

Cell Counting using CNNs in Retrograde Neuroanatomical Tracer Data

Tisca C¹, Parker Jones O¹, Lehman J², Cottaar M¹, Basma N³, Haber SN^{2,4}, Jbabdi S¹

¹Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford; ²Department of Pharmacology and Physiology, University of Rochester; ³Department of Chemistry, Imperial College London; ⁴McLean Hospital and Harvard Medical School

Summary

Striatum

Pallidum

Amygdala

Thalamus/Epi

Diencephalon

Fibers

SN/VTA

Brain Stem

Cingulate Cortex

Other Forebrain Structures

White Matter Bundles

Non Specific Brain Stem

nonspecific forebrain

Nonspecific Forebrain

Ο

Temporal Cortex

Parietal Cortex

Basal forebrain

Bed nucleus bed nucleus Visual Cortex

fiber bundles

Frontal Cortex

PROBLEM. Building next-generation connectivity models of the macaque brain is based on a robust and quantitative analysis of histological tracer data. However, manual labelling of these datasets is not feasible.

PROPOSAL. Exploring the performance of various convolutional neural networks (CNN) architectures in automatically counting retrogradely-labelled cell bodies.
CNNs have not yet been used in the

DATASET. The world's largest collection of macaque tracers, collected over 40 years.

TRAINING AND TESTING: Training: 10,000 manuallyannotated patches, taken from 9 macaques, 10% held back for validation. **Testing: 1000** patches seen during

analysis of tracer data.

10²

training, and **1000 unseen** during training.

An example histological slide, blown up to show individual cells.

Evaluation of the performance of 7 different CNN architectures: an Alex-Net inspired CNN¹, VGG15², ResNet³, Xception⁴, DenseNet121⁵ and MobileNet versions 1⁶ and 2⁷.

Results

		Dataset seen o	during training		Dataset unseen during training					
Architecture	With data augmentation		Withc	out data entation	With data au	gmentation	Without data augmentation			
	Randomly initialised weights	ImageNet (frozen) weights	Randomly initialised weights	ImageNet (frozen) weights	Randomly initialised weights	lmageNet (frozen)	Randomly initialised weights	ImageNet (frozen)		

10

Injection sites for the Haber dataset.

	Р	К	Р	K	Р	ĸ	Р	K	Р	ĸ	Р	ĸ	Р	ĸ	Р	K
Classic CNN	85	98.8	N/A	N/A	80	99.8	N/A	N/A	91.5	40.8	N/A	N/A	90.5	85.8	N/A	N/A
VGG16	76.5	100	82.7	94	84.1	99.8	81.3	100	95.5	63.6	83.1	68.2	93.3	70.2	82.6	92.2
ResNet	83.6	99	85.7	1.2	80	100	0	0	91.1	76	100	3.4	90.8	57.2	0	0
XCeption	76.2	98.6	67	46.8	81	99.2	56.9	80.2	90	50.2	63	48.8	93	66.4	56.9	93.4
DenseNet	85.6	99	59.7	90.2	83.2	99	76.3	68.2	81.4	11.4	83.7	73.8	94.3	82	90.3	54.0
MobileNet V1	86.3	99.6	90	14.4	81.5	99.8	72	15.4	84.4	27.2	86.6	22	93.4	85.4	74.2	20.2
MobileNet V2	83.6	99.8	65	45.6	83.2	100	48.5	34.8	93.2	68.6	69.5	43.8	86.9	75.8	55.5	37.4

Introduction of an anti-aliasing layer to increase shift-invariance. This takes the form of a convolution with a blurring filter, which effectively acts as a low-pass filter. This approach was explored on the Alex-Net-inspired CNN.

Implementation	of the	anti-aliasing	filter ^{8.}
----------------	--------	---------------	----------------------

Results

	Filter number	With data au	gmentation	Without data augmentation			
		Р	R	Р	R		
Dataset seen	1	86.83	97.6	80.1	99.8		
during training	2	86.25	95.4	84.1	98.4		
	3	83.84	95.4	80.8	98.4		
Dataset unseen during training	1	93.4	39.6	91.6	58.8		
	2	94.8	48	90.9	44		
	3	94.9	48	85.7	44		

Extracted 9 statistical features related to pixel
 intensity for each 64x64 patch, for each
 individual channel.

Features: minimum, maximum, mean,
 standard deviation, median, 5th, 25th, 75th and
 95th percentile values.

Results

	Architecture	With data au	gmentation	Without data augmentation			
		Р	R	Р	R		
Dataset seen		77.1	98.8	77.9	99.9		
during training	Convnet						
Dataset unseen		92.44	85.6	89.39	91.0		
during training							

Conclusions

- Need to annotate more data and provide more comprehensive training and testing datasets.
- Need pre-trained weights on microscopy, not naturalistic, images.

References

Project Report

Medical

Council

Research

