (vmPFC/mOFC) are shown in relation to cytoarchitectonic maps of
rat (left), macaque (center), and human (right) medial and orbital frontal cortex (based on Wise, 2008). All five regions are identifiable in humans and macaques.
The color scheme indicates that the orbital region of rodents has some functional features shared with primate dmPFC, amFC, and vmPFC/mOFC but that it does
not correspond in a simple way to any of them. Thus, while the extent to which regions are homologous across humans and other primates, such asmacaques, is
relatively clear, correspondences between primates and rodents are more contentious and unlikely to be one-to-one in nature. This is important to bear in mind
when evaluating evidence from different species about the regions’ functional contributions.
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contributions. For example, when lesions are made to the pri-

mate OFC in such a way that adjacent white matter is spared,

then behavior reversal is actually uncompromised (Rudebeck

et al., 2013). Not only might the frontal cortex not have the role

that we thought it had in behavioral flexibility but, in addition,

other scientists have argued that the OFC and other frontal areas

lack the representations of value that have, for the last two de-

cades, been thought to guide decision-making (Hayden and

Niv, 2021). We may then need to conceive the specific contribu-

tions of the frontal cortex in a more differentiated way.

In this reviewwe summarize recent evidence regarding the na-

ture of the representations found across a set of frontal cortical

regions (Figures 1 and 2). First, we discuss how dorsal ACC

(dACC) represents the distribution of opportunities across the

environment, computes their value at multiple timescales, de-

cides whether to engage with a present opportunity or continue

exploring, and influences information-seeking behavior. Sec-

ond, we turn to the anterior medial frontal cortex (amFC),

describing its role in representing the structure of the environ-

ment, even when this is not immediately relevant for reward-

guided decisions. We also discuss the relationship between

the rodent and primate OFC. Next, we review evidence showing

that vmPFC translates values into choices. We consider work on

perigenual ACC (pgACC), showing a role in integrating costs and

benefits to drive behavior, and conclude by discussing how dor-

somedial PFC (dmPFC) organizes relationships in social con-

texts. Throughout the review, we also consider whether and, if

so, how such representations might differ from and complement

those present in subcortical brain systems previously associated

with reward-guided choices and behavioral change. We
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compare the frontal cortical areas described with components

of the subcortical circuit comprising DA and 5HT nuclei under

the control of a pathway running through the striatum, pallidum,

and habenula that controls reward-guided behavior in many ver-

tebrates (Figure 2A). In mammals, this circuit is, itself, partly un-

der the control of the frontal cortex as well as being influenced by

dopamine and serotonin.

Anterior cingulate cortex and opportunities in the
environment
An animal can manage well in many cases if it can represent the

value of its current environment (whether and to what degree it is

rewarding), whether the actions it takes will make its experience

of the environment better or worse (positive and negative predic-

tion errors), and its uncertainty about the estimates it is making

about its environment. Such representations can guide an ani-

mal with limited environmental knowledge to find and stay in

good foraging areas and to retreat from those that are not so

good. For example, it is possible that a fish with such represen-

tations might manage well even if it were living in murky water

that precludes remote sensing of the distribution of opportunities

in the environment.

Subcortical systems provide important information in such en-

vironments (Figure 2A). For example, in addition to the DRN-

centered 5HT system described above (Marques et al., 2020),

DA neurons in monkeys encode prediction errors and report

whether the environment is getting better or worse (Hart et al.,

2014; Schultz, 2013; Schultz et al., 1997). As each opportunity

is encountered, changes in DA neuron activity reflect whether

or not the monkey will pursue it or wait for a better opportunity
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Figure 2. Multiple systems for representing the value of the environment in the vertebrate brain
(A) A subcortical circuit for identifying rewarding environments uses an estimate of the value of an animal’s environment—how good it is currently—and detects
prediction errors—occasions when the environment turns out to be better or worse than previously estimated. This circuit is present in rodents and primates but
also in many other chordate animals (Freudenmacher et al., 2020; Hong and Hikosaka, 2008; Matsumoto and Hikosaka, 2007; Stephenson-Jones et al., 2013,
2016). Some of its component elements are identifiable even in cyclostomes—such as the lamprey—which diverged from other chordates 550mya. This includes
inhibitory GABA-ergic mediated control (rostromedial tegmental nucleus, RMTg) of dopaminergic and serotonergic regions (DA/5HT) by the lateral habenula
(LHb), which is in turn innervated by a habenula-projecting pallidal region (GPh) and the striatum (str). A second pathway runs via the dorsal pallidum/globus
pallidus (GP) to brainstem motor areas such as the subthalamic nucleus (STN) (adapted from Stephenson-Jones et al., 2013). Neuromodulatory systems
such as the dopaminergic (DA) midbrain nuclei—the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc)—and serotonergic (5HT) dorsal
raphe nucleus (DRN) allow mammals and birds to follow value gradients (blue-to-red gradients indicate low-to-high reward) so that they find and stay in the
best locations in an environment.
(B) Cingulate areas such as dACC (area 24 in primates and Cg1 and Cg2 in rodents) are identifiable in most mammals, including monotremes and marsupials
(Ashwell et al., 2008; Mayner, 1989; Suárez et al., 2018), suggesting an origin over 200 mya. In addition to the current value of the environment and prediction
errors, dACC enables mammals to represent the distribution of opportunities across the environment and over time across multiple scales. In this example, an
animal might learn about food availability over an intermediate timescale—time within a day—and a long timescale—time over weeks—allowing it to make
predictions into the future.
(C) Rodents and primates construct representations of the relationships between elements and features of the environment. For example, they might learn that if
reward is available at one location (here indicated by one type of tree), it may be present or absent from another, and vice versa. In the four examples, illustrated by
a pair of trees, a monkey has learned two types of relationships between reward in two locations. In the first two cases, a positive correlation implies that when
reward is found in location A (far left), another reward is likely to be available in the location B (hidden from view), but when it is absent in A (second from left) it will
also be absent in B. In the third and fourth cases (second from right and far right), the monkey has learned a negative correlation between reward in the two
locations. This is the type of situation that is being investigated in reversal tasks. Such cognitive maps of environmental contingencies depend on multiple brain
systems, such as MTL areas, and they are found in rodents. However, they may be an especially prominent feature of granular prefrontal areas in primates.
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(Yun et al., 2020). Subcortical circuits that allow an animal to

follow value gradients and find and stay in the best possible lo-

cations in their environment, or avoid dangerous ones, are pre-

sent not only in rodents and monkeys but also many chordate

animals such as the lamprey (Figure 2A) and other fish (Aget-

suma et al., 2010; Amo et al., 2014).

It has been pointed out, however, that not all environments are

the same. For example, the terrestrial environment is a very

different one, which animals with distance receptors, such as
mammals, are able to survey from afar (Hunt et al., 2021;MacIver

et al., 2017; Mugan and MacIver, 2020). If an animal can survey

its environment, then, in addition to representing its average

reward value and reward prediction errors, it becomes possible

to represent the distribution of opportunities across the environ-

ment and the changes and sequences of behavior by which the

opportunities might be pursued (Figure 2B). Converging experi-

mental evidence shows that dACC activity (1) encodes the distri-

bution of opportunities across time as well as space (Figure 3A),
Neuron 110, September 7, 2022 3
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Figure 3. Exploring and navigating the distribution of opportunities in the environment via dACC
(A) (Left) Activity in dACC reflects a person’s experience of success on a simple task over multiple timescales simultaneously. Activity in the lighter, yellow regions
in dACC is dominated by the most recent experience, while activity in the orange regions reflects experience over a more extended timescale (adapted from
Meder et al., 2017). (Center) Neurons in ACC have the longest intrinsic timescale compared with other regions (e.g., middle temporal [MT], lateral intraparietal
[LIP], or lateral prefrontal or orbitofrontal cortex [LPFC/OFC] [adapted from Murray et al., 2014]). (Right) It is possible to work out whether one is on an upward or
downward reward trajectory and thus make predictions into the future by comparing reward rates experienced over the short term or longer term. Activity in
human dACC reflects this comparison: recent reward experience is encoded with a positive sign (shown in yellow) and reward experienced over a longer
timescale is encoded with a negative sign (shown in blue) (adapted from Wittmann et al., 2016a; error bars denote SEM across participants).

(legend continued on next page)
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(2) assesses the value of disengaging from the present course of

action (Figure 3B), and (3) regulates switching between periods

of exploiting such knowledge and seeking more information

(Figure 3C).

dACC and the distribution of experiences over time
One way in which resources in an environment might be un-

evenly distributed is across time. For example, one foraging

location, such as a particular fruit tree, may have held a high

value over the last couple of days since fruits have ripened, but

a low average value over the last few months, when there were

no fruits at all. On the other hand, another location populated

by edible insects may have lower value right now, but higher

long-term value, because the presence of insects is more regular

across seasons. Both neuroimaging studies in humans and sin-

gle-neuron recording studies in macaques demonstrate that the

dACC simultaneously holds multiple representations of value

with different time constants (Bernacchia et al., 2011; Cavanagh

et al., 2016; Meder et al., 2017; Murray et al., 2014; Seo and Lee,

2009; Spitmaan et al., 2020; Wittmann et al., 2016a). For

example, Meder et al. (2017) used fMRI to examine neural activ-

ity while people decided whether to repeat a choice or switch to

an alternative. They reported that variation in dACC activity was

related to variation in choice value. Importantly, however, dACC

voxels carried estimates of choice value that were constructed

over different timescales (Figure 3A, left). For example, activity

in one ACC voxel might reflect whether a choice had been suc-

cessful and delivered reward on average over the course ofmany

previous trials. However, another voxel’s activity might reflect

whether the choice had been successful on just the most recent

trials. This means that the ACC constructs multiple estimates of

choice value over different timescales.

Several features of such representations are worth noting

(Figure 3A). First, although present in the dACC, they are not

ubiquitous. For example, neuroimaging suggests they are not

prominent in the OFC, vmPFC, or most of the lateral PFC

(LPFC), although they are found in the anterior LPFC and anterior

insula (Fischer et al., 2017; Meder et al., 2017; Wittmann et al.,

2016a). Second, there is a degree of topographic organization;

choice values that depend on shorter timescales are, on

average, anterior to choice-value representations reflecting

longer timescales (Meder et al., 2017). Moreover, interactions

between the dACC and other brain regions with the same prop-

erties are organized in a temporarily structured manner: activity

in dACC voxels operating on short and long timescales is,

respectively, correlated with activity in voxels operating on the
(B) (Left) Activity in dACC reflects the value of alternative courses of action in m
significantly positive and no activity (illustrated in black and gray, respectively) as
activity change (shown in yellow [adapted from Fouragnan et al. (2019)]; shade
spective value—the value that a course of action, such as leaving a job and looking
themean value of opportunities but also their distribution and the time horizon avai
also reflects the sequence of actions needed to acquire a goal (adapted from Ho
(C) (Left) In rats, two anatomical projections fromdACCmediate exploring and evalu
on the other (adapted fromTervo et al., 2021). (Center)Monkeyswere taught to altern
paradigm that captures something of how a person, for example, a scientist, mig
recorded in dACC between the end of one trial (time 0) and a lever press could be d
percentage correct linear decoding (blue indicates threshold for significance at 70%
Exploration of a potential choice is often guided by uncertainty about its consequen
uncertain outcomes (50% chance of outcome) as opposed to certain outcomes (0
same timescales in other areas, such as inferior parietal lobule.

Third, there is, nevertheless, flexibility in how choice values are

represented; all dACC voxels in fMRI studies (Meder et al.,

2017) and neurons in single-neuron studies (Spitmaan et al.,

2020) tend to encode choice value over shorter timescales

when the environment is changing quickly, so that only the

recent past is a good guide to the future. Conversely, the oppo-

site happens in more stable environments when the long-term

average might be more informative. This is consistent with the

idea that these timescale representations might endow the

dACC with a form of metaplasticity that allows an animal to inte-

grate feedback according to the currently relevant environmental

rate of change (Farashahi et al., 2017). Such patterns of activity

that occur in dACC during decision-making may also underlie

the way in which post-decision, reward-related dACC activity

changes depending on whether weight is to be given to just

recent or also longer timescales (Behrens et al., 2007).

As well as reflecting choice value over different timescales,

dACC neuron activity, even at rest, shows patterns of autocorre-

lation over long timescales, meaning that activity fluctuations are

slower compared with the rest of the brain (Figure 3A, center).

Therefore, ACC neurons have both long autocorrelation time

constants and they compute value with longer time constants

comparedwith other frontal areas (Cavanagh et al., 2016;Murray

et al., 2014; Soltani et al., 2021; Spitmaan et al., 2020). Moreover,

the two features appear to be linked: long autocorrelation time

constants exist in neurons with long reward history time con-

stants (Spitmaan et al., 2020). When lesions are made in the

ACC, macaques can only adjust their behavior in response to

the most recent outcome, but the influence of the longer history

of reward and choice is lost (Kennerley et al., 2006).

If an animal can represent choice value over multiple time-

scales, it can represent its position in the environment with

respect to the distribution of opportunities within it in ways not

possible for an animal that represents one instantaneous rate

of reward or reward prediction errors at one timescale (compare

Figures 2A and 2B). For example, by comparing longer-term and

shorter-term value representations, an animal can estimate its

reward trajectory, i.e., whether the environment is getting better

or worse and, if it is, how quickly it is changing. For example, an

insectivorous predator may estimate that the number of prey in-

sects on a particular tree is higher today than the average of the

last week but at the same time notice that this is much lower than

the annual average; this indicates a short-term peak within a

long-term decline. Such information can be used to guide deci-

sions about whether to persist in the current environment or to
acaques. The better alternative and the worse alternative are associated with
opposed to the option currently pursued, which is associated with a negative

d areas denote SEM across sessions). (Center) Activity in dACC reflects pro-
for better employment—might lead to in the future, taking into account not just
lable to explore them (adapted fromKolling et al., 2018). (Right) Activity in dACC
lroyd et al., 2018).
ating behavioral change on the one hand and commitment to adopting a behavior
ate between taskperformance (working) and exploratory behavior (checking) in a
ht oscillate between working on a manuscript and checking their email. Activity
ecoded to predict whether monkeys would work or check: color code indicates
, yellow indicates 90% correct decoding) (adapted fromStoll et al., 2016). (Right)
ces. Neurons in macaque dACC are most active when cues are associated with
or 100% outcomes; adapted from Monosov, 2017).
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switch to an alternative, as we discuss in the next section (Witt-

mann et al., 2016a), and it may also enable meta-learning

(Schweighofer and Doya, 2003). Timescale-based value infor-

mation is not just important for animals; value information occur-

ring at different timescalesmay also be an important determinant

of mood in humans (Eldar et al., 2016; Keren et al., 2021).

Careful analysis of dACC activity patterns (Figure 3A, right)

suggests that subjects do indeed use the information contained

in dACC representations to guide decisions about whether to

keep foraging in one environment or to explore an alternative

environment (Wittmann et al., 2016a). Moreover, individual vari-

ation in dACC activations reflecting short timescales predicts

individual variation in the influence that value estimates con-

structed over short timescale will have on behavior. Similarly, in-

dividual variation in longer timescale neural representation

strength predicts individual variation in the impact of longer-

term reward history on behavior (Wittmann et al., 2016a).

The representation of the environment borne by the dACC is

different to that found beyond the cortex, for example, in brain-

stem regions such as the DRN. DRN activity reflects very broad

aspects of the environment, such as whether it is good or bad

and what its average value might be (Cohen et al., 2015; Hayashi

et al., 2015; Khalighinejad et al., 2022; Wittmann et al., 2020). A

dACC-possessing animal can represent the distribution of op-

portunities across its environment and not just its mean value

and prediction errors about that mean. This is important if an an-

imal is to identify and pursue a distant reward goal that lies

beyond what might otherwise be a barrier—a region associated

with minimal rewards or even a cost. Lesions in the Cg1/Cg2 re-

gions in the rat (areas with some similarities to primate dACC)

disrupt the ability of rats to climb over a barrier to reach a

more valuable outcome (Rudebeck et al., 2006; Walton et al.,

2002, 2003).

Nevertheless, recent analyses of neurophysiological record-

ings from one subcortical region, the DA midbrain, demonstrate

some distributional coding of values (Dabney et al., 2020). In

neuroimaging studies, such representations have not yet been

identified in the DA midbrain. This might mean that they are not

as prominent as those in cortical areas such as dACC, or it

may simply reflect the limits of spatial resolution in neuroimaging

studies. It is also possible that representations at multiple time-

scales exist in both the subcortex and dACC but that their loca-

tion reflects other aspects of task complexity. Directly

comparing distributional coding and the degree of reward en-

coding over different timescales in cortical regions such as the

dACC and DAmidbrain and determining whether they are similar

or different and the degree to which they are mutually interde-

pendent or independent will be an important challenge.

dACC and behavioral change
How might such representations guide adaptive and flexible de-

cision-making? We often think of decisions as being between

one well-defined option and another. For example, a monkey

choosing between an apple or an orange. Animals can and do

make binary decisions, but this scenario may not be representa-

tive of situations that foraging animals regularly encounter (Pear-

son et al., 2014). It is a lucky monkey that finds itself near and

equidistant to fruiting orange and apple trees, but this is the sit-
6 Neuron 110, September 7, 2022
uation that many of our laboratory decision-making tasks simu-

late. Instead, foraging animals often encounter one opportunity

at a time, and the question is whether to engage with that oppor-

tunity or whether doing so represents an opportunity cost in

terms of what else they are forgoing (Charnov, 1976; Freidin

and Kacelnik, 2011; Stephens and Krebs, 1986). In other words,

the foraging macaque may encounter an apple tree and when it

does, it needs to decide how much time and effort it should

devote to foraging in the tree as opposed to continuing to

explore for other opportunities. In a similar way, when one is

already engaging with an option, the question is whether and

when to leave it. For example, a human ‘‘foraging’’ in the jobmar-

ket might consider the value of alternative jobs to the one in

which they are currently employed. Apparent idiosyncrasies in

binary decision-making behavior can be explained if animals

are evaluating options against the context in which they occur

as would be expected of a sequential forager evaluating each

opportunity encountered against the opportunity cost it entails

in the current environment (Freidin and Kacelnik, 2011).

Activity across several frontal lobe areas reflects aspects of

such decision variables, but it is notable that ACC activity prom-

inently reflects the value of switching and the range of alterna-

tives (Blanchard and Hayden, 2014; Fouragnan et al., 2019; Hay-

den et al., 2011; Kolling et al., 2012, 2018; Lopez-Persem et al.,

2016; Mehta et al., 2019). It has been suggested that such activ-

ity might simply reflect the difficulty or response conflict when

deciding which choice to take during a decision but it is now

clear from careful examination of data both from early (Kolling

et al., 2012) and more recent studies that such signals are

strongly decorrelated from difficulty and cannot be explained

by difficulty; instead, it is the value of the potential alternatives

that the environment furnishes that is represented in dACC in

both macaques and humans (Fouragnan et al., 2019; Kolling

et al., 2016a, 2016b, 2018; Vassena et al., 2020; Wittmann et

al., 2016a). Closely related activity patterns have been reported

in interconnected regions of the posterior cingulate cortex (Bar-

ack and Platt, 2021; Barack et al., 2017).

For example, Fouragnan and colleagues used fMRI to

examine activity across the brains of monkeys that tracked

values of three possible choices. The values of the choices grad-

ually changed over the testing session so that a choice that was

good at one time was not so good at another. In addition, on any

given trial only two out of three options were available for the

monkey to choose between. Both task manipulations made it

advantageous for the animals to switch choices from trial to trial,

and this is indeed what they did. Different types of representa-

tions of the values of alternative choices were found in the

dACC and hippocampus. Although hippocampal activity re-

flected the value of currently unavailable options, dACC activity

reflected the best alternative to the current choice, regardless of

whether that option was available (but rejected) on the current

trial or if it was not presented at all but might reappear in a future

trial (Figure 3B, left). Such a pattern of activity is not predicted by

accounts of the dACC emphasizing only the difficulty of

deciding. This is because alternative options that cannot be cho-

sen during the current decision, but which might be chosen at

some point in the future, should not change the difficulty of the

current decision. dACC activity not only reflected the value of
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alternative choices but it also reflected how likely animals were to

switch to them if they were offered on a future occasion. dACC is

a crucial node in the network for changing behavior and switch-

ing between choices; when its activity was disrupted by trans-

cranial ultrasound stimulation (TUS), there was a reduction in

adaptive patterns of switching behavior; switching was no longer

more determined by the value of the best alternative choice but

instead,maladaptively, it wasmore influenced by the value of the

other, less good, alternative (Fouragnan et al., 2019).

When people are in a similar situation and decide whether to

engage with the most immediate opportunity or to explore alter-

natives, then again ACC activity reflects not just one but many

aspects of the environment of alternative possibilities that

contribute to improve decision-making (Kolling et al., 2018). If

we reflect on how a person might be constrained to move

through and explore their environment, it becomes clear that

not only the best alternative opportunity should be represented,

but other environmental features should be represented as well

(Figure 3B, center). Imagine a scientist deciding whether to

continue in their current job or to leave to invest time seeking bet-

ter prospects elsewhere. The scientist should obviously consider

the value of their current position and they should compare it with

the job that they hope to find if they leave. However, in addition

to the value of the coveted ‘‘dream job,’’ they also need to

consider how likely they are to obtain it, or any other job, given

their time horizon—the time period they have in which to explore

the job market. In other words, the average value of alternative

options in the job market, as well as their variance in value and

ease of access need to be considered. If the applicant has plenty

of time to explore alternatives, then they might plan to apply and

re-apply for the best jobs until they end up with one of them.

However, if limited resources mean they only have limited time

in which to land a new job, then they must be prepared to settle

for more mediocre alternatives. All these factors determining the

environment’s value for the job seeker—the average value of al-

ternatives, their variance, and the time horizon for exploration—

are encoded in ACC activity (Kolling et al., 2018).

ACC activity does not just encode the opportunities available

in the environment. In addition, it encodes what a person or an-

imal might do to get to them (Figure 3B, right). Individual neuron

activity patterns and the multivariate pattern of activity in dACC

reflect how rats, monkeys, and people progress through se-

quences of actions toward a goal (Holroyd et al., 2018; Ma

et al., 2014, 2016; Procyk et al., 2000; Shahnazian and Holroyd,

2018; Shidara and Richmond, 2002) and the occurrence of unex-

pected events as they make their progress (Ribas-Fernandes

et al., 2011). Again, such knowledge may be the product of inter-

actions between the dACC and hippocampus (Remondes and

Wilson, 2013).

dACC and information seeking
So far, we have considered situations in which people and ani-

mals change and redirect their behavior to exploit opportunities

they know the environment contains. However, in many cases

such knowledge is absent or incomplete. When this is the

case, dACC activity reflects the process of information seeking

and the subsequent updating of the animal’s model of the world.

For example, Tervo et al. trained rats to accept or reject choices
signaled by two distinct tones. Each tone was paired with

distinct reward probabilities, which could change at unpredict-

able and uncued times. This meant that rats usually developed

a preferred option they accepted and an unpreferred option

they tended to reject. Nevertheless, rats periodically changed

away from making a preferred choice to find out more about

the value of an alternative (Tervo et al., 2021). Although they

were more likely to do this when their preferred option had

recently been unrewarded, they were also guided by expecta-

tions about the duration of periods in which either option might

be the better one, and they also spontaneously moved in and

out of exploratory phases of behavior (Figure 3C, left).

The experiment performed by Tervo and colleagues is impor-

tant not only because of the way in which it examines a natural-

istic behavior in a carefully controlled setting but also because

it provides a way of reconciling insights into the role of the ACC

in, on the one hand, switching and exploring and, on the other

hand, persistence and effort investment (Croxson et al., 2009;

Kennerley et al., 2009; Klein-Fl€ugge et al., 2016; Parvizi et al.,

2013; Rudebeck et al., 2006; Walton et al., 2002, 2003). This is

because dACC activity makes different contributions to behavior

at different points in time during decision sequences and it does

so via different microcircuits linking it to divisions of the distinct

subcortical circuits. One microcircuit in rats runs from the

dACC to the substantia nigra pars reticulata (SNpr) and is impor-

tant for initiating exploratory behavior at the time that the choice is

made. Optogenetic silencing of either the dACC (area Cg1/24b)

itself or the dACC-SNpr pathway selectively reduced the fre-

quency of exploratory choices of an alternative option as

opposed to the preferred one. By contrast, another dACCmicro-

circuit in rats runs from the dACC to the striatum, and it is impor-

tant for persistence in a behavior after a decision is taken and no

reward is received. Optogenetic silencing of either dACC or the

dACC-striatum pathway reduced the frequency with which ani-

mals persistedwith a choice after non-reward (Tervo et al., 2021).

A range of approaches have been employed to address the

question of information seeking, but all have converged in high-

lighting the dACC (Figure 3C). Stoll and colleagues (Stoll et al.,

2016) trained macaques to perform a perceptual discrimination

task for food reward. The monkeys could opt to perform the

task or opt out to seek information about another visual object

that gradually changed in appearance until it indicated a large

bonus reward would be delivered. Many neurons in the dACC

changed activity at the timewhen themacaques sought informa-

tion about the growth of the bonus indicator (Figure 3C, center).

Monosov, White, and colleagues trained macaques in a very

different behavioral paradigm in which macaques did not have

to actively seek information themselves but nevertheless

encountered cues providing information about what was to

happen next and other cues confirming prior expectations

(Figure 3C, right). Activity in dACC neurons ramped upwhenma-

caques expected an information-bearing cue (Monosov, 2017;

White et al., 2019). Hunt and colleagues trained macaques to

choose between multicomponent visual objects (Hunt et al.,

2018). The component features of the objects provided informa-

tion about the magnitude or probability of rewards that would be

received if chosen. The features were sometimes obscured, but

animals could seek the information they contained by saccading
Neuron 110, September 7, 2022 7
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toward them. ACC activity was linked to the usage of information

that had been sought by making a saccade; ACC activity re-

flected the degree to which the information revealed by a feature

confirmed that the monkey would be making a good decision by

choosing that object. Neuroimaging studies confirm that the

dACC has a preeminent role in information seeking; its activity

reflects a person’s uncertainty about the choice that they are tak-

ingwhen they are actively exploring options to obtain information

rather than when they are simply randomly responding (Trudel

et al., 2021). Often in these studies, as in real life, seeking infor-

mation can be beneficial in the future. How this differs from curi-

osity—the mere desire to know—and whether curiosity relies on

dACC representations remains to be fully determined (Brom-

berg-Martin and Hikosaka, 2009; Kidd and Hayden, 2015; Ko-

bayashi et al., 2019; Monosov et al., 2020; Wang and Hay-

den, 2021).

Like Tervo and colleagues, who investigated rodents, White

et al. (2019) confirm the importance in primates of a circuit span-

ning the dACC and striatum and in addition provide evidence

that the circuit extends into the pallidum. Striatal regions near

the internal capsule are strongly connected with ACC and these

in turn are strongly connected with anterior globus pallidus (GP)

and ventral pallidum. Neurons in all three areas show similar in-

formation-seeking-related activity.

In sum, the dACC represents the distribution of opportunities

in the environment, it computes recent and long-term value,

and on these bases, it determines whether a person or other an-

imal should engage with a current option or explore the environ-

ment, including driving specific information-seeking activity

(Figure 3). However, important questions remain. Uncertainty-

related activity has been reported in subcortical systems,

including the noradrenergic system originating in the locus co-

eruleus and the raphe nucleus. Our picture of how these regions

interact with one another and the dACC is currently changing

rapidly (Joshi and Gold, 2022; Joshi et al., 2016; Muller et al.,

2019; Soltani and Izquierdo, 2019; Tervo et al., 2014), but there

is much that we still do not know. Perhaps most critically, we

do not know why they interact, whether they encode identical

indices of uncertainty, whether they have similar influences on

behavior, and how they compare with influences from other neu-

romodulatory systems (Danielmeier et al., 2015; Fischer et al.,

2015; Khalighinejad et al., 2020a, 2022).

Learning about environmental structure versus reward
distribution in the prefrontal cortex
In addition to the ability to organize behavior in time as a function

of the distribution of opportunities in the environment, many

mammals know about the structure and causal nature of rela-

tionships between these opportunities and other features of their

environments. Such structural knowledge may suggest that the

best choice to take next is not the one in which the animal has

experienced the best reward distribution. For example, consider

the case of a monkey that, one morning, finds a ripe fruit in a tree

that yesterday’s search had revealed only to contain unripe fruit.

If the monkey only considered the distribution of reward in the

environment that it had experienced, then the discovery of one

fruit in this previously unrewarding tree might not be enough to

detain the monkey from going somewhere else. However, if the
8 Neuron 110, September 7, 2022
monkey knows about the way in which ripe fruit appears on a

tree—in other words, if it has knowledge of the structural organi-

zation of its environment—then the presence of one ripe fruit in a

tree might be sufficient to signify that all the fruit in the tree is

ripening now and that the new location might now be the ideal

one in which to forage. Such knowledge about the structure of

the environment does not, however, depend on the dACC.

One demonstration of this, for example, was recently provided

by Vertechi et al. (2020). They devised a task for mice with fea-

tures reminiscent of the foraging environment discussed above.

Themice learned about an environment containing two locations

at which they could nose poke. Importantly, water reward was

probabilistically available at just one of the two locations, but

its position varied over time. If the mice understood that water

was available at only one location at any given time then this

meant that once they had discovered water at one location,

they should no longer visit the other location, even if water had

been found there on many previous occasions. After a training

period, mice learned to switch quickly; once they have discov-

eredwater at one location on just a single occasion, they focused

on that location regardless of whether the other was previously

rewarding onmany previous occasions. Vertechi and colleagues

argue that knowledge of environment structure allows mice to

infer that the location of the water has changed as soon as

they receive a reward for the first time at a new location. Regard-

less of the previous distribution of reward, they should now

switch and focus on this new location. In line with what we

have argued about the ACC above, Vertechi and colleagues re-

ported that ACC inactivation delayed switching regardless of the

previous distribution of rewards. However, after OFC inactivation

a different pattern of behavioral change was observed; mice

were slower to switch but their impairment was a function of

how much water had been delivered at the other location previ-

ously. In other words, after OFC inactivation the mice’s behavior

was guided by their experience of the distribution of reward in

their environment, but it was no longer guided by their knowl-

edge of the structure of opportunities in the environment.

This is just one of several studies emphasizing the importance

of the rodent OFC for the construction of models of the relation-

ships between features of the environment (Wikenheiser and

Schoenbaum, 2016). For example, OFC neuron activity reflects

the learning of associations between cues that occurs inciden-

tally, even when the accumulation of this knowledge is not imme-

diately reinforced (Sadacca et al., 2018), and other studies impli-

cate the human OFC in similar inference processes (Wang et al.,

2020a, 2020b).

If the ability to make inferences based on knowledge of the

structure of the environment rather than just experience of the dis-

tribution of reward in an environment is present in amouse, then it

may be present in a number of mammals. Nevertheless, it has

received special attention inprimates.Primates have highly devel-

oped visual systems and spend a large part of their time engaged

in visual exploration of their environments (Graziano, 2009), often

appearing to survey it from a much greater distance than does a

rodent (Rudebeck and Izquierdo, 2021). They may range over

large areas of many thousands of hectares as they forage (Pas-

singhamandWise, 2012;Rudebeckand Izquierdo, 2021).Despite

their impressive range, their feeding is often focused on the fruit,
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young leaves, and insects found in angiosperm trees. As a result,

onedifficultyprimates face is in identifying thebestplaces inwhich

to forage within their range because only a small proportion of the

trees within it, perhaps as low as 4%, bear fruit at any point in time

(Zuberb€uhler and Janmaat, 2010). The strategies that primates

exploit to estimate where they might find food suggest that, in

addition to using knowledge of spatial relationships such as those

examined in the rodent studybyVertechi etal., theyalso frequently

use knowledge of non-spatial, structural relationships between

environmental elements to guide their choices. For example,

they can learn patterns of correlation between visual aspects of

the trees’ appearances, which can be discerned from afar, and

food; they spontaneously search for and inspect visual cues that

have previously been seen near food (Menzel, 1996). When they

see that one tree is in fruit, they aremore likely to visit other similar

trees, suggesting that they infer that similar trees might be fruiting

too (Janmaat et al., 2012).When theweather has beenwarm, they

return to trees that they have recently seen with unripe fruit, sug-

gesting they have inferred that that fruit may nowbe ripe (Janmaat

et al., 2006). And when persimmons are left in their home range,

Japanese macaques appear to infer that persimmon trees may

be fruiting and are more likely to visit persimmon trees (Menzel,

1991). Finally, primates are known to live in large social groups,

and they excel in adjusting their behavior based on structural

knowledge of the social dynamics and hierarchies present in their

troop (a topic that we return to in more detail below in the section

about dmPFC).

In summary, many animals do not just learn and exploit rela-

tionships between sensory cues and their reinforcement conse-

quences, but they also understand the structure of relationships

and contingencies between cues. Primates are particularly good

at this, and in humans, such relationships may be quite abstract

(Donoso et al., 2014). They often involve outcomes that will only

unfold much later, or choices made on behalf of others, for

example, when predicting how the choice of our children’s

school may impact their future prospects. We consider these

ideas further in the following sections on the anterior medial

and dorsal medial PFC.

Anterior medial prefrontal cortex and representation of
structure
Animals possess cognitive maps of the world around them (Tol-

man, 1948). Importantly, such maps make it possible not just to

follow previously taken routes but also to allow ‘‘vector naviga-

tion’’—the ability to move directly from the current position to a

goal location, even when it is not directly observable, by a novel

route that might never have been taken before. Several medial

temporal lobe (MTL) areas, such as the hippocampus and ento-

rhinal cortex, and interconnected areas have long been recog-

nized as preeminent in such computations (Hartley et al., 2003,

2014; Bush et al., 2015). Neuroimaging experiments, however,

suggest that a region on the medial surface of the frontal lobe

is also a component of this circuit (Doeller et al., 2010).Moreover,

in both human and non-human primates, the area’s role is not

confined to representing spatial information; it also represents

the structure of arbitrary associations between non-spatial items

(Bao et al., 2019; Baram et al., 2021; Bongioanni et al., 2021;

Constantinescu et al., 2016; Gerraty et al., 2018; Schuck et al.,
2015). It is possible that the effects of lesions of medial frontal

cortex that have previously been attributed to inflexibility or

perseveration are better understood in terms of an animal’s be-

liefs about task structure (Jang et al., 2015).

It is difficult to identify the precise location of the key medial

frontal region highlighted in neuroimaging experiments because

our knowledge of the anatomy of this region is still evolving

(Glasser et al., 2016; Neubert et al., 2015). Its posterior boundary

is in or near the part of the cingulate sulcus anterior to the genu of

the corpus callosum, and it extends anteriorly to reach the

medial aspect of the frontal pole. It therefore seems likely to

include prefrontal areas such as medial area 10 (10v and 10r),

but it may also extend ventrally into prefrontal area 14 and pos-

teriorly into anterior pgACC, p32. We refer to it here simply as

amFC (Figure 4). Areas 10 and 14 have only been identified in pri-

mates such as macaques and humans, and similarities in resting

state connectivity patterns suggest the areas are components of

similar circuits in the two species (Neubert et al., 2014, 2015). By

contrast, area 32 also bears resemblances to regions found in

non-primates, such as the prelimbic region of rodents (Vogt,

2009). Even if its boundaries remain to be precisely defined,

recognizing that there is a specialized subregion within this

area that is different from the adjacent dACC, pgACC, and

vmPFC is necessary if we are to account for the diversity of fron-

tal cortical contributions to decision-making and behavioral flex-

ibility.

Just asmaps of the spatial world allow animals to perform vec-

tor navigation, the models of abstract relationships held by the

amFC mean that, even without direct prior experience of all

possible states of the world, amFC can make predictions about

the nature of unobserved states and the consequences that will

follow for the animal if they are entered. Thus, mammals pos-

sessing amFC can flexibly adjust their behavior by simulating

the consequences of potential courses of action even before

experiencing them, and they can generalize and apply known re-

lationships to new situations (Behrens et al., 2018). For example,

a monkey might infer that a fruit tree in which it has never previ-

ously foraged is now likely to be of high value if it has observed

that another similar tree at another location has fruited or if it

has recently observed appropriate weather conditions. Similarly,

humans can make informed choices between potential holiday

destinations even if they have not visited any of them before,

based on information gathered from places with some shared

features. This requires abstract representations of relationships

and the simulation of potential consequences.

The amFC and adjacent cortex are often active during value-

based decision-making (Bartra et al., 2013; Clithero and Rangel,

2014; Rushworth et al., 2011), but it is currently debated whether

this should be attributed to their most fundamental role being

one of valuation and reward prediction or to some other cognitive

process such as the identification of task structure or determina-

tion of behavioral policy (Hayden and Niv, 2021). Although some

frontal areas we return to below may be especially concerned

with representations of value, there is increasing evidence that

the amFC is particularly important for representing the structure

of the environment. Klein-Fl€ugge et al. (2019) provided one

demonstration of this in an experiment in which they taught hu-

man participants to navigate through an artificial task
Neuron 110, September 7, 2022 9
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environment comprising a 3 3 4 array of abstract shape stimuli

(Figure 4A). Their goal was to learn which sequence of stimuli

led to a reward, but participants also showed learning of inci-

dental statistical relationships governing transitions through the

task environment. During initial training, participants’ move-

ments through the stimulus space were constrained by spatial

distances, allowing only movements between adjacent stimuli.

In line with this, upon entering the scanner, amFC BOLD activity

was strongly modulated by the spatial distance separating two

successive stimuli encountered. However, during scanning,

movements through the 3 3 4 task environment were no longer

governed by spatial constraints and the amFC signature of

spatial distance faded over time. Instead, participants’ attention

during scanning was guided by sequentially highlighted stimuli,

which were no longer necessarily adjacent in space. Highlights

could ‘‘jump,’’ but their sequence followed a particular transition

pattern. amFC BOLD signals at the time of a highlighted stimulus

were modulated by the likelihood of the experienced transition,

as tracked by a simple learning model. The ability to predict

such transitions provided a behavioral advantage in the scan

task, and the amFC signature of transition frequency became

stronger as scanning progressed. Thus, amFC’s model of the

task flexibly changed in line with the most advantageous behav-

ioral policy and reflected both spatial and non-spatial aspects of

the task structure. Importantly, the structural knowledge re-

flected in amFC activity was present independent of whether

the transitions led to reward or not. By contrast, activity in other

areas, such as the posterior lateral OFC, only reflected knowl-

edge of specific reward-reinforced stimulus sequences and, un-

like in amFC, these OFC activity patterns were robust and inflex-

ible; posterior lateral OFC activity continued to hold the same

rewarded sequence representations, even when they were no

longer relevant for the task in hand (Figure 4B).

Knowledge of abstract relationships can be particularly useful

when we need to simulate new experiences tomake predictions;
Figure 4. Task structure and amFC
(A) (Top left) Human participants experienced two different four-element sequence
elements in each sequence corresponded to locations on a 3 3 4 grid. (Top cen
learned. (Bottom right) In addition, initially amFC activity reflected the spatial dis
during training but became irrelevant during the scan session. Over time, amFC
location and the next.
(B) (Left) By contrast, posterior OFC (pOFC) and temporal pole activity reflected th
temporal pole ramped up as increasingly more rewarded sequence elements were
sequence but only if D was preceded by the correct stimuli—A, B, and C—in th
representations did not change over time—they were robust and inflexible (adap
(C) (Left) Human participants were asked to simulate a new experience (a novel co
(Center) amFC held representations of the novel simulations (light blue) and sho
became more similar to one another (dark blue). (Right) Once participants actual
their ability to represent it was no longer a simulation based on experience of th
component elements became unlinked from one another (adapted from Barron e
(D) (Left) Macaques chose between novel stimuli they had not previously experien
monkeys were, however, extensively trained but only on a subset of stimuli (yellow
the density of dots with which they were covered—indicated the amount and prob
the critical test phase, when fMRI data were acquired, the monkeys demonstrated
estimate the values of novel options (white). (Center left) During choice, the value d
the other. When decisions were made between novel rather than familiar opt
probability dimensions, the amFC decision signal was significantly stronger. (C
integration of the reward probability andmagnitude features was occurring, there
that defined the task; a hexagonal pattern of activity modulation when animals en
Notably, no such preferential signaling of novel choice computations nor grid-lik
base decisions on integrated choice values (combinations of magnitude and prob
individual monkeys (adapted from Bongioanni et al., 2021).
several studies demonstrate that this is the case. For instance,

Barron and colleagues asked participants to imagine new

reward experiences based on novel combinations of previously

experienced foods (Barron et al., 2013). Using fMRI in humans,

they showed that the amFC held representations of the novel

experience and that these amFC representations of novel food

combinations were linked to representations of the previously

experienced component elements (Figure 4C). In another study,

Bongioanni et al. (2021) trained macaques to choose between

pairs of two-dimensional stimuli for liquid rewards (Figure 4D).

They created new stimuli for the monkeys by presenting new

combinations of amount and probability, but importantly, the

component features of the new stimuli were familiar, thus allow-

ing the monkeys to infer the value of the new stimuli. fMRI and

TUS revealed that the amFC held multidimensional representa-

tions of the new options that were needed for optimal deci-

sion-making between them. This supports the idea that the

amFC performs feature integration and represents the knowl-

edge of abstract relationships to help simulate novel experi-

ences (Fellows, 2006; Kahnt et al., 2011; Spalding et al., 2018).

A recent proposal suggests that making novel inferences in

abstract task spaces may depend on neurons with ‘‘grid’’-like

activity patterns (Behrens et al., 2018; Whittington et al., 2020).

Such neurons, first reported in rat entorhinal cortex, have activity

covering the spatial arena. Each neuron covers the space by

possessing an array of place fields arranged on a triangular

grid. If a rat takes some paths through the testing arena, then

the neuron will fire repeatedly as the animal moves from one of

the neuron’s place fields to the next. If different movement tra-

jectories are tested, the neural response will vary depending

on how much any trajectory is aligned with the cells’ grid field.

Because there are six ways to align to a triangular grid, when

examining the neural activity measured during transitions along

all possible directions, the signal will increase and decrease six

times per cycle, i.e., every 60�, and because the grid fields of
s, one of which led to reward and one of which did not. (Bottom center) The four
ter) Activity in amFC reflected the structure of the sequences that participants
tance between any two elements on the grid. Spatial distance was important
activity began reflecting the now relevant transition frequencies between one

e precise order of reward-reinforced sequences. (Center) Activity in pOFC and
present in the correct order. It was thus greatest for the final element, D, of the

e correct order (shaded areas denote SEM across participants). (Right) These
ted from Klein-Fl€ugge et al., 2019).
mbination of tea and jelly) on the basis of past experiences (of tea and of jelly).
wed that representations of the previously experienced component elements
ly experienced the novel combination (familiar group versus unfamiliar group),
e component elements and so amFC representations of the combination and
t al., 2013); error bars denote SEM across participants.
ced or had only limited experience of. Prior to the main part of the experiment,
cross, familiar options). Different visual features of the stimuli—their color and
ability of juice rewards that would follow if they were chosen. However, during
that they could draw on their knowledge of these visual features to accurately

ifference reflects the key decision variable—howmuch better is one option than
ions, which required evaluating novel stimuli based on their magnitude and
enter right) Consistent with the idea that a process of online simulation and
was evidence of grid-cell-like encoding of the probability andmagnitude space
countered single options on different trajectories with respect to one another.
e representation formats was observed in OFC or dACC. (Right) The ability to
ability information) was disrupted by application of TUS to amFC; lines denote
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neurons are aligned within a given animal, the aggregate activity

of the population can be measured with fMRI. This pattern is

especially prominent in the amFC in both humans andmacaques

when they navigate through non-spatial task environments (Bao

et al., 2019; Baram et al., 2021; Bongioanni et al., 2021; Constan-

tinescu et al., 2016) just as when they navigate in a spatial arena

(Doeller et al., 2010). Therefore, abstraction in non-physical

space may rely on a similar grid cell-based coding scheme as

that first discovered for physical space. In their study, Bon-

gioanni and colleagues (Bongioanni et al., 2021) provided evi-

dence that amFC activity is consistent with grid-like encoding

of an abstract value space for novel choices. Crucially, in addi-

tion, the authors showed that disrupting this activity with TUS

impaired the integration of information across this space in the

guidance of decision-making (Figure 4D). This demonstrates

the amFC’s causal role in representing abstract task relation-

ships and in simulating novel experiences along dimensions of

this task space.

The amFC is interconnected with the MTL, where grid cells

were first observed. This raises the question of whether one re-

gion’s activity is driven by the other, or whether they play com-

plementary but independent roles. A recent intracranial EEG

study of spatial navigation in humans (Chen et al., 2021) sug-

gests that the medial frontal grid signal may precede the one

observed in MTL. Similarly, activity in the DA midbrain and

ventral striatum has sometimes been thought to resemble activ-

ity linked to model construction and inference typically observed

in the PFC (Daw et al., 2011). When directly probed, the amFC

represents the full structure of participants’ task model while

the ventral striatum does not contain this information, even if it

reflects prediction errors that are contingent on such models

(Klein-Fl€ugge et al., 2019). Nevertheless, the precise contribution

and communication between subcortical and PFC representa-

tions remains to be fully determined.

Orbitofrontal cortex in rodents and primates
The previous section focused on the amFC in primates. Rodents,

however, also make inferences. What frontal brain structures do

they use when they do so? When Vertechi et al. (2020) investi-

gated howmice learned that only one of two locations in an envi-

ronment was associated with reward and used this knowledge to

make inferences about where to forage, they focused on an area

that they referred to as the OFC. The same region has also been

emphasized by Liu et al. (2021), who examined how mice made

inferences about auditory stimuli with respect to a shifting crite-

rion. The mice learned to respond in one of two directions, de-

pending on whether an auditory tone had a frequency above or

below a criterion level. From time to time in the task, however,

the criterion shifted upward or downward. Initially the mouse

had to learn by trial and error that a given tone was now, for

example, higher than the new criterion, even if it had not been

higher than the previous criterion. However, such an experience

should allow the mouse to infer, for example, that other even

higher tones are also above the new criterion. If the mouse un-

derstands the task’s structure, then it does not have to learn

what to do when it hears each tone, simply by accumulating

experience with that tone alone; instead, it can make inferences

from one tone to another. Again, OFC disruption compromises
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the mouse’s ability to do so. Other aspects of task structure,

such as sequential organization, are also encoded in rodent

OFC (Zhou et al., 2019, 2021).

The designation of the OFC area in rodents follows from the

work of Uylings and van Eden (1990), who attempted to establish

rodent-primate similarities in prefrontal areas on the basis of their

thalamic connection patterns rather than their intrinsic cytoarch-

itecture. However, whether the rodent OFC corresponds in a

simple and direct way to primate OFC has been long debated

(Preuss, 1995; Wise, 2008). A notable difference between the ro-

dent and the primate OFC is that OFC lesions in macaques do

not cause switching deficits in reversal tasks (Rudebeck et al.,

2013). Understanding how these OFC areas in primates and ro-

dents relate to one another is far from straightforward.

There are also functional similarities between rodent and pri-

mate OFC areas. Even if OFC lesions do not disrupt reversal

task performance, Rudebeck et al. (2013, 2017) report that these

lesions in primates do disrupt decision-making in reward devalua-

tion tasks, just as they do in rodents (Lichtenberg et al., 2021;Mal-

vaez et al., 2019; Pickens et al., 2003; Sias et al., 2021). Disruption

of theOFC leads to other patterns of change in reward-guidedde-

cision-making that are similar in mice and macaques (Ballesta

et al., 2020; Kuwabara et al., 2020), and there is evidence that

the human OFC plays a similar role (Howard et al., 2020; Wang

et al., 2020a, 2020b). In such tasks, different choices lead to

different rewards. If one reward is devalued (for example, by

feeding an animal to satiety on that reward prior to testing), then

theanimal should infer that it is no longeroptimal topick thechoice

that leads to the devalued option and so they should refrain from

taking it and choose the alternative one. The fact that the reversal

taskand thedevaluation task are dissociable inprimates suggests

that they tap into at least partially dissociable cognitive abilities.

Succeeding ina reversal task involves, inaddition tocognitive flex-

ibility, an understanding of the structure of the task, for which the

primate OFCmay not be required, while succeeding in a devalua-

tion test requiresanticipationof futureoutcomesand their value for

the self, which appears to be enabled by the OFC across species.

Additionally, there are also similarities between primate amFC

and rodent OFC. Both primate amFC and rodent OFC (Stalnaker

et al., 2015) represent structural knowledge and mediate infer-

ence, and both primate amFC and rodent OFC have an approxi-

mately similar topographical relationship with other areas, such

as the dACC and pgACC/prelimbic cortex. OFC activity in rats re-

flects goal locations and not just the current location, making it

reminiscent of amFC activity in humans (Klein-Fl€ugge et al.,

2019). It is also intriguing to see the similarity between the knowl-

edge of sequential task structure decodable from the human

amFC (Klein-Fl€ugge et al., 2019) and rat OFC (Zhou et al., 2021).

In addition, just as the human amFC is concerned not only with

the learning of reward-related associations but also the associa-

tions between non-rewarding task features, so is the rodent

OFC (Lopatina et al., 2015, 2016; Sadacca et al., 2018). On the

other hand, however, it is notable how readily humans learn task

structure. For example, human participants performing a version

of the Vertechi et al. (2020) inference test learn the underlying

task structure an order of magnitude more quickly than mice.

Such findings remind us that we should not expect learning and

inference to be identical in every respect in rodents and primates.
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Figure 5. vmPFC and decisions about not just reward
(A) Decision-making processes can be simulated in neural networks in which pools of neurons represent choices of one option or another. Neurons within each
pool have recurrent excitatory connections, but inhibitory interneurons connect the two populations. This pattern of connectivity ensures that if one population

(legend continued on next page)
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It is also important to remember that Klein-Fl€ugge et al. (2019)

found evidence of encoding of sequence structure in a second

frontal area—a posterior lateral orbitofrontal area. As already

noted, sequence knowledge in this area is focused on reward

prediction and is updated slowly, but it is also more robust and

unchanging compared with the amFC. Its position near the

border between the granular and agranular cortex means that

it is cytoarchitecturally more similar to the rodent OFC. The

speed with which representations are updated is reminiscent

of the slow speed with which rodents learn task structure.

In both macaques and humans, there is a region on the lateral

border of the OFC and ventral border of the ventrolateral PFC

that is important for learning specific choice-outcome contin-

gencies (Boorman et al., 2016; Chau et al., 2015; Folloni et al.,

2021; Jocham et al., 2016; Noonan et al., 2010, 2011, 2017; Ru-

debeck et al., 2017; Walton et al., 2010). The critical region is not

in areas 11 and 13 between the lateral and medial orbitofrontal

sulci (Rudebeck et al., 2017) but instead lies in and lateral to

the lateral orbitofrontal sulcus in area 47/12o (Chau et al.,

2015; Folloni et al., 2021). Normally, monkeys’ decisions be-

tween choices reflect the history of reward received immediately

after taking such choices in the past. When a lesion is made that

includes 47/12o or an ultrasound is focused to disrupt 47/12o,

outcomes are not correctly credited to the choices that caused

them and, consequently, choices are simply repeated if they

were made in the context of a high global reward state even if

the choice itself was not causally responsible for a reward. Activ-

ity in other brain regions, such as the DRN and insula, reflects

global reward state regardless of choice taken (Folloni et al.,

2021; Wittmann et al., 2020). Therefore, animals lacking a PFC

and relying on older neural circuits may learn based on this

global signal as opposed to on the basis of fine-grained and spe-

cific choice-outcome contingencies, such as primates with le-

sions in 47/12o. In humans, adjacent but even more lateral pre-

frontal cortical regions mediate other related cognitive

processes, for example, prospective metacognitive estimation

of the impact that choices will have even before they are taken

(Miyamoto et al., 2021).

In summary, the rodent OFCmay hold representations that are

similar to those present in both OFC and amFC in primates but

not identical to either. In some regards, it might resemble very

posterior OFC areas on the boundary with insula in the primate

brain that often receive less attention in human and macaque in-

vestigations. Moreover, some features of activity in the rodent
ends up in a high-firing state, the other population’s activity is suppressed; the c
population that is most likely to reach the high firing state is the population with
(B) Emergence of positive and negative value differences in BOLD fMRI data may
reset. Top: the firing rate of A units is plotted against the firing rate of B units for a
chosen (red). A key difference is the time spent in the high- and low-firing state, wh
change howmuch the speed of the competition process relative to the final stead
limited temporal resolution). Scenario A (left): if the steady state has the strongest
option chosen and negatively to the option rejected, as typically observed in hum
process predominates in the signal, the observed modulation will be negative for
macaque fMRI experiments. Bottom: the expected BOLD signal is illustrated s
description of the attractor model.
(C) vmPFC activity relates to the comparison of the value of the chosen option ver
across a number of studies in humans (right; adapted from Boorman et al., 2009
(D) By comparison, a more dorsal region in amFC shows activity related to task
multiple studies in humans (right; adapted from Constantinescu et al., 2016; Doe

14 Neuron 110, September 7, 2022
OFC, such as the encoding of alternating sequence elements

(Zhou et al., 2021) or the relationships between task states (Bar-

tolo and Averbeck, 2020; Tang et al., 2021), are reminiscent of

patterns reported in yet other primate prefrontal regions (Shima

et al., 2007). Rather than trying to link the rodent OFC with any

one of these primate areas—amFC, 47/12o, or some of the areas

that we discuss below, such as vmPFC—it may be better to think

of rodent OFC as bearing a general similarity to all of them; we

have illustrated this idea in Figure 1. Such a view suggests that

while rodents have a frontal cortex that equips them to make in-

ferences (Vertechi et al., 2020), primates are ready to employ

many different and specialized circuits for inferential processes

(Wise, 2008).

Ventromedial prefrontal cortex and decisions, but not
just about reward
The amFC region described above is extensive and may contain

different component subregions. When we focus on the decision

process itself, however, it is noticeable how frequently that activ-

ity appears in or beyond the ventral border of this region. It is

possible that another region here can be distinguished by both

location and function. It is often referred to as the vmPFC (area

14m) in humans, but it corresponds to areas sometimes referred

to as the medial OFC (mOFC) in macaques. We also note, how-

ever, that the label vmPFC has sometimes been used to refer to

activations extending dorsally beyond area 14 m into amFC and

pgACC. Here, we refer to this region as vmPFC/mOFC and argue

that it is particularly important for turning representations of

choice options into actual decisions (Figure 5).

During reward-guided decision-making, vmPFC/mOFC acts

as a choice option comparator. vmPFC/mOFC signals match

predictions from a biophysically plausible network model

(Wang, 2002, 2008; Wong and Wang, 2006) where two

competing pools of neurons, each representing one option,

mutually inhibit each other and compete for choice. Predictions

from these models show that in measures of bulk activity such

as those obtainedwith BOLD-fMRI or magnetoencephalography

(MEG), the signature of a choice computation amounts to a differ-

ence between the value of the chosen and the value of the un-

chosen option (Hunt et al., 2012). This is precisely the signature

of activity found in vmPFC/mOFC (Boorman et al., 2009; DeMar-

tino et al., 2013; FitzGerald et al., 2009; Hunt et al., 2012; Trudel

et al., 2021). As already noted, other brain areas, such as the

dACC, have activity that reflects key decision variables such as
hoice associated with the first population is taken while the second is not. The
the strongest input (the choice with the highest associated evidence).
be explained by the time spent in the final attractor state before the network is
situation where A ends up being chosen (dark blue) and where B ends up being
ich is shown as larger (longer) and smaller (shorter) gray circles, and which may
y-state influences the activity measured, using fMRI (or similar techniques with
influence on the measured signal, it will be positively related to the value of the
an fMRI studies. Scenario B (right): by contrast, if the speed of the competition
the option chosen and positive for the option rejected as typically observed in
chematically for the two scenarios. See also Figure S1 for a more detailed

sus another option in macaques (left; adapted from Wittmann et al., 2020) and
, 2013; Chau et al., 2014; Iigaya et al., 2020; Park et al., 2021).
structure in macaques (left; adapted from Bongioanni et al., 2021) and across
ller et al., 2010; Klein-Fl€ugge et al., 2019; Park et al., 2021).
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the difference in value between potential choices. However,

closer inspection reveals important differences in activity pat-

terns in the vmPFC/mOFC and dACC. As we have seen, dACC

activity reflects the value of switching away froma current oppor-

tunity to explore alternatives, potentially over the course of an

extended series of sequential decisions. Consistent with this

observation, Boorman and colleagues (Boorman et al., 2013) re-

ported that dACC activity tracked the longer-term value of a

choice. However, vmPFC/mOFC reflected the choices’ current

value on the present trial. Boorman and colleagues were able to

tease apart the representations because they employed a task

in which choice values reflected two different features, one that

remained relatively constant over several trials (tracked by

dACC) and one that changed frequently every trial—vmPFC re-

flected the difference in value between options once both fea-

tures had been integrated.

One intriguing observation pertains to the direction of the value

difference signal observed in vmPFC/mOFC. Although it is

consistently positive in humans (larger BOLD signal changes

are associated with larger differences between the chosen and

unchosen option values), it has the opposite sign in macaque

monkeys (Bongioanni et al., 2021; Fouragnan et al., 2019; Papa-

georgiou et al., 2017;Wittmann et al., 2020). At first, these obser-

vations might seem incompatible. However, both types of pat-

terns could reflect the output of the same biophysical attractor

network, albeit with small modifications in the behavior of the

neural populations. For example, allowing variation in the time

spent in the high-firing attractor state before returning to baseline

firing could produce two opposing predictions (Figures 5A and

5B; Figure S1). If the neural population remains in the high-firing

state for some time before returning to baseline, the observed

BOLD difference would be most influenced by this sustained

activation, which would scale with option difference and thus

lead to a positive BOLD value difference signal (Figure 5B, left).

On the contrary, if the neural populations only briefly transitioned

through the decisive high-attractor state (e.g., because the deci-

sion is immediately passed on to another region), then the BOLD

signal would most strongly be influenced by the speed of the

competition process, which would be shorter in a trial with a

large value difference and longer when the value difference is

small. Thus, in this situation, we would expect a negative rela-

tionship between value difference and the measured BOLD

signal (Figure 5B, right). A similar argument has been put forward

elsewhere (Hunt and Hayden, 2017). It is notable that slight dif-

ferences in the type of stimulus material about which macaques

make decisions lead to different patterns of positive and nega-

tive modulation in single-neuron-recorded patterns of activity

as a result of different patterns of choice evidence encoding in

a curvilinear manifold (Okazawa et al., 2021). Again, these differ-

ences might relate to the way in which the dimension of stimulus

discrimination is transformed into the dimension of response se-

lection and, therefore, in how information about choice selection

is passed to subsequent brain areas.

Direct electrophysiological recordings from the macaque and

human vmPFC/mOFC support its role in converting relative

values into choices (Lopez-Persem et al., 2020; Strait et al.,

2014). As in human neuroimaging experiments, vmPFC/mOFC

activity in macaques reflects reward value integrated across di-
mensions and shows anti-correlated tuning for each of two op-

tions’ values during decision-making—indicative of value com-

parison—followed by coding of the chosen option’s value,

which is indicative of encoding of just the final choice (Strait

et al., 2014). Similar signals are observed in intracranial electro-

encephalography recordings taken from the vmPFC/mOFC in

human epilepsy patients, albeit with a positive modulation by

subjective value (Lopez-Persem et al., 2020).

Not only does the vmPFC/mOFC carry signals that reflect a

translation of values into choices, but these vmPFC/mOFC sig-

nals are necessary for decision-making. Lesions in the vmPFC/

mOFC, both in macaques and humans (Camille et al., 2011;

Noonan et al., 2010, 2017), and manipulation of human

vmPFC/mOFC activity using transcranial direct current stimula-

tion (H€ammerer et al., 2016) increase choice stochasticity and

reduce the accuracy of the choice comparison process. This is

in line with work showing that individual variation in the excita-

tion-inhibition balance in the vmPFC/mOFC’s activity is directly

related to individual variation in choice stochasticity (Jocham

et al., 2012). By contrast, ultrasonic disruption of activity in the

amFC does not affect choice stochasticity (Bongioanni et al.,

2021). Instead, it alters abstract value space representations,

which suggests differences in the functional roles of amFC and

vmPFC/mOFC. Nevertheless, vmPFC/mOFC activity may not al-

ways be required to select choices. As choices become more

familiar, they rely less on online comparison processes and

more on simpler heuristics and precomputed values. This in

turn makes choice value signals become weaker or disappear

entirely from the vmPFC/mOFC in monkeys and humans (Bon-

gioanni et al., 2021; Hunt et al., 2012).

In macaques, perhaps the best characterized population of

neurons with a role in decision-making is situated even more

laterally on the orbital surface, in area 13. Here, individual neu-

rons have been identified with activity that is selective for spe-

cific options in reward-guided decisions. In an important series

of studies, Padoa-Schioppa and colleagues examined deci-

sions between visual stimuli associated with different types of

juice. For example, in one experiment, blue and yellow squares

indicated water or unsweetened kool-aid. Increments in the

number of stimulus elements—i.e., the number of squares—

indicated increments in the amount of that juice type available.

‘‘Offer value’’ neurons were selective for particular stimuli/juice

types, but their firing rates changed with the amount available

(Cai and Padoa-Schioppa, 2014; Padoa-Schioppa and Conen,

2017). The activity distributed across the population of neurons

in and near this area encodes the identities of potential choice

options, and during the course of decisions, it is possible to

track the relative strengths of the representations of the poten-

tial choices. The relative strengths of representations may

change repeatedly during the course of a decision, especially

when the options are close in value, but eventually one comes

to predominate and the choice is taken (Bongioanni et al.,

2021; Hunt et al., 2018; Klein-Fl€ugge et al., 2013; Rich and

Wallis, 2016). Selective and focused inactivation or stimulation

of area 13 alone is sufficient to interfere with the way in which

value-guided decisions are made (Ballesta et al., 2020; Murray

et al., 2015). Understanding how area 13 and the more medial

vmPFC/mOFC area discussed above collaborate or specialize
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during decision-making remains an ongoing topic of dis-

cussion.

VmPFC/mOFC value comparison signals reflect many other

influences that impact on the way that options are valued during

decision-making. For instance, the presence of a third option

may impact the way that two other options are valued and

compared and thus affects which choice is likely to be taken

(Chau et al., 2020; Dumbalska et al., 2020; Louie et al., 2015;

Webb et al., 2020). In addition, the presence of a less valuable

itemwithin a compound option is known to reduce the estimated

value of the compound relative to the more valuable item alone,

in the ‘‘less-is-more’’ effect displayed by both human and non-

human primates (Kralik et al., 2012; List, 2002). Both of these

phenomena are reflected in the vmPFC/mOFC’s choice compar-

ison signal (Chau et al., 2014; Fouragnan et al., 2019; Lim et al.,

2011; Papageorgiou et al., 2017; Suzuki et al., 2017) and both

phenomena are disrupted by lesions in the vmPFC/OFC (Noonan

et al., 2010, 2017; Papageorgiou et al., 2017). When satiety or

background context change the way that options are valued,

then vmPFC activity reflects changes in the way that the options

will be valued even before any decision is made (Abitbol

et al., 2015).

However, many factors other than the reward value of a choice

influence whether it will be taken. Such influences include, for

example, the recent reward rate regardless of which choice

was taken, choice traces (the history of which choices were

taken recently, regardless of whether they were rewarded), the

number of offers viewed, the attended location, the sense of so-

cial controllability, the confidence and uncertainty related to a

choice, or the value of upcoming information. All these variables

have been shown to affect vmPFC activity at the time of deci-

sion-making (Kaanders et al., 2021; Leong et al., 2017; Mehta

et al., 2019; Na et al., 2021; Trudel et al., 2021; Wittmann et al.,

2020). One important consideration seems to be the policy that

is currently guiding behavior. In a recent study, Trudel et al.

(2021) demonstrated that vmPFC/mOFC activity displays an

impressive degree of flexibility and that the same variable can

be associated with either a positive or a negative change in

vmPFC/mOFC activity, depending on the goal of the decision.

In their study, optimal decisions required periods of exploration

and periods of exploitation. Not only did vmPFC/mOFC BOLD

reflect the uncertainty as well as the value of choices, but

vmPFC/mOFC BOLD signatures of choice uncertainty flipped

sign depending on context, with negative uncertainty coding

during exploitation (when participants were selecting options

that theywere certain were high in value) and positive uncertainty

coding during exploration (when participants were selecting op-

tions that they were uncertain about in order to find out more

about their value). Such a change is consistent with the existence

of not only neural circuits specialized for exploration but also

neural systems mediating both reward exploration and exploita-

tion (Costa et al., 2019).

In summary, the vmPFC/mOFC represents potential choice

options, computes their comparison, and turns them into actual

choices in the frame of reference currently relevant for guiding

actions (Grueschow et al., 2015). More generally, and in contrast

to the dACC, vmPFC/mOFC activity reflects the relative evi-

dence for taking one choice over another, along the multiple di-
16 Neuron 110, September 7, 2022
mensions and in the frame of reference relevant for the choice at

hand. In many cases, this might mean that it reflects choice

values, but other variables might be represented, depending

on current action policies (Hayden and Niv, 2021).

The boundary between the amFC and vmPFC/mOFC remains

to be precisely defined (Figures 5C and 5D). Many studies on

reward-guided decision-making find activations in both loca-

tions (Bartra et al., 2013; Clithero and Rangel, 2014) or at the

border (Schuck et al., 2016). This might be because these tasks

often require simulations of novel option values or states as well

as choice computations, meaning the two processes occur

simultaneously and may not be easily teased apart. More evi-

dence to support a dissociation between abstract structure rep-

resentations in the amFC, and the turning of such representa-

tions into decisions in vmPFC/mOFC, will therefore be needed.

However, a recent study by Park et al. (2021) provided the first

compelling test for this. In their task, human participants were

required to represent abstract relationships between different in-

dividuals along two dimensions (popularity and competence).

When participants had been trained on these relationships,

they were asked to make binary choices about which of two in-

dividuals would be a better partner for a third individual while un-

dergoing fMRI. Making such a choice required representing the

popularity and competence of each of the three individuals on

the one hand and, on the other hand, a computation of the com-

bined strength or ‘‘growth potential’’ of each two-person team. A

hexagonal modulation of the BOLD signal in the amFC indicated

grid-like coding of the growth potential in the abstract social

space spanned by all possible individuals, while the BOLD signal

related to the decision variable—the difference between teams’

growth potential—was located more ventrally in the vmPFC/

mOFC (Figures 5C and 5D). This provides compelling evidence,

within the same task, that abstract grid-like representations of

relevant relationships are present in the amFC and converted

into decisions in the vmPFC/mOFC (Park et al., 2021).

As is the case for other frontal cortex regions, it is not always

clear how the activity patterns that emerge in the vmPFC/mOFC

during decision-making can be distinguished from the activity

patterns seen in subcortical structures such as the ventral stria-

tum and DA midbrain. Both of these structures show activity

related to choice selection that resembles that seen in the

vmPFC/mOFC and precedes it in time (Strait et al., 2015; Yun

et al., 2020). So far, however, at least within the DA midbrain,

such activity has been recorded in very simple situations inwhich

monkeys are presented with a single opportunity and the deci-

sion is whether or not to engage with that option rather than a

process of comparison between two or more options. It is

possible that representations in the vmPFC/mOFC as opposed

to the DA midbrain are especially important when the decision

to bemade is new and linked to inferential processes in the adja-

cent amFC.

Perigenual cingulate cortex and cost-benefit arbitration
While the amFC encodes task structure even when this does not

involve value or reward, a region anterior to the genu of the

corpus callosum and slightly posterior to amFC, the perigenual

anterior cingulate cortex or pgACC, integrates costs and bene-

fits to evaluate the overall value of initiating an action. Amemori
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Figure 6. pgACC and the costs and benefits of initiating a course of action
(A) pgACC evaluates the cost and benefits of initiating a course of action. (Left) Neurons in macaque pgACC reflect the benefit (juice) and cost (air puff) of taking a
choice. Microstimulation in the area with a predominance of aversive cost-related neurons led to a change in the decision boundary for taking the action (adapted
from Amemori and Graybiel, 2012). (Center) Activity in human pgACC reflects each individual’s subjective valuation of an opportunity composed of both a
monetary reward and a temporal delay cost (adapted fromKable andGlimcher, 2007). (Right) Rats decided between pursuing a large food reward associated with
an aversive cost (a bright light) or a small reward in a less aversive, darker environment. Optogenetic activation and inhibition of a pathway from the pgACC-like PL
area to inhibitory interneurons in the striosomes of the striatum led to decrements and increments in high-value/high-cost choices, respectively (adapted from
Friedman et al., 2015).
(B) pgACC is related to action initiation. (Left) In humans, individual variation in pgACC activity is predictive of whether or not a choice will be pursued (adapted
from Kolling et al., 2018). (Center) Activity in human pgACC reflects the relative average preference for a default choice type; for example, people may be a priori
more likely to accept website cookies than to manage them or to take a sweet rather than a savory snack regardless of the specific sweet and savory snacks they
are offered (adapted from Lopez-Persem et al., 2016). (Right) pgACC tracks expected performance on a perceptual task, and this effect scales with subjective
decision confidence (adapted from Bang and Fleming, 2018).
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and colleagues (Amemori and Graybiel, 2012) recorded neural

activity from the pgACC of macaque monkeys while they evalu-

ated cues that were simultaneously associated with varying

levels of air-puff (cost) and liquid food reward (benefit). When

monkeys chose to approach the cue, they received both the

associated air-puff and liquid reward; when they avoided the

cue, they received neither outcome (Figure 6A, left). The mon-
keys’ choices indicated that they were influenced by both the

cost and benefit associated with an offer. Simultaneous record-

ings from pgACC neurons revealed different activity but, in sum-

mary, firing rates were best explained as reflecting the overall

utility of the chosen outcome. In other words, firing rates showed

an integration across the cost and benefit dimensions of the cue.

Furthermore, microstimulation of the pgACC produced changes
Neuron 110, September 7, 2022 17
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in the animals’ cost-benefit decisions such that they were more

likely, on average, to avoid rather than approach the cue. Impor-

tantly, microstimulation was most effective on trials where the

choice required a trade-off between costs and benefits, and

thus when the positive and negative motivational aspects of

the cue competed to drive behavior in opposite directions.

The idea that the pgACC is crucial for integrating costs and

benefits to decide whether it is worth initiating an action is

consistent with work in other species, including humans and ro-

dents, all of whom share this agranular part of the PFC. In hu-

mans, the pgACCBOLD signals were shown to reflect integrated

cost-benefit value in a delay-based decision-making task, where

a larger delayed reward offer could be accepted or foregone for a

small reward received immediately (Kable and Glimcher, 2007).

In this task, the pgACC BOLD was better explained by the inte-

grated subjective value of the delayed option than by the reward

amount or the delay considered separately (Figure 6A, center).

Consistent with this, causal evidence from lesion experiments

in rats shows that cost-benefit integrations are impaired

following lesions that include the pgACC. Walton et al. (2002)

trained rats to choose between two arms of a T-maze, one of

which was associated with a higher reward and a cost, climbing

a barrier, while the other resulted in a smaller reward but did not

require climbing a barrier. Although rewards in the high-effort

arm could be adjusted such that healthy rats generally preferred

the high-effort/high-reward arm, following a lesion that included

pgACC, the same rats were less likely to choose the high-effort

arm, even though they had no problem with climbing a barrier

or with choosing the high-reward option when both arms of the

T-maze included a barrier (Walton et al., 2002).

In work by Friedman et al. (2015), the trade-off between costs

and benefits was shown to rely on the pgACC’s projections to

specialized regions in the striatum, the striosome (a component

of the subcortical circuit for reward-guided behavior illustrated in

Figure 2A). Friedman et al. optogenetically targeted pgACC cells

projecting to the striosome in amouse T-maze task like that used

by Walton and colleagues, except that the cost in this task was

the overcoming of the mice’s instinctual aversion to a bright light

instead of a barrier (Figure 6A, right). Friedman and colleagues

found that inhibition and excitation of the pgACC-striosome

pathway induced shifts in mice behavior, leading to an increase

or decrease in choosing the high-cost/high-reward option,

respectively. This effect was pathway-specific and specific to

the cost-benefit condition and thus, situations where the net

outcome entailedmotivationally conflicting positive and negative

components that had to be integrated to make a choice. It is

notable that in primates too, the pgACC is very unusual in having

a projection to the striosome; within the frontal cortex, only the

pgACC and a pOFC region, on the border with the insula, project

to the striosome (Eblen and Graybiel, 1995).

Whether the precise type of cost determines pgACC’s involve-

ment in decision-making remains to be clarified. In the above, we

have discussed work linking the pgACC to action initiation and

cost-benefit integration across a wide range of costs: aversive

bright lights (Friedman et al., 2015) and air-puffs (Amemori and

Graybiel, 2012), effort costs of climbing a barrier (Walton et al.,

2002), as well as delays (Kable and Glimcher, 2007). By contrast,

computations reflecting the direct comparison of effort- and
18 Neuron 110, September 7, 2022
reward-linked choice options have been associated with a

more dorsal posterior cingulate area in humans (Klein-Fl€ugge

et al., 2016), and the processing of different types of costs oc-

curs in dissociable neural circuits, some of which are distinct

from the pgACC (Bonnelle et al., 2016; Burke et al., 2013; Crox-

son et al., 2009; Kennerley et al., 2009; Kurniawan et al., 2013;

Prévost et al., 2010; Rudebeck et al., 2006; Scholl et al., 2015;

Walton et al., 2003). Although specific types of costsmay be pro-

cessed in separate subregions of the PFC, the pgACC seems to

be crucial for integrating the motivational value of an outcome

across costs and benefits to initiate or avoid initiating an

approach behavior (Figure 6B). In ecological environments

where opportunities typically arise sequentially, foraging animals

frequently encounter this type of decision about whether to

engage with a particular opportunity, given its costs and bene-

fits. In laboratory-based tasks for humans that capture aspects

of such scenarios (Figure 6B, left), individual variation in pgACC

activity and pgACC connectivity with striosome-rich parts of the

striatum predicts individual variation in whether behavior will be

determined by the potential benefits that might ensue from the

course of action, despite increasing costs, and thus how likely

participants are to proceed with taking the course of action (Kol-

ling et al., 2012, 2018). The pgACC’s anatomical position and

connections to regions beyond the striosome, such as with the

subgenual ACC, amygdala, habenula, neuromodulatory sys-

tems, and periaqueductal gray (An et al., 1998; Chiba et al.,

2001), place it in an ideal position to provide motivational regula-

tion of the initiation of actions, perhaps especially approach and

avoidance choices (Khalighinejad et al., 2020a, 2020b, 2021). In

humans, pgACC activity reflects the value of default options that

people are most likely to go ahead and choose (Figure 6B, cen-

ter) (Lopez-Persem et al., 2016). When the pgACC is absent or

not providing an input to the striosomes, then animals still initiate

actions, but they do not always initiate them in the situations in

which they had judged them to be worthwhile in the control con-

dition. Although the subcortical circuitry that the pgACC projects

to is sufficient for action initiation, it may not be sufficient for

determining when the balance of costs and benefits suggests

it is best to initiate action.

In order to decide whether to engage with an opportunity, it is

important to track the success of recent engagements with op-

portunities or, in other words, to track one’s own recent perfor-

mance (Figure 6B, right). In humans, the pgACC carries signals

consistent with the monitoring of one’s own performance over

both shorter andmore extended time frames (Bang and Fleming,

2018; Wittmann et al., 2016b). For example, Wittmann and col-

leagues reported that pgACC activity reflected the feedback hu-

man participants received about their performance levels on a

variety of arbitrary games, and it predicted the influence that

the feedback would have on the participants’ estimations of their

ability levels. One recent hypothesis is that this type of self-

awareness may be altered in mood and anxiety disorders known

to implicate the pgACC (Amemori et al., 2021).

The pgACC area that we discuss in this section is close to the

amFC and vmPFC; determining the precise border in relation to

landmarks such as the cingulate sulcus is important but still a

matter of debate. Moreover, it is possible that these regions

co-activate when multidimensional features need to be
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estimates are also influenced by the performances of the people around them. In a complementary fashion, people’s estimates of others’ abilities are also
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(Center) The direction of self-other-mergence effects depends on context (cooperation versus competition). For example, a good partner (high other-perfor-
mance) boosts self-value in cooperation but diminishes self-value in competition (error bars denote SEMacross participants). (Right) Although pgACC tracks their
own performance levels (see also Figure 6B), dmPFC tracks both the influence that other players have on the self-performance estimate and the estimate that the
self’s own performance has on estimates of the other players (adapted from Wittmann et al., 2016b, 2018, 2021).
(B) When one monkey watches another monkey in order to work out which choice is the better one to take, neural activity in dmPFC tracks the partner monkey’s
actions and distinguishes between situations when the partner makes erroneous versus correct actions, allowing the observing animal to learn which actions not
to repeat (adapted from Yoshida et al., 2011, 2012).
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integrated in order to derive a choice value estimate (Bongioanni

et al., 2021), and of course all these areas and the dACCmight be

expected to interact with one another and with areas beyond the

frontal cortex (Klein et al., 2017; Korn and Bach, 2018, 2019; Ma-

ier et al., 2015). However, when this integration concerns more

abstract features and inferential processes, the peak is more

anterior (in the amFC), but when the integration is between costs

and benefits relating to a specific action that might or might not

be taken, the peak is more posterior (in the pgACC) (Amemori

and Graybiel, 2012; Khalighinejad et al., 2020a). Other studies

and reviews also confirm a functional difference between the

pgACC and more anterior brain areas (Grabenhorst and

Rolls, 2011).

Dorsomedial frontal cortex and the organization of
interpersonal relationships
So far, we have seen that activity in the amFC encodes the struc-

ture and organization of the task environment. Alongside their

ability to learn about a multitude of arbitrary task environments,

humans and many other primates spend a large part of their

time navigating one particular type of environment—the social
environment. The most dorsal part of medial frontal cortex—

the dmPFC—may have a specialized role in encoding key fea-

tures of the structure of the social environment and the position

of the decision maker within this social environment.

Social environments share many features with other arbitrary

task environments. The diverse and ever-changing patterns of

the social structures in which humans dwell attest to their arbi-

trariness. However, at the same time, there are also features of

social environments, such as competition and cooperation,

which are consistently present. Competition and cooperation

have an important impact on the individual animal’s or person’s

fitness, health, and longevity. For example, in macaques,

competition and collaboration are important predictors of social

dominance and, in turn, these are predictors of breeding suc-

cess (Sch€ulke et al., 2010). In humans, loneliness—social isola-

tion and absence of cooperation—has amajor impact onmortal-

ity (Holt-Lunstad et al., 2010, 2015).

Patterns of competition and collaboration are rarely static for

long. Despite this temporal complexity, an important feature of

many social environments is that, regardless of their arbitrari-

ness, the position of the self within the environment is a key
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anchor or origin for the task space. Wittmann and colleagues

(Wittmann et al., 2016b, 2021) investigated how changing pat-

terns of competition and cooperation between participant and

other pre-programmed ‘‘players’’ are tracked over time during

a series of simple games. On each trial, participants performed

a simple task and received feedback about how well they and

two other players had done. On some trials the participants co-

operated with one of the other players—the sum of their perfor-

mances determined a payoff. On other trials, however, they

competed—now the differences in their performances deter-

mined payoff. Not surprisingly, the participants’ assessments

of their own performances reflected the feedback they received

about their performances (Figure 7A, left and center). Moreover,

as noted above, such feedback was associated with pgACC ac-

tivity and individual variation in its impact on the pgACC was

associated with individual variation in the impact it had on self-

assessment.

Their evaluations of themselves, however, also varied as a

function of the other players’ performances. When they cooper-

ated with good players, they rated their own performances as

stronger and when they competed with good players, they rated

their own performances as weaker, and vice versa for weak

players (Figure 7A, left and center). Wittmann and colleagues

called this phenomenon self-other mergence and found that it

was dependent on the dmPFC; activity there tracked the perfor-

mance of the other player and predicted its impact on self-per-

formance estimates. In addition, it had a complementary effect;

dmPFC activity also tracked self-performance and the impact

that one’s own performance had on the estimation of the other

player (Figure 7A, right). However, self-other mergence is not a
20 Neuron 110, September 7, 2022
simple consequence of dmPFC activity; when the dmPFC is dis-

rupted by transcranial magnetic stimulation (TMS) then self-

other mergence is augmented, even if its correlation with neural

activity is abolished (Wittmann et al., 2021). This pattern of

change suggests that the dmPFC may be critical for disentan-

gling and tracking what each agent is doing. When this is disrup-

ted by dmPFC TMS, then people appear to track the aggregate

consequence of the competitive or cooperative interaction at the

expense of the individual performances.

In monkeys, dmPFC activity also tracks the performances of

other individuals; dmPFC activity reflects both the choices that

other animals make and the rewards that they receive for mak-

ing them (Ninomiya et al., 2020; Noritake et al., 2018; Yoshida

et al., 2011, 2012; Figure 7B). In a manner reminiscent of hu-

man self-other mergence, the social context has an impact

on the way in which macaques evaluate the choices that are

available and the consequences that will follow. For example,

anticipatory licking measures suggest macaques value stimuli

more if they are associated with more reward for the macaque

itself, but they value stimuli less if they are associated with

more reward for other animals. Although some dmPFC neurons

track a stimulus’ association with reward for the individual itself,

others track the stimulus’ association with reward for the other

monkey. Such activity in dmPFC neurons precedes activity in

other brain structures, such as the DA midbrain, which reflects

the monkey’s evaluation of its own reward prospects given the

context of the social environment (Noritake et al., 2018). In the

context of competitive games, activity in the dmPFC also re-

flects the monkeys’ adoption of response selection strategies

that mean that each decision they take is difficult to predict
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from previous decisions (Seo et al., 2014). As a result, the mon-

key’s decisions are difficult for other individuals in the group to

predict and pre-empt. Recording of human dmPFC neurons

suggest that it not only tracks the behaviors of other individuals

but also, at least in humans, the beliefs of other individuals (Ja-

mali et al., 2021).

It is difficult to determine the degree to which the dmPFC is

exclusively concerned with social structure and social deci-

sion-making. On the one hand, the amFC activity that is recorded

in tasks lacking any simple social component extends into the

dmPFC (Barron et al., 2013; Constantinescu et al., 2016). On

the other hand, social tasks that involve tracking other individ-

uals’ thoughts or behaviors typically activate the dmPFC only

(Behrens et al., 2008; Frith and Frith, 2012; Konovalov et al.,

2021; Wittmann et al., 2016b, 2021).

SUMMARY

Neural systems that represent the value of the environment exist

inmany vertebrates. An extended subcortical circuit spanning the

striatum, midbrain, and brainstem nuclei of mammals corre-

sponds to these ancient systems. In addition, however, mammals

possess several frontal cortical regions concerned with guidance

of decision-making and adaptive, flexible behavior. Although

these frontal systems interact extensively with these subcortical

circuits, they make specific contributions to behavior and also in-

fluence behavior via other cortical routes. Some areas such as the

ACC, which is present in a broad range of mammals, represent

the distribution of opportunities in an environment over space

and time, whereas other brain regions such as amFC and dmPFC

have roles in representing structural associations and causal links

between environmental features, including aspects of the social

environment (Figure 8). Although the origins of these areas and

their functions are traceable to rodents, they are especially prom-

inent in primates. They make it possible not just to select choices

on the basis of past experience of identical situations, but tomake

inferences to guide decisions in new scenarios.
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