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 i  g  h  l  i  g  h  t  s

Mirror  neuron  system  responsivity  is  changed  by sensorimotor  experience.
Contingent  sensorimotor  experience  is more  effective  than  non-contingent  or  signalled.
Computational  modelling  indicates  this  is  due  to  associative,  and  not  Hebbian  learning.
Associative  learning  (Rescorla–Wagner  model)  depends  on  prediction  error.
Associative,  but  not  Hebbian,  learning  is potentially  sufficient  for  MNS  development.
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a  b  s  t  r  a  c  t

The  associative  sequence  learning  (ASL)  hypothesis  suggests  that  sensorimotor  experience  plays  an  induc-
tive role  in  the  development  of  the  mirror  neuron  system,  and  that  it can  play  this  crucial  role  because
its  effects  are  mediated  by  learning  that  is  sensitive  to both  contingency  and  contiguity.  The  Hebbian
hypothesis  proposes  that  sensorimotor  experience  plays  a  facilitative  role,  and  that  its  effects  are  medi-
ated  by  learning  that  is sensitive  only to contiguity.  We  tested  the  associative  and  Hebbian  accounts  by
computational  modelling  of automatic  imitation  data  indicating  that  MNS  responsivity  is  reduced  more
ssociative learning
ebbian learning
irror neuron system

nteractive activation
omputational model

by  contingent  and  signalled  than  by non-contingent  sensorimotor  training  (Cook  et  al.  [7]).  Supporting
the  associative  account,  we  found  that  the  reduction  in automatic  imitation  could  be reproduced  by  an
existing  interactive  activation  model  of  imitative  compatibility  when  augmented  with  Rescorla–Wagner
learning,  but  not  with  Hebbian  or  quasi-Hebbian  learning.  The  work  argues  for an  associative,  but  against
a  Hebbian,  account  of the  effect  of  sensorimotor  training  on  automatic  imitation.  We  argue,  by  extension,
that  associative  learning  is  potentially  sufficient  for MNS  development.
. Introduction

There is now ample evidence that experience is important in
he ontogeny of the mirror neuron system (MNS). We  know that

onkeys can develop ‘tool-use mirror neurons’ [11]; expertise
n an action domain selectively enhances the responsivity of the
uman MNS  to actions in that domain (music – [14]; dance – [1]);
nd laboratory-based training can both increase [23] and decrease
4,12] MNS  responsivity. However, three related questions about

he ontogeny of the MNS  remain to be resolved: (1) Does experi-
nce play a facilitative ‘tuning’ role or an inductive ‘forging’ role?
t would be tuning if experience modulates the rate or specificity
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with which the MNS  acquires the capacity to map  observed onto
executed actions, but the MNS  would eventually develop visual-
motor matching properties even in the absence of experience. It
would be forging if experience is necessary for the development of
MNS—that is, if, in the absence of experience, neurons in the inferior
parietal and premotor cortex areas would not become responsive
to the sight, as well as the performance, of certain actions. (2)
What type of experience is crucial? Does the development of the
MNS depend on seeing actions (sensory experience), on performing
actions (motor experience), and/or on correlated observation and
execution of the same actions (sensorimotor experience)? (3) Does
sensorimotor experience contribute to the development of the MNS
via associative or Hebbian learning? Associative learning depends
on contingency as well as contiguity; the connection between two

neurons or event representations is strengthened if they are acti-
vated at about the same time and activation of one is relatively the
best predictor of activation of the other. In contrast, Hebbian learn-
ing depends on contiguity alone. This article is concerned primarily

dx.doi.org/10.1016/j.neulet.2012.10.002
http://www.sciencedirect.com/science/journal/03043940
http://www.elsevier.com/locate/neulet
mailto:R.Cooper@bbk.ac.uk
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ith the third and most specific of these questions, but as we  shall
ee, the answer to this question has implications with respect to
he other, broader questions about MNS  development.

Catmur has reviewed the evidence that sensorimotor expe-
ience makes a distinctive contribution to the development of
he MNS  [2].  Behavioural, electrophysiological and neuroimaging
tudies with adult humans have shown that, when the potential
ontributions of sensory experience and motor experience are con-
rolled, a relatively brief period of novel sensorimotor experience
an change MNS  responsivity in a variety of ways. ‘Compati-
le’ sensorimotor training, where action execution is paired with
he observation of similar actions, can enhance mirror responses;
incompatible’ sensorimotor experience, where action execution
s paired with observation of dissimilar actions, can reduce, abol-
sh or even reverse mirror responses; and ‘arbitrary’ sensorimotor
raining, where action execution is paired consistently with sim-
le colours or shapes, can induce the MNS  to respond to inanimate
timuli.

Many of the experiments indicating that sensorimotor experi-
nce can change the functioning of the MNS  were designed to test
he associative sequence learning (ASL) model [16,17].  This model
roposes that the development of the MNS  is mediated by the
ame, phylogenetically ancient mechanisms of associative learn-
ng that produce Pavlovian and instrumental conditioning. Studies
f human and nonhuman animals have shown that these mecha-
isms of associative learning are sensitive, not only to the contiguity
etween events (i.e. how closely together they occur in time), but
lso to the contingency, or predictive relationship, between events.
herefore, associative learning not only increases with the prob-
bility of the second event (E2) given the first event (E1), or in
ther words with the likelihood of contiguous pairings of E1 and
2, but also decreases with the likelihood of E2 in the absence of
1 (e.g. [9,10]).  Given that the stimulus and response function as
he two events E1 and E2, respectively, in sensorimotor learning,
n associative account predicts that this form of learning should
ncrease with P(R|S) but decrease with P(R|¬S). This sensitivity to
ontingency is captured by, among others, the Rescorla–Wagner
odel of associative learning [24].
Some years after publication of the ASL model, Keysers and Per-

ett [20] suggested that sensorimotor experience contributes to the
evelopment of the MNS  via Hebbian learning. Hebb famously said
hat “Cells that fire together, wire together” and, more formally,
any two cells or systems of cells that are repeatedly active at the
ame time will tend to become ‘associated,’ so that activity in one
acilitates activity in the other” [15, p. 70].  Thus, Keysers and Per-
ett’s Hebbian perspective implies that contiguity is sufficient for
NS  development; that it does not also depend on contingency.1

Hebbian learning is promiscuous; it connects any contiguously
ctivated pair of cells or event representations. Consequently, Heb-
ian learning is at risk of supporting the establishment of internal
onnections that do not reflect reliable properties of the external
orld. For example, if one morning a person flexes her fingers in

ime to a piece of music, Hebbian learning could establish durable
inks between the finger movements and the music, even if she is
ust as likely to flex her fingers at other times, when the piece is
ot playing. By tracking the predictive relationship, or correlation,

etween events, contingency-based associative learning avoids
his promiscuity problem. Therefore, the distinction between asso-
iative and Hebbian learning has important implications for the

1 In some contexts, Hebbian learning could be regarded as a species of associa-
ive learning. The terms ‘associative’ and ‘Hebbian’ are used contrastively here to
ighlight the differences between the two  types of learning (based on contiguity
nd contingency, or on contiguity alone) and between the ASL (e.g. [1]) and Hebbian
20]  accounts of the development of the MNS.
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development of the MNS. In principle, associative learning based on
sensorimotor experience is sufficient to explain why  the MNS  usu-
ally develops in a way  that reflects real properties of the world; why
it maps observed actions to the executed actions with which they
systematically and reliably co-occur. In contrast, Hebbian learning
based on sensorimotor experience is not sufficient to explain the
observed properties of the MNS. To explain why  the MNS tends to
map  observed actions to matching or ‘logically related’ executed
actions, rather than to a large and semi-random set of executed
actions – why the MNS  is relatively free of ‘junk’ or ‘superstitious’
associations – it is necessary to assume that Hebbian learning is
guided by another process. For example, junk associations might
be avoided if Hebbian learning was  guided by the evolutionary
process of canalisation; if individuals are born with nascent connec-
tions between sensory and motor neurons representing the same
action, and sensorimotor experience merely facilitates the devel-
opment of these connections, or if inborn mechanisms predispose
individuals to seek sensorimotor experience from certain reliable
sources [13]. Thus, associative learning could, but Hebbian learn-
ing could not, play a crucial, inductive role in the ontogeny of the
MNS.

A recent study by Cook et al. [7] seems to provide evidence
that sensorimotor experience modulates the operation of the MNS
via associative rather than Hebbian learning. We  will describe the
background and procedure for this study in some detail because it
is the focus of the computational modelling to be reported in this
article. Cook et al. used ‘automatic imitation’ as an index of MNS
responsivity. Automatic imitation is a stimulus-response compati-
bility effect in which the topographical features of task-irrelevant
action stimuli facilitate similar, and interfere with dissimilar,
responses [18]. (Topographic features of action relate to the way
parts of the body move relative to one another, rather than to
an external frame of reference.) Automatic imitation occurs even
when it is contrary to task instructions, and incurs a financial cost
[6].  Evidence that automatic imitation provides a valid index of
MNS  responsivity comes from research showing that repetitive
transcranial magnetic stimulation (rTMS) of the inferior frontal
gyrus – an area where mirror neurons have been found in monkeys
– selectively disrupts automatic imitation [5].

The study by Cook and colleagues built on a previous experiment
in which automatic imitation of opening and closing hand move-
ments was measured before and after a period of sensorimotor
training [19]. During training in this earlier study, the experimen-
tal group received novel, incompatible sensorimotor experience:
whenever they observed an opening hand stimulus, they made
a closing hand response, and whenever they observed a closing
hand stimulus, they made an opening hand response. The control
group received familiar, compatible sensorimotor experience: they
responded to opening hand stimuli with opening hand responses,
and to closing hand stimuli with closing hand responses. In the
pre- and post-tests, all participants completed a simple reaction
time (RT) task in which they were required to make the same
response (opening or closing) in every trial within a block, and to
make this response as soon as they saw the stimulus hand begin
to move. In compatible trials, the stimulus movement matched the
pre-specified response (e.g. opening hand response in the presence
of an opening hand stimulus), and in incompatible trials, the stimu-
lus movement was the opposite of the pre-specified response (e.g.
opening hand response in the presence of a closing hand stimulus).
The results showed that the magnitude of the automatic imitation
effect (calculated by subtracting RT on compatible trials from RT
on incompatible trials) was  smaller at post-test than at pre-test for

the experimental group, but not for the control group. This outcome
suggests that the incompatible sensorimotor training provoked –
via either associative or Hebbian learning – the establishment of
excitatory nonmatching connections (e.g. visual neurons activated
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Fig. 1. Summary of the experiments reported by Cook et al. [7]: (a) participants were
allocated to one of three counter mirror training groups (contingent, non-contingent
or  signalled). All groups received the same number of paired trials (green boxes)
where the execution of a response (e.g. open hand) was paired with the obser-
vation of the counter-mirror stimulus (close hand). In the non-contingent group
the  sensorimotor contingency was degraded through the addition of unpaired tri-
als (blue box) where participants executed responses, not in the presence of the
counter-mirror stimulus, but while observing a neutral hand warning stimulus. In
the  signalled group, the contingency was degraded through the addition of signalled
trials (red box), where responses were made in the presence of a differentiated neu-
tral  hand warning stimulus. Participants completed six blocks of counter-mirror
training trials spread evenly over a two day period, (b) following training, all par-
ticipants completed an identical test procedure to measure the size of their residual
automatic imitation effects. Participants were required to execute open- and close-
hand responses to the onset of open- (compatible) and close-hand (incompatible)
stimuli. Automatic imitation effects were estimated by subtracting mean RTs on
compatible trials from mean RTs on incompatible trials. Smaller residual automatic
imitation effects were seen following contingent training, indicating that this was
the  most effective schedule and (c) the stimuli used during training. Top row: stimuli
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responses. The model operates according to the interactive acti-
vation principles of McClelland [21] as implemented in a previous
model of imitative compatibility (or ‘automatic imitation’) effects
[8].  Thus, each node has an activation level that varies between
sed on paired trials. Bottom left: the warning stimulus presented on unpaired trials
n  the non-contingent training schedule. Bottom right: the differentiated warning
timulus presented on signalled trials.

y observation of hand opening linked in an excitatory way  to
otor neurons involved in hand closing) and/or the establishment

f inhibitory matching connections (e.g. visual neurons activated by
bservation of hand opening linked in an inhibitory way to motor
eurons involved in hand opening).

To investigate whether associative or Hebbian learning was
esponsible for the effect observed by Heyes et al. [19], Cook
t al. [7, Experiment 2] modified the previous experiment in
hree ways. First, they assessed automatic imitation only after
ensorimotor training. Second, they gave all participants incom-
atible sensorimotor training. Third, the training received by the
xperimental group in the previous experiment, in which there
as a perfect contingency between observation and execution

f incompatible actions (contingent group), was compared with
non-contingent’ and ‘signalled’ incompatible sensorimotor train-
ng. The number of contiguous sensorimotor pairings (432) was
eld constant across these three training groups. However, inter-
ixed with these ‘paired trials’, in which an opening or closing

ction was executed in response to a numeric stimulus (1 or 2)
nd in the presence of the nonmatching action stimulus, the non-
ontingent and signalled groups each received an equal number of
unpaired’ trials (see Fig. 1). In paired trials the numeric imperative
timulus was superimposed on an image of an opening or closing
and, whereas in unpaired trials it was superimposed on an image
f a neutral hand posture. In the signalled group, unpaired trials
ere also distinguished from paired trials by contextual stimuli.

pecifically, in unpaired trials, the neutral hand warning stimulus
ppeared in blue on a red background (rather than flesh colour on
 black background), and was accompanied by a tone. Thus, con-
iguity was held constant across the three training groups – they
xperienced an equal number of pairings of action stimuli with non-
atching responses – while contingency and context were varied.
Letters 540 (2013) 28– 36

The contingent group experienced a perfect, nonmatching sensor-
imotor contingency; the probability of a nonmatching response
given an action stimulus was  1, whereas the probability of a non-
matching response in the absence of an action stimulus was 0. In
contrast, the non-contingent and signalled groups experienced a
zero, nonmatching sensorimotor contingency; the probability of
a nonmatching response given an action stimulus was 1, but the
probability of a nonmatching response in the absence of an action
stimulus was also 1. Furthermore, in the signalled group, but not
in the non-contingent group, the trials that abolished the sensor-
imotor contingency – the unpaired trials – were presented in a
distinctive context.

After training in this experiment, Cook et al. [7] found a sig-
nificantly larger automatic imitation effect in the non-contingent
group than in either the contingent group or the signalled group
(see Fig. 3, upper panel). In other words, non-contingent training
left a larger residual automatic imitation effect, suggesting that
the non-contingent group learned less as a result of incompati-
ble sensorimotor training than the other two  groups. The authors
argued that this pattern of results implies that the effects of
incompatible sensorimotor experience on automatic imitation
were mediated by associative learning rather than Hebbian
learning. However, their arguments were based on loose verbal
specifications of the two  theories, and informal inferences about
the patterns of results that they would predict. Therefore, the cur-
rent study examined more closely, using computational modelling,
whether the findings reported by Cook and colleagues really sup-
port an associative over a Hebbian account of the way in which
sensorimotor experience contributes to the development of the
MNS.

2. Model description

2.1. Basic architecture

The study of Cook et al. [7] was  simulated with a model con-
sisting of ten units or nodes as shown in Fig. 2. The model includes
two  sensory nodes which represent whether the observed hand
movement on any trial is an opening or a closing movement; two
imperative nodes which represent the numeric stimulus and hence
whether the response required on the trial is an open response
or a close response; four context nodes which represent context
cues that may be present on the various trial types (the presence of
each of the imperative cues, the neutral hand warning stimulus on
standard trials, and the blue hand warning stimulus on signalled tri-
als) and that may  therefore become associated with a response; and
two  motor nodes, corresponding to the open-hand and close-hand
Fig. 2. Architecture of the model, showing associations between nodes prior to
learning.
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ero and one. Operation of the model is cyclic, with each cycle of the
odel corresponding to a small interval of time. (In the simulations

eported here, parameters are set such that one cycle corresponds
o approximately 1 ms.) On each cycle, the activation ai of each node

 is calculated according to a simple update equation:

i(t + 1) = � × ai(t) + (1 − �) × �(Ii(t)) (1)

here t is the time, Ii(t) is the net input to node i at time t, � is
 parameter that controls the degree to which current activation
ersists from one cycle to the next, and �(·) is the logistic or sigmoid
unction that maps all inputs to the range zero to one.

Weighted connections between nodes allow stimulus nodes
o excite or inhibit response nodes. Following earlier work, we
ssume that associations between matching stimulus and response
odes are encoded as connections between sensory input nodes
nd motor response nodes acquired through learning in the course
f everyday life and which mediate the propensity for automatic
mitation that participants bring to the task. Moreover we assume
hat associations between imperative stimuli and corresponding
esponses are encoded as strong connections between imperative
odes and motor response nodes. These links, it is assumed, are
et up by the subject in response to task instructions and main-
ained only for the duration of the experiment. Given this, the net
nput Ij(t) to node j at time t is given by the sum of weighted exci-
ation or inhibition to that node from other nodes (or from direct
timulation in the case of sensory, imperative, and context nodes),
lus the node’s bias (a parameter that sets the node’s sensitivity to
xcitatory input), plus normally distributed noise. That is:

j(t) = ˙i(wji × ai(t − 1)) + Ej + ˇj + N(0, �2) (2)

here wji is the strength of the connection from node i to node j, Ej
s any direct stimulation applied to the node, ˇj is the bias on node
, and � is the standard deviation of noise added on each processing
ycle.

When a stimulus appears, direct stimulation (E) is applied to
orresponding sensory nodes, an imperative node, and any relevant
ontext nodes. This causes the activation of those nodes to increase
by Eq. (1)), resulting in increased input to motor nodes (by Eq. (2)).
ensory and context nodes are assumed to habituate once their
ctivation exceeds a threshold, �s, of 0.90. This habituation is mod-
lled by setting E for these nodes to zero once their activation has
xceeded �s. A response is assumed to be generated when the acti-
ation of a response node exceeds the response threshold, �r, which
ollowing earlier work [8] is set to 0.8 in the simulations reported
elow. The number of processing cycles between stimulus presen-
ation and response generation is assumed to be proportional to
he time taken by a subject to produce a response to the analogous
timulus.

.2. Learning rules

The architecture as described above is capable of simulating imi-
ative stimulus-response compatibility effects (cf. [8]). In order to
xtend it to the Cook et al. study it is necessary to supplement it
ith a learning rule that specifies how the strengths of S–R associa-

ions are modified in response to events such as the co-occurrence
f a stimulus and a response. Generalising from the introduction,
e consider three possible learning rules:
. Standard Hebbian learning: The association between a stimu-
lus Si and a response Rj is strengthened if the stimulus and
response co-occur. If Si occurs in the absence of Rj (or the
presence of another response), or Rj occurs in the absence of Si
Letters 540 (2013) 28– 36 31

(or the presence of another stimulus), then the Si–Rj association
is unchanged. In symbols:

�wji =
k (if Si and Rj are both present)

0 (otherwise)
(3a)

In order to prevent associative strengths from growing with-
out bound, the magnitude of �wji is limited to k, where

k = ˛ − wji

˛

 ̨ is the asymptotic association strength: as wji approaches ˛, k
approaches zero.

2. Quasi-Hebbian learning: This is basically Hebbian learning with
an adjustment for non-contingent stimulus-response occur-
rences. As in standard Hebbian learning, the association between
a stimulus Si and a response Rj is strengthened if the stimulus
and response co-occur. However, if Rj occurs in the absence of
Si, or Si occurs in the absence of Rj, then the Si–Rj association is
weakened. In symbols:

�wji =
k (if Si and Rj are both present)

−k (if Si is present but Rj absent or vice versa)

0 (otherwise)

(3b)

As with Hebbian learning, this is adjusted to incorporate an
asymptote, ˛, via the term k.

We consider quasi-Hebbian learning because it allows for a
form of extinction, whereby absence of a predicted response
results in a reduction in the strength of association between
the stimulus and the predicted response. As we will see, this
addresses some of the limitations of purely Hebbian learning in
accounting for the effects observed by Cook et al. It does this
while remaining close in spirit to Hebb’s original formulation.

3. Associative (or Rescorla–Wagner) learning: In this case, changes
in association strength are proportional to the error (ε) between
a target value (	) of a response node and the actual value given
the stimulus. Where there are multiple simultaneous stimuli,
this error is attributed to, or distributed over, the various sources
of activation on any trial in proportion to the strength of those
activation sources. In symbols:

εj = 	j − ˙i(wji × ai)

�wji = εj × ai

(3c)

On a trial in which Rj is present, εj is set to the input neces-
sary to drive the response node to its maximum. Critically, if the
target is predicted by the input, error will be zero and no learn-
ing will occur, even if a novel stimulus is present on that trial.
Equally critically, the target value may  be over-predicted, lead-
ing to weakening of the association between Si and Rj, even when
Si and Rj are both present. Associations between any stimuli
present on a trial and the response Rj will also be weakened if the
response is predicted but absent (i.e. if 
i(wji × ai) > 0 but 	j = 0).
This will also result in εj being negative and any associations
between stimuli that are present on that trial will be weakened.

For each of these learning rules, we assume that the context
node associated with one of the imperative stimuli is active with
strength Cimp on every trial of training (depending on which imper-
ative stimulus is presented on that trial) and acts like just another
stimulus, so that associations between the context node and the

response nodes may  be learned. We  also assume that the context
node associated with the warning stimulus is active with strength
C1 or C2, depending on whether the trial is a standard training trial
(C1) or a signalled trial (C2).
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The addition of learning introduces a further five parameters
ver and above the non-learning model of Cooper et al. [8]2:

�, the learning rate (a positive real number, ranging from 0.0002
to 0.0060 in the simulations reported below) that scales the
weight adjustment (�wji) made on each learning trial.3

˛, the weight asymptote for Hebbian and quasi-Hebbian learning
or 	, the target input required to drive a node to its maximum for
Rescorla–Wagner learning (both positive real numbers, ranging
from 2 to 20 in the simulations reported below).
Cimp, C1 and C2, the strength of the various context nodes, rela-
tive to the strength of the irrelevant sensory stimuli (positive real
numbers, fixed at 1 for Cimp and C1 and ranging from 4 to 12 for
C2 in the simulations reported below).

. Simulation study 1

The purpose of simulation study 1 was to determine, for each
earning rule, whether the model could account for the Cook et al.
ata, i.e. whether the model could account for a greater residual
utomatic imitation effect following non-contingent training than
ollowing contingent or signalled training.

.1. Method

The model contains three kinds of parameters: those that con-
ern the general activation dynamics (e.g. the bias on all nodes
nd the persistence of activation over time), those that specify
he initial strengths of associations, and those related to learn-
ng (e.g. the learning rate and asymptotic association strength). In
he simulations reported here, all but one of the parameters asso-
iated with general activation dynamics were held at the values
sed in previous work [8].4 The initial strengths of associations
ere also set based on this previous work to +10 for associa-

ions between imperative nodes and corresponding response nodes
nd +4 for associations between sensory nodes and compatible
esponse nodes. The former reflects the deliberate activation of
otor response nodes following an imperative stimulus, while

he latter reflects the automatic activation of compatible response
odes following presentation of a sensory stimulus. Following pre-
ious work with these values we assume that one processing cycle
f the model corresponds to approximately 1 ms  of subject time.

For each of the three learning rules, a series of simulations was
onducted varying three learning parameters: the learning rate,
he weight asymptote or equivalent (i.e.  ̨ or 	), and the relative
trength of the signalled context. In each case, a “virtual subject”
as simulated by replicating the training and testing experienced

y a real subject from the Cook et al. experiment. Thus, the model

as (a) initialised, then (b) trained for 6 blocks with one of the three

raining sets (72 trials per block for the contingent condition, 144
rials per block for the non-contingent and signalled conditions),

2 Full details of all model parameters are given in Supplementary materials. The
omplete model, which is written in the C programming language, is available for
ownload from http://www.ccnl.bbk.ac.uk/models.html.
3 Thus, if wij(t) is the weight of the association to node j from node i at time t, then

or  each learning trial wij(t + 1) = wij(t) + �·�wji .
4 Previous work demonstrated that that the qualitative behaviour of the model
as  relatively insensitive to the precise values of many of the parameters [8].  Nev-

rtheless, for the purposes of quantitative simulations, specific values were chosen
n  that work based on an informal exploration of the parameter space. Those spe-
ific values were adopted here with the exception of the value of the habituation
hreshold of sensory nodes (�s). In the previously reported work, sensory nodes were
ssumed to habituate to an input and decay once their activation exceeded a value
f  0.80. In the current work this threshold was  increased to 0.90 in order to yield
ffect sizes similar to that seen in the empirical work of Cook et al. [7, Experiment
].  See Supplementary materials for details of all model parameters.
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and finally (c) tested for 60 instances of each compatible and
incompatible stimulus-response pairing. For each learning rule
this procedure was repeated for all three training sets. The com-
patibility effects following each training set were then calculated
yielding three values directly comparable to the compatibility
effects in the subject data (20.8 ms,  33.6 ms,  and 18.6 ms  for con-
tingent, non-contingent and signalled training, respectively [7]).
Finally, the fit of the model to the data was calculated as the root
mean square (RMS) difference between the three pairs of values.

The fit of the model to the data is a function of the learning
parameters. Therefore for each learning rule this procedure was
repeated for all values within a three dimensional grid with the
learning rate ranging from 0.0002 to 0.0060 in steps of 0.0002, the
weight asymptote or equivalent ranging from 2 to 20 in steps of
2, and the relative strength of the signalling context ranging from
4 to 12 in steps of 2. Furthermore the model’s behaviour is non-
deterministic, because the order of training trials is randomised
prior to each training phase and initial node activations are ran-
domised prior to each testing trial. Therefore the whole procedure
was  repeated 10 times for each point in the parameter space, with
the RMS  fit averaged over these 10 replications. This procedure
yielded a total of 30 × 10 × 5 × 10 = 15,000 simulations per learning
rule. The Express software [26] was  used to manage the exploration
of the parameter space and to collate results.

3.2. Results and discussion

Table 1 shows the parameter values and mean RMS score for
the best fitting model for each rule. By varying the three learn-
ing parameters it is possible to obtain apparently reasonable fits
(within 10 ms  RMS) for all learning rules, though it is appears from
the table that the best fit is obtained with the Rescorla–Wagner
learning rule. However, these apparently good fits are in some ways
misleading. Fig. 3 shows the compatibility effects obtained using
each of the parameter settings from Table 1. It is clear from the
figure that fit of the model using Hebbian learning is in fact poor.
The fact that reaction time (RT) of the model expressed in cycles is
approximately 30 less than RT of subjects expressed in milliseconds
is not of great concern. Even with processing at approximately 1 ms
per cycle, it is reasonable to assume that additional pre or post deci-
sion processes, not modelled, would bring the model into line with
mean human RT on the task. Critically, however, Hebbian learning
fails to reproduce the appropriate compatibility effects – the pre-
dicted compatibility effect is greater with contingent training or
with signalled training than with non-contingent training. This is
precisely opposite to the result obtained in the Cook et al. study.

Quasi-Hebbian learning fares better in one respect but worse
in another. Quasi-Hebbian learning can capture the fact that the
compatibility effect is smaller with contingent training than with
non-contingent training – and this justifies our consideration of it
as an alternative to standard Hebbian learning – but it suggests that
RT should be slower with non-contingent training than with contin-
gent training (even on compatible trials), and that signalled training

should yield a similar compatibility effect to non-contingent train-
ing. Both of these effects are contradicted by the subject data.

None of the difficulties exhibited by the model using Heb-
bian or quasi-Hebbian learning are shown with Rescorla–Wagner

Table 1
Parameter values and fits for best fitting models. �, learning rate; ˛, asymptote; 	,
target strength; C2, relative strength of signalling context.

Learning rule � ˛/	 C2 Mean RMS  fit (ms)

Hebb 0.0044  ̨ = 2 12 8.79
Quasi-Hebb 0.0054  ̨ = 20 12 6.21
R–W 0.0028 	 = 8 6 2.86

http://www.ccnl.bbk.ac.uk/models.html
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Fig. 3. Compatibility effects for subject and simulated data. The top-most panel
shows the subject data of Cook et al. [7, Experiment 2],  with the reaction time (RT)
data for compatible and incompatible trials for each training group on the left, and
the  compatibility effects (i.e. the difference between incompatible and compatible
reaction time) on the right. Error bars show standard error of the mean. The lower
panels show best fits for each learning rule (Hebb, quasi-Hebb and Rescorla–Wagner
respectively). Only in the case of Rescorla–Wagner learning are the critical empirical
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positive (p < 0.05, one-tailed), non-significant, or significant and
ffects (similar compatibility effects with contingent and signalled training, but a
ignificantly greater compatibility effect with non-contingent training) reproduced.

earning. Here, as in the human data, the compatibility effect is
reater with the non-contingent training set than with either of
he other training sets. Moreover, the compatibility effect is similar
ith contingent training and signalled training. That RT (in cycles)

s generally slower than in the subject data (in milliseconds) is also
ot a major concern – this may  be addressed by assuming that the
trength of the imperative stimulus (the numerals 1 or 2) is slightly
reater in this study than in the study of Catmur and Heyes [3] (an
range or purple dot), on which the earlier model (and the strength
f imperative to motor associations) was based.

. Simulation study 2

One difficulty with simulation 1 is that in finding the best fit
n quantitative terms of the model to the data for each learning
ule, we may  have failed to note the potential for Hebbian or quasi-
ebbian learning to account, in principle, for the qualitative effects.

 second difficulty is that the model with Rescorla–Wagner learn-
ng may  be so powerful, and have so many free parameters, that

t could in principle account for any pattern of results. If this were
he case it would significantly reduce the explanatory power of the

odel [25]. Simulation study 2 therefore adopts a method based
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on parameter space partitioning [22] to explore the potential ability
of each learning rule to account for the critical qualitative effects.

Parameter space partitioning aims to divide the parameter space
of a computational or mathematical model into regions yielding
qualitatively distinct behaviours. Each point in the parameter space
is categorised according to the pattern of effects present in the
model’s behaviour at that point. Within the context of the Cook
et al. study, there are three effects of concern. First, the compatibil-
ity effect is significantly greater with non-contingent training than
with contingent training. Second, the compatibility effect is signif-
icantly greater with non-contingent training than with signalled
training. Third, the compatibility effects with contingent training
and with signalled training are not significantly different. (Strictly
speaking the last of these is the absence of an effect, but it would
be worrying if the model were to predict such an effect without it
having been found in the data from human subjects.) Any point in
the model’s parameter space might yield any combination of these
effects. If, across the parameter space, all combinations are possible
then the model is of little explanatory value – it could account for
any pattern of data. If on the other hand only the observed combi-
nation is possible then the model has strong explanatory value –
any settings of its parameters would yield the observed qualitative
pattern of results.

4.1. Method

For simulation study 1 it was  sufficient to simulate the behaviour
of a single subject at different points in the model’s parameter
space. Simulation study 2 requires the simulation of a group of
subjects (including between-subject differences), so that standard
statistical analyses may  be performed on the resulting group data in
order to determine whether type of training has a statistically sig-
nificant effect on the compatibility effect. To do this, the strength of
the short-term associations between imperative nodes and motor
response nodes was  sampled from a normal distribution with mean
10 and standard deviation 1. These associations can be seen as
reflecting individual subjects’ motivation or commitment to the
task. Increasing the value increases the speed of response to all
stimuli, while decreasing it leads to slower response times.

For each of the three learning rules, a series of simulations was
conducted varying the learning rate and the weight asymptote or
equivalent. To maintain tractability the relative strength of the
signalled context, C2, was fixed at 10.0. (Inspection of the results
from simulation study 1 suggests that this does not substantially
compromise model fit.) In each case, each individual simulation
consisted of 12 virtual subjects (mirroring the 12 subjects per con-
dition in the Cook et al. study), with the procedure for each virtual
subject being as in simulation study 1. All other parameters beyond
those being varied were fixed at the values used in simulation
study 1 (with the exception of sampling the strength of impera-
tive to motor response associations as described in the previous
paragraph).

Parameter space partitioning focuses on qualitative effects.
Therefore, rather than calculating quantitative compatibility
effects, for each simulation we calculated whether each of the three
effects of interest was  statistically significant (given the relevant
null hypothesis). Thus, between-subjects t-tests were performed
comparing (a) the compatibility effect with contingent training
versus non-contingent training, (b) signalled training versus non-
contingent training, and (c) contingent training versus signalled
training. Results of each t-test were scored as +1, 0 or −1 for each
simulation, depending on whether the effect was  significant and
negative (p < 0.05, one-tailed), respectively. Note that for the model
to replicate the qualitative pattern in the observed data it must
score −1, −1 and 0, respectively, on these three measures.
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Fig. 4. Qualitative effects exhibited by the model with Hebbian (upper panel), quasi-Hebbian (middle panel), and Rescorla–Wagner (lower panel) learning at different points
in  the parameter space. In each case the left figure shows where the compatibility effect differs with non-contingent training versus contingent training. In the blue region,
the  effect is significantly smaller with non-contingent than with contingent training, while in the red region the effect is significantly greater with non-contingent than with
contingent training. Recall that the latter was  observed in the Cook et al. study. The central column shows the equivalent comparison for non-contingent training versus
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ignalled training. Again, in the subject data the compatibility effect was  significan
ed  region). The right column shows the comparison between signalled and contin
reen  region). (For interpretation of the references to colour in this figure legend, th

The simulation was run for all pairs of parameter values within a
wo dimensional grid with the learning rate ranging from 0.0000 to
.0060 in steps of 0.0002 and the weight asymptote or equivalent
anging from 2 to 22 in steps of 2. Since the model’s behaviour is
on-deterministic (with the variable strength of associations from

mperative to motor response nodes adding to the variability in
esponse times), the whole procedure was repeated 100 times for
ach point in the parameter space, with the mean score for each
tatistical test calculated over the 100 replications. This procedure
ielded a total of 31 × 11 × 100 = 31,400 simulations per learning
ule. As before, the Express software [26] was used to manage the
xploration of the parameter space and to collate results.

.2. Results and discussion

Results of simulation study 2 are summarised in Fig. 4. With
ebbian learning, most pairs of parameter settings result in

he compatibility effect being significantly smaller with non-
ontingent training than with contingent training (blue region in
ig. 4, upper left plot). This is consistent with simulation study

 but opposite to what was found by Cook et al. [7].  Only when
he learning rate is very low is there no significant effect of train-
ng type (green region in Fig. 4, upper left plot), but at this low

ate of learning there is minimal learning in either condition. Sim-
lar results hold for the comparison of compatibility effects with
on-contingent versus signalled training (Fig. 4, upper centre plot).
ebbian learning also generally predicts that signalled training will
ater with non-contingent than with signalled training (corresponding again to the
raining. In this case no effect was found in the subject data (corresponding to the

der is referred to the web version of the article.)

result in a compatibility effect that is significantly smaller than that
arising from contingent training (blue region in Fig. 4, upper right
plot). Thus, the inability of Hebbian learning in simulation study 1
to replicate the effects in the subject data is not due to selection of
sub-optimal parameter values: across the majority of the param-
eter space Hebbian learning predicts that non-contingent training
will result in a smaller compatibility effect than signalled train-
ing, which in turn will result in a smaller compatibility effect than
contingent training.

The central panel of Fig. 4 depicts the results with quasi-Hebbian
learning. The addition of an anti-Hebbian term to the learning equa-
tion allows the model to account for the effect of non-contingent
versus contingent training on the compatibility effect – consis-
tent with the subject data, this version of the model predicts
that the compatibility effect will be greater with non-contingent
than contingent training. This is true for the vast majority of the
parameter space (red region, middle left plot). However, quasi-
Hebbian learning fails to account for the effect of signalled training
on the compatibility effect. The learning rule predicts that non-
contingent and signalled training will have similar effects (green
region, middle centre plot), contrary to the subject data. Quasi-
Hebbian learning also predicts that signalled training will generally
result in a greater compatibility effect than contingent training (red

region, middle right plot). Again this is contrary to what was  found
by Cook et al. [7].

Results from Rescorla–Wagner learning are shown in the lower
panel. Here, a large region of parameter space yields models that
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Fig. 5. Fit of the model with different learning rules to the qualitative effects in the subject data of Cook et al. [7, Experiment 2].  These plots effectively show the ability of
the  model to simultaneously fit all three effects considered in Fig. 4. Red regions correspond to parameter settings where the model replicates all effects found in the subject
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ata.  They correspond to the overlap between red regions in Fig. 4 left, red regions i
f  the references to colour in this figure legend, the reader is referred to the web ve

esult in greater compatibility effects with non-contingent than
ith contingent training (red region, lower left plot). A subset of

his region yields models that result in greater compatibility effects
ith non-contingent than with signalled training (red region, lower

entre plot). An overlapping region of parameter space yields mod-
ls that result in similar compatibility effects with signalled and
ontingent training (green region, lower right plot). The intersec-
ion of these three regions corresponds to parameter settings that
ield patterns of effects that are qualitatively equivalent to those
ound by Cook et al. [7].

Fig. 5 summarises the overlaps between the three qualitative fits
or each learning rule. Red regions correspond to parameter settings
here all three effects are, qualitatively, as found in the subject
ata. As should be clear from the above description of results, if
ebbian or quasi-Hebbian learning is assumed, then it is not possi-
le to select parameters where the model replicates the observed
ehavioural effects. This is only possible with Rescorla–Wagner

earning. However, Resorla-Wagner learning does not guarantee
hat the model will produce the observed behaviour: this occurs
nly in a crescent-shaped region of parameter space. If the target
alue (	 in Eq. (3c)) is relatively high, then the learning rate must
e relatively low, but at low values of 	 higher learning rates are
equired to reproduce the qualitative effects found in the human
ata. In the region to the top-right of this crescent, where the model
ails to reproduce the qualitative pattern in the human data, it
an be seen from Fig. 4 that this is because in this region of the
arameter space the model predicts that the compatibility effect
ith signalled training should be greater than that with contingent

raining. We  return to why this is so in Section 5.

. General discussion

The simulation results demonstrate firstly that the sensorimotor
ompatibility effects such as those found by Heyes et al. [19], Cook
t al. [7] and Catmur and Heyes [3] can be accounted for in terms
f weighted associations between sensory and motor units. The
ork therefore provides additional support for the model under-

ying the previous simulation of Cooper et al. [8].  More critically
n the context of discussions of the MNS, the simulation results
emonstrate that associative learning can, and Hebbian learning
annot, account for the effects of different types of training on the
utomatic imitation effect as reported by Cook et al.

The simulation results generally follow the logic proposed by
ook et al. in their discussion of the putative effects of contingent,
on-contingent and signalled training [7].  However, the informal
erbal reasoning of Cook et al. considers only how stimulus-
esponse associations are altered depending upon the probability

f a response given that a stimulus is present, P(R|S), or that a stim-
lus is absent, P(R|¬S). It does not consider how trials on which an
xpected response is absent affect association strengths. That is, it
oes not consider the effect of P(¬R|S). The computational model
4 centre, and green regions in Fig. 4 right, for each learning rule. (For interpretation
of the article.)

addresses this potential gap in the reasoning. (See Supplementary
materials for detailed discussion of how these events affect the
associative weights under the different learning rules.)

The other notable feature of the simulation results is the ten-
dency for the model with Rescorla–Wagner learning, high learning
rate (e.g. � = 0.005) and high target (e.g. 	 = 20.0) to predict a
larger residual compatibility effect in the signalled condition than
in the contingent condition (cf. the red region in Fig. 4, lower
right panel). If parameter space partitioning had not indicated that
there are many potential outcomes of the Cook et al. experiment
that Rescorla–Wagner learning could not accommodate, this fea-
ture of the simulation results might be regarded as a weakness
of the Rescorla–Wagner model. However, since parameter space
partitioning demonstrated that the Rescorla–Wagner model is emi-
nently falsifiable, this feature constitutes a novel prediction – that
there will be specific parameter values at which signalled training
yields a larger residual compatibility effect than contingent training
– to be tested in future experiments.

In conclusion, the simulation studies reported in this arti-
cle show that, of the learning algorithms considered, only
Rescorla–Wagner learning can account for the pattern of results
found in the study of Cook et al. Therefore, not only do they provide
negative evidence for the hypothesis that sensorimotor experi-
ence contributes to the development of the MNS via Hebbian (or
quasi-Hebbian) learning, they also provide positive evidence for the
hypothesis that sensorimotor experience contributes to the devel-
opment of the MNS  via associative (i.e. prediction-error) learning.
They do this by showing both that Rescorla–Wagner learning can
account for the data, and, using parameter space partitioning, that
this result was  very far from inevitable. More broadly, our find-
ings support the associative sequence learning model (ASL), which
accords a crucial, inductive role to sensorimotor experience in the
development of the MNS  [16,17].  Hebbian learning would require
guidance, or canalisation, to yield the documented properties of
the mature MNS, but associative learning is potentially sufficient
to build a MNS  that maps observed actions to the executed actions
with which they systematically and reliably co-occur.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.neulet.2012.10.002.
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