## Commentary/Byrne & Russon: Learning by imitation Behavioral and Brain Sciences, 21, 690-691 (1998) ## Splitting, lumping, and priming Mark Gardner and Cecilia Heyes Department of Psychology, University College London, London WC1E 6BT, England, m.gardner@ucl.ac.uk c.heyes@ucl.ac.uk Abstract: Byrne & Russon's proposal that stimulus enhancement, emulation, and response facilitation should be lumped together as priming effects conceals important questions about nonimitative social learning, fails to forge a useful link between the social learning and cognitive psychological literatures, and leaves unexplained the most interesting feature of phenomena ascribed to "response facilitation." Byrne & Russon's (B&R's) imaginative target article contains both splitting and lumping proposals. The recommendation that imitative social learning should be split into two varieties (action-level and program-level imitation) has significant weaknesses, not the least of which is its complete lack of empirical support. The data reported by B&R only illustrate the claim that imitation can occur at a hierarchical program level and could be interpreted in various other ways. The mere fact that B&R can describe behaviour in terms of goals and subgoals is not evidence that the behaviour was executed under hierarchical control. In our commentary, we will concentrate on the suggestion that stimulus enhancement, emulation, and response facilitation should be lumped together as instances of priming. There are three problems with this proposal: it conceals important questions about nonimitative social learning, it fails to forge useful links between this kind of learning and the cognitive psychological literature on priming, and it leaves unexplained the most interesting feature of phenomena ascribed to "response facilitation." The first problem arises from the idiosyncratic way in which B&R characterise stimulus enhancement. They describe stimulus enhancement as if it were an associative phenomenon, in which a conditioned stimulus (CS; e.g., a location) acquires excitatory strength as a result of being observed in conjunction with an unconditioned stimulus (US; e.g., a conspecific eating). This is odd because, ever since Spence (1937) coined the term stimulus enhancement, it has been treated as a variety of single stimulus learning in which conspecific behaviour draws the observer's attention to a stimulus, but does not act as a reinforcer. Observational conditioning (Mineka et al. 1984) is the term traditionally used for learning that is thought to depend on socially mediated exposure to a CS-US relationship. Of course, B&R may use terms in whatever way they please, but putting the label stimulus enhancement on observational conditioning is likely to cause confusion among those familiar with the terms and to conceal important outstanding questions about social learning. The conventional distinction between stimulus enhancement and observational conditioning amounts to an untested hypothesis that conspecific observation can attract an animal to an object via associative and nonassociative routes. By drawing attention to the role of Pavlovian mechanisms in social learning, the term observational conditioning also raises the largely unexplored possibility that animals can learn inhibitory as well as excitatory relationships by observation (Heves 1994). The second problem arises from inconsistencies between the mechanism proposed to account for nonimitative social learning and the cognitive psychological literature on priming. According to B&R's priming account, an internal representation will be primed only if activated while a conspecific is seen to receive a reward. In contrast, neither of the main types of priming phenomena manipulated by cognitive psychologists require reward presentation. Under certain conditions, mere preexposure to a priming item can result in either short-term facilitation of responses appropriate to a different probe item (associative priming) or relatively long lasting facilitation of responses to the same probe item (repetition priming). Furthermore, the assumption that only familiar items may be primed is inconsistent with experiments indicating that priming can involve novel items (Squire 1992). This evidence undermines the only original prediction generated by B&R's account of nonimitative effects, implying instead that putative observational priming effects could produce novel behaviours. The observational priming proposal does not harness the explanatory power of cognitive psychology to make useful predictions about nonimitative social learning. The third problem is that the observational priming proposal does not adequately explain several experimental effects categorised by B&R as "response facilitation." They suggest that behavioural concordance occurred in these experiments because the observation of a conspecific making a response primed an internal representation mediating the execution of a matching response. This proposal, however, has overlooked the most interesting aspect of these effects: the information about a response available to the experimental animals during observation differed in important respects from that available to them during later execution of the same response. One respect in which observed and executed responses differ is the availability of proprioceptive information. It is unlikely that response representations code only the visual appearance of a response (and not also proprioceptive information), vet the observational priming proposal does not provide a mechanism through which the visual information available through observation of behaviour could prime response representations. A demonstration of cross-modal priming in animals would be striking because such effects do not occur equally across all sensory modulities even in adult humans (Driver & Baylis 1993). Visual information provided by observed and executed responses also differs because of the disparate viewpoints of performer and onlooker. This is easily illustrated using the example of rats tested with the bidirectional control procedure (e.g., Heves et al. 1992). These animals encounter a conspecific face-to-face while exposed to demonstrations of lateral responses. Hence a rat reproducing, for example, a left response, is presented with retinal images of its own limb movements (left translation) that are radically different from those of the limb movements of its demonstrator (right translation). Although these experiments have limitations as tests of imitation (Gardner 1997), observational priming clearly does not adequately explain behavioural concorclance in our rats. Priming is even unlikely to occur when observerdemonstrator differences in viewpoints are less marked. Visual repetition priming effects are strongly influenced by the specific appearance of the priming stimulus (Squire 1992).