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Abstract: Nonlinear model predictive control (NMPC) strategies based on linearization about
predicted system trajectories enable the online NMPC optimization to be performed by a
sequence of convex optimization problems. The approach relies on bounds on linearization errors
in order to ensure constraint satisfaction and convergence of the performance index during the
optimization at each sampling instant and along closed loop system trajectories. This paper
proposes bounds based on robust tubes constructed around predicted trajectories. To ensure
local optimality, the bounds are non-conservative for the case of zero linearization error, which
requires the tube cross-sections to vary along predicted trajectories. The feasibility, stability
and convergence properties of the algorithm are established without the need for predictions to
satisfy local optimality criteria. The strategy is applied to a simulated fixed-rotor helicopter.
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1. INTRODUCTION

The online computation that must be performed in order
to implement nonlinear model predictive control strategies
remains a significant barrier to their application to real
processes. The literature on numerical methods for non-
linear MPC can be broadly divided into methods that at-
tempt to exploit the optimal control structure of the MPC
optimization, and methods that aim to solve sequences of
smaller problems (see e.g. the survey in Diehl et al., 2009).
This paper is concerned with the latter approach, which is
particularly attractive for MPC since the online optimiza-
tion problems solved at successive sampling instants are
often closely related. A number of nonlinear programming
(NLP) approaches based on perturbing previously com-
puted trajectories have therefore been developed specifi-
cally for MPC, for example De Oliveira and Biegler (1995);
Lee et al. (2002); Diehl et al. (2005a); Ohtsuka (2004).

Methods based on linearizing nonlinear model dynam-
ics around previously predicted trajectories (known as
Newton-type methods (De Oliveira and Biegler, 1995)),
are arguably the most successful of the perturbation-
based approaches. These have the advantages that the
optimization can be split into convex subproblems that
are variants of linear MPC, which are therefore efficiently
solvable, and furthermore they benefit from the robustness
properties and robust techniques of linear MPC strate-
gies (e.g. Diehl et al., 2005b). However, to ensure stability
and convergence of these approaches, it becomes necessary
to limit the perturbations to regions within which the
model approximation is meaningful.

In this context, Zavala and Biegler (2009) proposes a
method for bounding the effects of model approximations
through a NLP sensitivity analysis based on the Lagrange

multipliers for the constrained optimization problem. We
consider an alternative approach, which was developed
in Lee et al. (2002) and Cannon et al. (2009), of bounding
linearization errors by constructing tubes containing the
predicted trajectories. Tubes provide a computationally
convenient means of bounding the effects of uncertainty
over several time-steps through a sequence of single-step
conditions (Mayne et al., 2005). This approach enables a
feasible solution estimate to be retained at every stage
of the optimization, thus allowing the optimization to
be terminated early before convergence to the solution
without compromising closed loop stability.

To ensure closed loop stability given that the predicted
trajectories are only feasible at each sampling instant (and
not necessarily optimal for the nonlinear MPC problem),
the error bounds that are used to bound the predicted
cost and robustify constraints must be non-conservative
for the case of zero perturbation. This requires variable
tubes, and although Lee et al. (2002) proposed to construct
and optimize the tubes simultaneously with the MPC
optimization in a single linear program, the computation of
the tubes involved large numbers of optimization variables.
This was largely due to the use of polytopic tubes, and, to
obtain more efficient formulation we propose instead to use
ellipsoidal tube cross-sections in the current paper, making
use of recently developed techniques (Cannon et al., 2010)
for constructing ellipsoidal tube cross-sections online.

2. PROBLEM FORMULATION

Consider the nonlinear system with model
xk+1 = f(xk, uk), (1)

where x ∈ Rn and u ∈ Rm are respectively the state and
input, f is continuous and differentiable for all (x, u) in an
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operating region, and f(0, 0) = 0. The control problem is
optimal regulation with respect to the quadratic cost:

∞∑
k=0

(
‖xk‖2Q + ‖uk‖2R

)
(2)

(‖x‖2Q = xTQx), subject to linear constraints of the form:
Fxk +Guk ≤ h, k = 0, 1, . . . (3)

for F ∈ Rnc×n, G ∈ Rnc×m. The state xk is assumed to
be measured at each time k.

The proposed NMPC strategy takes a feasible but subop-
timal trajectory for the future predicted states and inputs
and, by successively linearizing the nonlinear plant model
about predicted trajectories, computes locally optimal pre-
dicted trajectories which are used to define a receding hori-
zon control law. Let {(x0

k+i|k, u
0
k+i|k), i = 0, . . . , N − 1} de-

note state and input trajectories predicted at time k over
an N -step horizon according to the model (1)

x0
k+i+1|k = f(x0

k+i|k, u
0
k+i|k)

for i = 0, . . . , N − 1, with x0
k|k = xk. Also let

xk+i|k = x0
k+i|k + xδk+i|k, uk+i|k = u0

k+i|k + uδk+i|k,

where {(xδk+i|k, u
δ
k+i|k), i = 0, . . . , N − 1} satisfy

x0
k+i+1|k + xδk+i+1|k = f(x0

k+i|k + xδk+i|k, u
0
k+i|k + uδk+i|k)

for i = 0, . . . , N − 1, with xδk|k = 0. Parameterizing uδk as
the sum of a linear feedback law and a feedforward term v,

uδk+i|k = Kk+i|kx
δ
k+i|k + vk+i|k, (4)

the NMPC law is determined by minimizing at each time
k an upper bound on the cost (2) over {vk+i|k, i =
0, . . . , N − 1} , subject to constraints (3).

The cost bound and constraints are computed using a
time-varying linear model:

xδk+i+1|k = Φk+i|kxδk+i|k +Bk+i|kvk+i|k + wk+i|k (5)

which is derived by linearizing the nonlinear model (1)
about {x0

k+i|k, u
0
k+i|k}:

Φk+i|k = Ak+i|k +Bk+i|kKk+i|k

Ak+i|k =
∂f

∂x

∣∣∣
(x0

k+i|k,u
0
k+i|k)

, Bk+i|k =
∂f

∂u

∣∣∣
(x0

k+i|k,u
0
k+i|k)

and where wk+i|k is the linearization error. The predictions
for i ≥ N steps ahead are determined from the lineariza-
tion of (1) about the target set-point (x, u) = (0, 0), and
a pre-determined linear feedback law K̂x:

xk+i+1|k = Φ̂xk+i|k + ŵk+i|k (6)

uk+i|k = K̂xk+i|k (7)

for i = N,N + 1, . . ., where Φ̂ = Â+ B̂K̂, with

Â =
∂f

∂x

∣∣∣
(0,0)

, B̂ =
∂f

∂u

∣∣∣
(0,0)

.

Bounds on the linearization errors w in (5) and ŵ in (6)
can be used to bound the predicted cost and to determine
robustly feasible constraints. Since f is continuous and
differentiable, it is easy to show (e.g. using the mean-value
theorem, Boyd et al., 1994) that there necessarily exists a
convex set Ω ⊂ Rn×(n+m) such that wk ∈ Ω[xδk

T uδk
T ]T . In

the following development we assume that Ω is polytopic
with vertices [Cj Dj ], j = 1, . . . , p:

wk ∈ Co {Cjxδk +Dju
δ
k, j = 1, . . . , p} (8)

(where Co denotes the convex hull). Similarly the errors
ŵk+i|k in the approximate linear dynamics (6) employed
for i ≥ N necessarily lie within a convex set:

ŵk ∈ Co {Ĉjxk + D̂juk, j = 1, . . . , p}. (9)

Remark 1. If f satisfies a Lipschitz condition of the form
|f(x0 + xδ, u0 + uδ)− f(x0, u0)| ≤ Γx|xδ|+ Γu|uδ| ,

then [Cj Dj ] = [Γx Γu]Sj , where {Sj , j = 1, . . . , 2n+m}
denotes the collection of diagonal matrices with diagonal
elements equal to ±1.

3. TUBES FOR LINEARIZATION ERRORS

To bound the effects of linearization errors on predicted
trajectories, we propose to construct, using one-step-ahead
predictions, a tube containing the component of the pre-
dicted state that arises due to linearization errors. The
tube is used to derive bounds on the cost and constraints
in the NMPC optimization, and to ensure that these are
not conservative when vk+i|k = 0 for all i (and hence also
xδk+i|k = 0 for all i), the scaling of the tube cross-section is
retained as a variable in the NMPC online optimization.

To simplify notation, we split the prediction of xδk+i|k into
a nominal component zk+i|k and a component ek+i|k which
depends only on the linearization errors wk+i|k:

xδk+i|k = zk+i|k + ek+i|k (10a)
zk+i+1|k = Φk+i|kzk+i|k +Bk+i|kvk+i|k (10b)
ek+i+1|k = Φk+i|kek+i|k + wk+i|k (10c)

with zk|k = ek|k = 0. In this section we describe a method
of determining tubes with ellipsoidal cross-sections:

ek+i|k ∈ E(Vk+i|k, β2
k+i|k), i = 1, . . . , N (11a)

xk+i|k ∈ E(V̂ , 1), i ≥ N (11b)
where E(P, ρ), for P � 0, ρ > 0, denotes the ellipsoidal set
E(P, ρ) = {x : xTPx ≤ ρ}. Ellipsoidal sets are chosen (over
polyhedral sets for example) for the definition of the tube
cross-sections since the scalings {βk+i|k, i = 1, . . . , N} can
be conveniently incorporated into an online optimization
expressed as a second order cone program.

In (11b), E(V̂ , 1) is a terminal constraint set which must
clearly be invariant under (6)-(7), requiring that

Φ̂x+ ŵ ∈ E(V̂ , 1), ∀ŵ ∈ Co {(Ĉj+D̂jK̂)x}, ∀x ∈ E(V̂ , 1).
(12)

We also require E(V̂ , 1) to be feasible with respect to (3)
in order that input/state constraints are satisfied over an
infinite prediction horizon, i.e.

(F +GK̂)x ≤ h, ∀x ∈ E(V̂ , 1). (13)

The matrices K̂ and V̂ can be computed offline so as to
maximize the terminal set E(V̂ , 1) (hence maximizing the
set of feasible initial conditions) subject to (12)-(13) by
solving a semidefinite program (SDP). For example, if Ŝ, Ŷ
are the solutions of the following SDP:
max
Ŝ,Ŷ

det(Ŝ)

s.t.
[
Ŝ (Â+ Ĉj)Ŝ + (B̂ + D̂j)Ŷ
∗ Ŝ

]
� 0, j = 1, . . . , p[

h2
q FqŜ +GqŶ

∗ Ŝ

]
� 0, q = 1, . . . , nc

(14)
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(where [·]q denotes the qth row of [·]), then the volume of
E(V̂ , 1) maximized with V̂ = Ŝ−1 and K̂ = Ŷ Ŝ−1 (see e.g.
Kothare et al., 1996, for details).

Two procedures for ensuring the membership condition
(11a) are described below. In the first approach, the
feedback gains Kk+i|k and matrices Vk+i|k specifying the
shapes of tube cross-sections are re-computed online via
a sequence of semidefinite programs each time the lin-
earization trajectory {(x0

k+i|k, u
0
k+i|k), i = 0, . . . , N − 1}

is updated. The second approach achieves reduced online
computation by fixing Kk+i|k and Vk+i|k offline. Both pro-
cedures are based on the recursive membership condition,

Φk+i|ke+ w ∈ E(Vk+i+1|k, β
2
k+i+1|k) (15)

for all w ∈ Co {Cjxδk+i|k + Dju
δ
k+i|k, j = 1, . . . , p}, for

all e ∈ E(Vk+i|k, β2
k+i|k). The terminal constraint that

xk+N |k ∈ E(V̂ , 1) is similarly ensured by the condition

x0
k+N |k + zk+N |k + e ∈ E(V̂ , 1) (16)

for all e ∈ E(Vk+N |k, β2
k+N |k).

3.1 Time-varying feedback gains and tube cross-sections

Using (4) and (10a), and applying the triangle inequality,
a sufficient condition to ensure the recursive membership
condition of (15) is given by
β′ ≥ ‖(Cj+DjK)z+Djv‖V ′+ max

e∈E(V,β2)
‖(Φ+Cj+DjK)e‖V ′

(17)
for j = 1, . . . , p, where (V ′, β′) = (Vk+i+1|k, βk+i+1|k) and
subscripts k+ i|k have been omitted to simplify notation.

Lemma 2. Condition (17) is equivalent to
V � (Φ + Cj +DjK)TV ′(Φ + Cj +DjK) (18a)
β′ ≥ ‖(Cj +DjK)z +Djv‖V ′ + β (18b)

for j = 1, . . . , p.

Proof: This follows from squaring both sides of (17) and
applying the S-procedure to the resulting condition. �

Using the triangle inequality to derive (17) from (15) would
be non-conservative (i.e. (17) would also be necessary for
(15)) if V = (Φ + Cj + DjK)TV ′(Φ + Cj + DjK), since
then the direction of the maximizing e in (17) would be
arbitrary. But (17) must hold for all j = 1, . . . , p, so this
is clearly not possible in general. However, to reduce the
degree of conservativeness in (17), it is desirable to choose
K and the shape of E(V, β2) so that the LMI (18a) is
tight. For given Vk+i+1|k, this can be achieved for example
by solving the following SDP in variables S, Y, γ:
max
S,Y,γ

γ

s.t. S � γI,[
S [(Ak+i|k+Cj)S + (Bk+i|k+Dj)Y ]T

∗ V −1
k+i+1|k

]
� 0, j = 1, . . . , p

(19)
and then setting Vk+i|k = S−1, Kk+i|k = Y S−1.

By a similar argument to that used in Lemma 2, if
Vk+N |k = V̂ is assumed, then the terminal condition (16)
is equivalent to

1 ≥ ‖x0
k+N |k + zk+N |k‖V̂ + βk+N |k.

The preceding discussion suggests a method of defining
Vk+i|k and Kk+i|k for i = 1, . . . , N − 1 so as to mini-
mize the degree of conservativeness of the bound (17),
by solving the N − 1 SDP problems given by (19) for
i = N − 1, N − 2, . . . , 1, and initialized with Vk+N |k = V̂ .

3.2 Fixed feedback gains and tube cross-sections

In order to optimize Vk+i|k and Kk+i|k for i = 1, . . . , N−1,
the sequence of SDP’s described in section 3.1 must be
solved after each update of the trajectory {(x0

k+i|k, u
0
k+i|k)}

about which the linearization of the nonlinear model is
performed. By minimizing the degree of conservativeness
of the conditions that are used to invoke the recursive
membership condition in (17), this optimization procedure
increases the feasible initial condition sets of the MPC
law described in section 5, and is also likely to increase
the convergence rate of the associated online optimization.
However it has to be performed online and may therefore
be computationally intractable for large systems and prob-
lems that require fast sampling.

We therefore propose an alternative approach in which
much of the computation involved in invoking the member-
ship condition (17) is performed offline. In this approach
we set Vk+i|k and Kk+i|k equal to the terminal values:

Vk+i|k = V̂ , Kk+i|k = K̂, i = 1, . . . , N − 1. (20)

Lemma 3. A sufficient condition for (17) is

β′ ≥ ‖(Cj +DjK̂)z +Djv‖V̂
+ β

(
‖ΦV̂ −1/2‖V̂ + ‖(Cj +DjK̂)V̂ −1/2‖V̂

)
(21)

for j = 1, . . . , p.

Proof: The bound in (21) is obtained by replacing the
maximization on the RHS of (17) by the associated in-
duced norm and then applying the triangle inequality. �

Remark 4. The factor ‖(Cj + DjK̂)V̂ −1/2‖V̂ in (21) can
be computed for j = 1, . . . , p offline, leaving only the
determination of ‖Φk+i|kV̂ −1/2‖V̂ for i = 1, . . . , N − 1
(which requires finding the maximum eigenvalues of N −1
matrices) to be performed online.

Although the use of the triangle inequality in deriving
(21) incurs a degree of conservativeness, the analysis of
section 5 shows that this does not affect the stability
properties of the resulting MPC law.

4. COST AND CONSTRAINT BOUNDS

The tubes constructed in section 3 to bound linearization
errors can be used to determine an upper bound on the
predicted cost-to-go function, and also to construct robust
constraints that ensure that predicted states and inputs
satisfy (3) over an infinite prediction horizon.

Using the dual mode prediction paradigm (Mayne et al.,
2000), we define a performance index as a cost-to-go which
is computed explicitly only for the first N stages:

J(xk,uk) =
N−1∑
i=0

(‖xk+i|k‖2Q + ‖uk+i|k‖2R) + ‖xk+N |k‖2P

(22)
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where uk = {uk+i|k, i = 0, . . . , N − 1} is a predicted
input trajectory and xk = {xk+i|k, i = 0, . . . , N} is the
corresponding sequence of states satisfying the nonlinear
model (1). The weight P on the terminal state is computed
so as to bound the cost-to-go over prediction times i ≥ N :

∞∑
i=N

(‖xk+i|k‖2Q + ‖uk+i|k‖2R) ≤ ‖xk+N |k‖2P .

Therefore P can be optimized by solving the SDP
min
P

tr(P )

s.t. P − (Φ̂ + Ĉj + D̂jK̂)TP (Φ̂ + Ĉj + D̂jK̂)

� Q+ K̂TRK̂, j = 1, . . . , p
(23)

which is performed offline.

In order to define a convex MPC optimization to be
performed online, we minimize a bound on J(x,u) which
is derived from bounds on the individual terms in (22).
Define lx,i and lu,i for i = 0, . . . , N − 1 by

lx,i=‖x0
k+i|k + zk+i|k‖Q + βk+i|k‖V

−1/2
k+i|k‖Q

lu,i=‖u0
k+i|k+Kk+i|kzk+i|k+vk+i|k‖R + βk+i|k‖KV

−1/2
k+i|k‖R

and let
lx,N = ‖x0

k+N |k + zk+N |k‖P + βk+N |k‖V̂ −1/2‖P .
Consider the cost J̄(vk,βk,x0

k,u
0
k), which is defined for

given sequences vk = {vk+i|k, i = 0, . . . , N − 1} and βk =
{βk+i|k, i = 0, . . . , N} by

J̄(vk,βk,x
0
k,u

0
k) =

N−1∑
i=0

(l2x,i + l2u,i) + l2x,N . (24)

Lemma 5. Given the feedback law (4) and the state de-
composition (10a), we have

J(xk,uk) ≤ J̄(vk,βk,x
0
k,u

0
k) (25)

for any xk and βk satisfying the membership condi-
tions (11a-b).

Proof: The state decomposition (10a) and membership
conditions (11a) give x = x0+z+e and e ∈ E(V, β2) (where
the subscripts k + i|k have been omitted for simplicity).
The triangle inequality therefore implies the bound

‖x‖Q ≤ ‖x0 + z‖Q + β‖V −1/2‖Q.
Similarly, (10a), (11a), and the predicted feedback law (4)
give u = u0+K(z+e)+v, so the triangle inequality implies

‖u‖R ≤ ‖u0 +Kz + v‖R + β‖KV −1/2‖R. �

The constraints (3) can be imposed on the predicted
state and input trajectories through constraints applied
to zk+i|k, the nominal component of predicted trajectories,
using the following result.

Lemma 6. Given the feedback law (4) and state decompo-
sition (10a), sufficient conditions for Fxk+i|k+Guk+i|k ≤ h
are

(Fq +GqKk+i|k)zk+i|k +Gqvk+i|k
+ βk+i|k‖(Fq +GqKk+i|k)‖V −1

k+i|k

≤ hq − (Fqx0
k+i|k +Gqu

0
k+i|k) (26)

for q = 1, . . . , nc, for any βk+i|k such that the membership
condition (11a) holds.

Proof: The bound in (26) follows from
max

e∈E(V,β2)
|(Fq +GqK)e| = β‖(Fq +GqK)‖V −1

for any row q = 1, . . . , nc of F,G. �

The procedure described in section 5 splits the online MPC
optimization into a sequence of iterations, each of which
consists of minimizing the objective J̄(vk,βk,x0

k,u
0
k) over

vk,βk subject to the robust constraints of Lemma 6.
Combining this with the conditions defining the ellipsoidal
tubes derived in section 3, the resulting optimization can
be expressed as follows:

(v∗k,β
∗
k) = min

vk,βk

N−1∑
i=0

(l2x,i + l2u,i) + l2x,N (27a)

subject to
zk+i+1|k = Φk+i|kzk+i|k +Bk+i|kvk+i|k (27b)
βk+i+1|k ≥ λi,jβk+i|k

+ ‖(Cj +DjKk+i|k)zk+i|k +Djvk+i|k‖Vk+i+1|k

(27c)

lx,i ≥ ‖x0
k+i|k + zk+i|k‖Q + βk+i|k‖V

−1/2
k+i|k‖Q (27d)

lu,i ≥ ‖u0
k+i|k +Kk+i|kzk+i|k + vk+i|k‖R

+ βk+i|k‖Kk+i|kV
−1/2
k+i|k‖R

(27e)
hq − (Fqx0

k+i|k +Gqu
0
k+i|k)

≥ (Fq +GqKk+i|k)zk+i|k +Gqvk+i|k
+ βk+i|k‖(Fq +GqKk+i|k)‖V −1

k+i|k

(27f)
for i = 0, . . . , N − 1, and
zk|k = 0 (27g)
βk|k = 0 (27h)

1 ≥ ‖x0
k+N |k + zk+N |k‖V̂ + βk+N |k (27i)

lx,N ≥ ‖x0
k+N |k + zk+N |k‖P + βk+N |k‖V̂ −1/2‖P . (27j)

Here λi,j = 1 if the time-varying tubes and feedback gains
of section 3.1 are employed, whereas

λi,j = ‖Φk+i|kV̂ −1/2‖V̂ + ‖(Cj +DjK̂)V̂ −1/2‖V̂
Vk+i|k = V̂ , Kk+i|k = K̂

if the approach of section 3.2 is used.

Remark 7. The optimization in (27) can be expressed as a
second-order cone program (SOCP), which is convex and
efficiently solvable (Lobo et al., 1998).

The following result shows that the cost bounds and
constraint bounds employed in (27) are non-conservative
whenever the perturbation sequence v∗k is zero.

Lemma 8. For any x0
k and u0

k satisfying (1), we have
J̄(0, 0,x0

k,u
0
k) = J(x0

k,u
0
k). (28)

Furthermore, if v∗k = 0, then β∗k = 0, and the constraints
of (27) are equivalent to

Fx0
k+i|k +Gu0

k+i|k ≤ h, i = 0, . . . , N − 1 (29a)

x0
k+N |k ∈ E(V̂ , 1). (29b)

Proof: The equality of costs in (28) follows directly
from (27d,e,j) with βk = 0. Furthermore, if v∗k = 0, then
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(27b,g) imply that zk+i|k = 0 for all i and hence β∗k = 0
due to (27c,h) and the objective (27a). The equivalence of
the constraints of (27) and (29) is then due to (27f,i). �

5. RECEDING HORIZON CONTROL LAW

This section describes the proposed MPC optimization
procedure and discusses the properties of the associated
receding horizon control law. The optimization proce-
dure computes an optimal sequence of perturbations on
a feasible predicted trajectory by solving the SOCP (27),
which is based on the Jacobian linearization about this
trajectory, then updates the feasible trajectory using the
optimal perturbations and repeats the process. Since a
feasible predicted trajectory is available at each step, the
procedure can be terminated after any chosen maximum
number of iterations (denoted Maxiters), or when the
input perturbation vector falls below any given tolerance
(denoted by solution-tolerance).

Algorithm 1. Offline: Compute V̂ , K̂ defining the termi-
nal set and feedback law by solving (14), and the terminal
cost weight P by solving (23). Find an initial trajectory
u0

0 such that u0
0,x

0
0 satisfies (29a,b).

Online: At times k = 0, 1, . . .:
(i) Set iter = 1. Given u0

k, compute x0
k satisfying (1)

with x0
k|k = xk.

(ii) Linearize the model (1) about x0
k,u

0
k to determine

Ak+i|k, Bk+i|k for i = 0, . . . , N − 1.
(iii) If time-varying feedback gains and tube shapes are

used, compute Vk+i|k and Kk+i|k by solving (19) for
i = N − 1, . . . , 1, with Vk+N |k = V̂ .

(iv) Solve (27) to determine v∗k.
(v) Compute xk,uk satisfying (1) and (4) with vk = v∗k.

(vi) If iter < Maxiters and ‖v∗k‖ ≥ solution-tolerance,
set x0

k = xk, u0
k = uk, iter := iter + 1 and return to

step (ii).
(vii) Otherwise set

u0
k+1 = {uk+1|k, . . . , uk+N−1|k, K̂xk+N |k+1} (30)

and implement uk = u0
k|k + v∗k|k.

Lemma 9. If x0
0,u

0
0 is feasible with respect to constraints

(29a,b) at time k = 0, then the SOCP (27) in step (iv) of
Algorithm 1 is feasible at each iteration and for all k ≥ 0.

Proof: By Lemma 8, if x0
k,u

0
k is feasible for (29a,b), then

(vk,βk) = (0, 0) is feasible for (27). The recursive guar-
antee of feasibility follows from Lemma 6, the tube mem-
bership conditions of section 3 and the robust invariance
of E(V̂ , 1). Specifically: by Lemmas 2, 3, and 6, the con-
straints in (27) ensure that the updated trajectory x0

k,u
0
k

computed in step (vi) and employed in the subsequent
iteration is feasible with respect to (29a,b). Similarly, the
robust invariance conditions (12)-(13) ensure the feasibil-
ity of x0

k+1,u
0
k+1 in step (i) at the following time-step. �

We show next that the iteration in steps (i)-(vi) of Al-
gorithm 1 results in a monotonically non-increasing cost
bound.

Theorem 10. Let J̄
(j)
k denote the optimal value of the

objective of (27) in step (iv) of Algorithm 1 after j
iterations at time k. Then for all j ≥ 1 we have

J̄
(j+1)
k ≤ J̄ (j)

k . (31)

Proof: Lemma 5 implies that the trajectory x0
k,u

0
k gener-

ated in step (vi) of the jth iteration of Algorithm 1 neces-
sarily satisfies J(x0

k,u
0
k) ≤ J̄ (j). But from the optimality

of J̄ (j+1) and Lemma 8 we have J̄ (j+1) ≤ J̄(0, 0,x0
k,u

0
k)

and J̄(0, 0,x0
k,u

0
k) = J(x0

k,u
0
k), so that J̄ (j+1)

k ≤ J̄ (j)
k . �

Remark 11. Since J̄k is bounded from below, and since
(31) holds with equality only if v∗k = 0 at iteration j +
1, Theorem 10 implies that the iteration of Algorithm 1
converges asymptotically as j →∞ to (v∗k,β

∗
k) = 0 at time

k. This implies convergence to a (possibly locally) optimal
point for the problem of minimizing J̄(0, 0,x0

k,u
0
k) over u0

k
subject to constraints (29a,b). Note that a minimum point
of J(x0

k,u
0
k) is necessarily also a minimum of J̄(0, 0,x0

k,u
0
k)

w.r.t. u0
k (because (v∗k,β

∗
k) = (0, 0) if u0

k is locally optimal
for J(x0

k,u
0
k) due to (28) and (25)). However a local min-

imum of J̄(0, 0,x0
k,u

0
k) may not be optimal for J(x0

k,u
0
k)

due to the piecewise-linearity of the bounds imposed on
the linearization errors. The degree of suboptimality this
causes is likely to decrease if tighter bounds, such as those
developed in section 3.1, are used to derive (27).

Theorem 12. If Q � 0 (or if R � 0 and the state xk
of (1) is observable from Q1/2xk), then x = 0 is an
asymptotically stable equilibrium of (1) under the MPC
law of Algorithm 1, with a region of attraction equal to
the set of feasible initial conditions for (29a,b).

Proof: The LMI constraint on P in (23) and (9) imply

‖x‖2P ≥ ‖x‖2Q + ‖K̂x‖2R + ‖f(x, K̂x)‖2P .
From the definition (30) of u0

k+1, it follows that the
trajectory x0

k+1,u
0
k+1 computed in step (i) of Algorithm 1

at time k + 1 satisfies
J(x0

k+1,u
0
k+1) ≤ J(xk,uk)− ‖xk‖2Q − ‖uk‖2R

where xk,uk is the trajectory computed in step (v) at
time k. Lemma 5 therefore implies
J(x0

k+1,u
0
k+1) ≤ J̄(v∗k,β

∗
k,x

0
k,u

0
k)− ‖xk‖2Q − ‖uk‖2R.

But (vk+1,βk+1) = (0, 0) is feasible for the optimization
in step (v) at time k + 1, and Lemma 8 therefore gives
J̄(v∗k,β

∗
k,x

0
k+1,u

0
k+1) ≤ J̄(v∗k,β

∗
k,x

0
k,u

0
k)−‖xk‖2Q−‖uk‖2R.

This establishes that x = 0 is stable since J̄(·, ·,x0
k+1,u

0
k+1)

is a positive definite function of xk under the assumptions
of the theorem. It also follows that

∞∑
k=0

(‖xk‖2Q + ‖uk‖2R) ≤ J̄(v∗0,β
∗
0,x

0
0,u

0
0),

which implies that (xk, uk) → (0, 0) under the conditions
of the theorem. �

Remark 13. Algorithm 1 must be initialized with a trajec-
tory that is feasible with respect to constraints (29a,b). In
practice this trajectory could be computed by modifying
Algorithm 1 to solve the following feasibility problem:
given a trajectory x0

0,u
0
0 satisfying (1), determine an op-

timal perturbation xδ0,u
δ
0 for the problem of minimizing

the maximum violation of constraints (27f,i). This could
be formulated as a SOCP problem, which, analogously to
Lemma 9 and Theorem 10, is guaranteed to give a non-
increasing bound on the maximum constraint violation.

Copyright by IFAC 212



0 2 4 6 8
−6

−4

−2

0

2

4

6

8

10

time−step  k 

in
pu

t  
u 1

 

 

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

time−step  k 

in
pu

t  
u 2

Initial u0

NLP
Alg1 3 it.
Alg1 conv.

Fig. 1. Input sequences predicted at k = 0

6. EXAMPLE

The control law of Algorithm 1 is applied to a simplified
planar model of a fixed-rotor helicopter (Lee et al., 2002):
ÿ = (u1 + g) sinα, z̈ = (u1 + g) cosα− g, α̈ = u2.

Here g is the acceleration due to gravity y, z, α represent
horizontal, vertical and angular displacement, and the
inputs u1, u2 are proportional to the net thrust and torque
acting on the aircraft. The MPC cost is defined with
Q = I, R = 10−3I, and the system has input constraints:

|u1,k| ≤ 10, |u2,k| ≤ 10. (32)
For a sampling interval of T = 0.1 s, a discrete time model
with state xk=

(
y(kT ), z(kT ), ẏ(kT ), ż(kT ), α(kT ), α̇(kT )

)
was computed online by numerical integration. The lin-
earization error bounds in (9) were computed offline using
the bounds (32) on uk and operating region constraints:

|αk| ≤ π/4, |α̇k| ≤ 2.
The offline computation of K̂, V̂ was performed by modify-
ing (14) to include a bound: maxx∈E(V̂ ,1) ‖x‖2P ≤ 10 on the
mode 2 cost. For simplicity Kk+i|k, Vk+i|k were set equal
to K̂, V̂ for all i, k, as described in section 3.2.

Figure 1 shows predicted input trajectories for horizon
N = 10, initial condition x0 = (0,−1, 0, 0,−0.5, 0), and
with the initial u0

0,x
0
0 computed as described in Re-

mark 13. Clearly Alg. 1 has not converged (with solution-
tolerance = 10−3) to the optimum solution of the under-
lying NLP (as computed by Matlab’s fmincon). Likewise,
the costs reported Table 1 show that the predicted costs
at k = 0 are 13% and 7% suboptimal for Maxiters = 1 and
3 respectively, however Alg. 1 (with one iteration) requires
only 28% of the CPU time of the NLP solver (Table 1
reports average times for the online optimization at k = 0,
implemented in Matlab on a 2.4 GHz processor). The
degree of suboptimality is however significantly reduced
by the receding horizon implementation of Alg. 1, which is
only about 5% suboptimal in closed loop operation.

J(x0,u0) CPU time J(closed loop)
Alg. 1 (Maxiters = 1) 22.89 2.89 21.14
Alg. 1 (Maxiters = 3) 21.70 6.75 20.95
NLP (fmincon) 20.26 10.14 19.97
Table 1. Predicted and closed loop costs, and CPU times

7. CONCLUSIONS AND FURTHER WORK

A nonlinear MPC algorithm, based on successive approx-
imation of an underlying NLP, is proposed for a class

of nonlinear systems. The effects of approximation errors
on predicted trajectories are bounded using tubes with
ellipsoidal cross-sections, which are optimized online si-
multaneously with the MPC cost by solving a SOCP. The
approach is shown to have a recursive guarantee of feasibil-
ity, which implies that successive iterations converge to a
minimum point of an upper bound on the cost. Asymptotic
stability of the closed loop system is established and the
optimization can be terminated early (at the expense of
suboptimality) in order to reduce computational load.

The approach suffers from the disadvantages that con-
vergence to a local optimum of the underlying NLP is
not guaranteed, and the assumed bounds on linearization
errors are linear whereas the actual error in the approxi-
mate model derived through Jacobian linearization grows
quadratically. Both problems are due to the use of linear
error bounds, and future work will focus on the use of
quadratic error bounds in the context of ellipsoidal tubes.
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