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Abstract Genomics and proteomics will improve outcome
prediction in cancer and have great potential to help in the
discovery of unknown mechanisms of metastasis, ripe for
therapeutic exploitation. Current methods of prognosis
estimation rely on clinical data, anatomical staging and
histopathological features. It is hoped that translational
genomic and proteomic research will discriminate more
accurately than is possible at present between patients with
a good prognosis and those who carry a high risk of
recurrence. Rational treatments, targeted to the specific
molecular pathways of an individual’s high-risk tumor, are
at the core of tailored therapy. The aim of targeted oncology
is to select the right patient for the right drug at precisely
the right point in their cancer journey. Optical proteomics

uses advanced optical imaging technologies to quantify the
activity states of and associations between signaling
proteins by measuring energy transfer between fluoro-
phores attached to specific proteins. Förster resonance
energy transfer (FRET) and fluorescence lifetime imaging
microscopy (FLIM) assays are suitable for use in cell line
models of cancer, fresh human tissues and formalin-fixed
paraffin-embedded tissue (FFPE). In animal models,
dynamic deep tissue FLIM/FRET imaging of cancer cells
in vivo is now also feasible. Analysis of protein expression
and post-translational modifications such as phosphoryla-
tion and ubiquitination can be performed in cell lines and
are remarkably efficiently in cancer tissue samples using
tissue microarrays (TMAs). FRET assays can be performed
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to quantify protein-protein interactions within FFPE tissue,
far beyond the spatial resolution conventionally associated
with light or confocal laser microscopy. Multivariate optical
parameters can be correlated with disease relapse for
individual patients. FRET-FLIM assays allow rapid screen-
ing of target modifiers using high content drug screens.
Specific protein-protein interactions conferring a poor
prognosis identified by high content tissue screening will
be perturbed with targeted therapeutics. Future targeted
drugs will be identified using high content/throughput drug
screens that are based on multivariate proteomic assays.
Response to therapy at a molecular level can be monitored
using these assays while the patient receives treatment:
utilizing re-biopsy tumor tissue samples in the neoadjuvant
setting or by examining surrogate tissues. These technolo-
gies will prove to be both prognostic of risk for individuals
when applied to tumor tissue at first diagnosis and
predictive of response to specifically selected targeted
anticancer drugs. Advanced optical assays have great
potential to be translated into real-life benefit for cancer
patients.
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Introduction

The majority of cancer-related morbidity and deaths are
as a consequence of the dissemination and growth of
secondary metastatic tumors [1]. The clinical and molec-
ular heterogeneity of cancer currently presents clinicians
with difficult problems when choosing adjuvant treatment
for individual patients. Oncologists forecast the likely
progression of cancer, yet wish to better predict which
patients will respond to therapy. Both cytotoxic chemo-
therapy and biologically targeted drugs are prescribed for
some patients based on existing markers. Nonetheless,
tailored anticancer therapy is in its infancy. It must
continue to evolve and progress in order to enable rational
individualized treatment. Oncology is slowly moving
away from empiricism, toward rational personalized
cancer treatment.

At initial diagnosis, prognostic markers estimate
whether the transition to metastatic disease is likely to
occur. Adjuvant systemic chemotherapy aims to eradicate
micro-metastases, thus reducing recurrence rates and
contributing to surgical cure [2–5]. However the risk of
distant relapse cannot be eliminated. Furthermore therapy
has associated toxicity [6] and high financial cost.
Clinicians need to accurately identify patients at greatest
risk of metastasis, in order to appropriately direct

chemotherapy and targeted treatments. Adjuvant Online
is an open-access web-based tool (www.adjuvantonline.com)
that predicts 10-year outcomes for solid tumors with and
without systemic therapy [7]. From patient information and
tumor characteristics the program calculates a prognostic
estimate. Adjuvant online cannot categorize individual
patients. Most established estimates of prognosis do not
include many characteristics of individual tumor biology,
as the vast majority of putative prognostic factors have
not been established nor validated in large series. We
urgently need cost-effective biomarkers to identify the
individual patients at high risk of recurrence and choose
the specific therapy to which they are most likely to
respond.

Adjuvant cytotoxic chemotherapy improves survival for
some patients with solid malignancy, however many of
those treated derive no benefit at all. Improved understand-
ing of cancer cell signaling has resulted in therapeutic
agents against specific tumor targets. These have revolu-
tionized cancer treatment, most elegantly exemplified by
the use of trastuzumab, a humanized monoclonal antibody
against the extracellular domain of human epidermal
growth factor receptor type 2 (HER2/ErbB2), in patients
with invasive breast cancers that overexpress HER2.
Despite the myriad of newly designed therapeutics, non-
targeted cytotoxic chemotherapy is the mainstay of the
adjuvant therapy, rather than a rational approach based on
individual tumor biology. This is largely because of
difficulties in selecting patients most likely to respond
to each drug. As an example, when trastuzumab is given
as a single agent for first-line treatment of ErbB2-
overexpressing metastatic breast cancer, it is associated
only with a 40% objective response rate [8]. For drugs
targeting the human epidermal growth factor receptor type
1 (EGFR /HER1/ErbB1), patient selection is even more
difficult. Strategies are urgently required to focus targeted
therapeutics specifically on the tumors capable of responding,
thus sparing patients unnecessary toxicity, and significantly
reducing drug costs.

United Kingdom cancer survival rates are inferior to
some other European countries, partly resulting from the
relatively limited use of new systemic therapies [9].
Expensive targeted drugs place considerable financial
burden on any health care system. The majority of patients
receiving such drugs do not experience either restrained
tumor growth or prolonged survival. The financial burden
of targeted therapeutics will continue to rise unless rational-
use strategies are developed. In addition to the financial
considerations, it is hoped that toxicity could be spared with
the use of improved prognostics. Any patient whose tumor
receives a good prognosis will not receive unnecessary,
potentially toxic treatment. Thus optical proteomics com-
bined with advanced genomics has the potential to
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revolutionize treatment for the next generation of cancer
patients.

Translational science must strive to improve not only the
quality and efficacy of the drugs used to combat all cancers,
but also design intelligent diagnostics to accurately match
the correct drug to the appropriate patient [10]. Efficacious,
individualized therapy has the potential to revolutionize
cancer care. We present here a range of approaches aimed at
improving our understanding of proteomics, exploiting
optically based technologies. Such optical techniques are
highly desirable for ultimate deployment in a clinical
setting. Development of optical technologies to both
visualize specific protein expressions and interactions and
to quantify them is considered crucial for further progress
in individualization of therapy.

Genomics and optical proteomics

The advent of gene expression profiling technology
allowed quantification of the expression of multiple
genes simultaneously in human tissue samples. The aims
of gene expression profiling in cancer are a better system
for classifying tumors, a clarification of the origin of
these diseases, a more accurate prognostic capacity than
was previously available and an improved ability to
select appropriate therapy [11]. Despite advances, the
identification of genes and molecules associated with
escalating incidence of metastases does not necessarily
bring progress to understanding of how these events
contribute to the process, much less teach us how to
frustrate metastasis.

Genomic information alone may thus prove insufficient
as a means of identifying tumors with specific changes in
the molecular pathways that are predictive of a favorable
treatment outcome. In addition to obtaining RNA profiles,
the function of the gene product, i.e., the protein, must also
be assessed. Although the cause of a disease is frequently an
aberration at the genetic level, the functional consequences are
mediated via protein networks, with various components of
the network undergoing different degrees of activation
(usually as a consequence of specific post-translational
modifications such as phosphorylation), driving oncogenesis.
Following successes in cancer therapy derived from targeting
the MDM2-p53 interaction [12–14], the importance of
protein-protein interactions is increasingly recognized, both
for understanding cell physiology and for developing novel
treatments [15].

Validated techniques involving advanced microscopy
with high spatial resolution and in vivo imaging capabilities
are required to assess and quantitatively measure post-
translational modifications and protein-protein interactions,
in order to expose the molecular contributors to the process

of metastasis. The use of advanced optical molecular
techniques to report on protein networks, within both cells
and tissues, is termed optical proteomics.1 The optical
approaches herein described include the monitoring of
Förster resonance energy transfer (FRET) by fluorescence
lifetime imaging microscopy (FLIM). This review describes
the utility of FRET-FLIM imaging in preclinical models of
cancer, as well as its use in cancer patient tissue.
Characterizing the activation/modification states of pro-
teins that are responsible for promoting cell migration, as
well as the nature and extent of the intermolecular
interactions within these protein subnetworks in individual
patient tumor samples, should enable better prediction of
which patients are most likely to develop metastases. This
characterization also has the potential to provide biological
information regarding how best to interfere with metastasis
and allow future therapeutic blockade of the strengths of
the metastatic process and exploitation of the inherent
weaknesses.

Recent experience with molecule-targeted therapeutics
suggests that the efficacy of such therapies would be
improved if we could selectively treat patients on the basis
of aberrations in protein function/activity within specific
biochemical pathways, rather than simply the level of
target antigen expression [16]. FRET-FLIM imaging of
protein function and protein-protein complex formation
could potentially improve patient selection for targeted
therapy, by specifically identifying for each patient
whether the targeted pathway is active in a particular
tumor sample, thus truly tailoring medicine to each
individual.

In the context of proteomics, there are several key
functional events that are crucial for a better understanding
of how the ~23,000 proteins encoded in the human genome
are coordinated and regulated. In this article we will focus
mainly on two categories of events. First is the formation of
protein networks, comprised of protein-protein interactions
between direct binding partners rather than through an
intermediate bridging protein. The second is a group of
further post-translational modification events including
protein phosphorylation, glycosylation [17], sulphatation,
acetylation and ubiquitinylation [18]. These processes
increase the heterogeneity of the proteome, compared to

1 Significant advances in understanding normal cell function and in
developing successful strategies for therapeutic intervention in disease
will increasingly depend on our ability to study the expression, post-
translational modifications and formation of protein complexes and
networks in the cancer cells. Our definition of “Optical Proteomics”
(please refer to http:www.opticalproteomics.org) broadly refers to the
use of optical techniques to provide all these types of information
from intact cells and tissues without disrupting the normal protein or
cell function
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the genome. This diversity is further increased by proteome
interactions with the genome. The proteome differs between
and within tissues as a function of time, cell cycle and
environment.

In the following section, some of the technologies
utilized in preclinical and patient-based clinical optical
proteomic studies of cancer are outlined.

Cancer tissue banks and tissue microarrays

Cancer tissue and data banks are of crucial importance for
large-scale optical proteomic studies. Formalin-fixed

paraffin-embedded (FFPE) tissue is the most abundant
source of archived tumor material available and has been
prospectively collected in many institutions for decades.
Thirty-year archives exist from international collaborative
studies. Original FFPE donor tissue blocks are used to
produce tissue microarrays (TMA, Fig. 1) and are rapidly
fixed in formalin prior to paraffin processing. FFPE is not
suitable for all biomarkers and so fresh frozen tissue and
DNA are also archived. A well-annotated resource with a
rich complement of clinical data has great potential in the
search for a cancer biomarker.

Tissue and data banks must be licensed by the Human
Tissue Authority and should maintain and continue to

Fig. 1 Tissue microarray (TMA)
block created using a micro-
arrayer in the Guys /KCL Breast
Tissue Bank.a The Beecher
Microarrayer. b A wax core is
cut and c removed from the
recipient TMA block. d A
smaller bore tissue core is
removed from one of multiple
donor case original tumor
blocks. e The donor tissue core
is lowered into the space created
in the wax block. f New core
in position. g Complete TMA
block and one H&E stained
TMA section on a glass slide.
Each TMA block is sectioned
in slices 3–5 mm thick and
mounted on charged glass slides.
De-waxing of the TMA section
is performed for antigen retrieval
prior to standard immunohisto-
chemistry or fluorophore-
conjugated-antibody staining
techniques. (H:left) TMA stained
with a Cy2 labeled antibody to
ezrin (mAb 2H3, middle) imaged
at x10 power and (right) imaged
at x40 revealing more detailed
membranous ezrin staining
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accrue archived cancer material. Tissue, blood and clinical
data can only be prospectively collected on patients
following informed consent. Complete and verified
clinical-pathological data on every patient must be carefully
template-linked to each TMA tissue core. The fact that
clinical outcome is known for each case is pivotal to tissue
and data bank studies. Putative links between a potential
biomarker and relapse data can therefore be immediately
ascertained. A 2006 review of proteomics related to breast
cancer concluded that technologies that use FFPE tumor
tissue will have the greatest impact, as FFPE tissue is the
most abundant source of cancer tissue, allowing for a well-
constructed hypothesis to be tested [19]. Any such
biomarker would require validation prior to use on cancer
tissue at first diagnosis to delineate individual patient risk
profile.

TMA technology was introduced in 1998 as a tissue
preserving, high throughput (HTP) technique allowing
study of multiple markers in large sample sets. TMA
technology provides patient material suitable for evaluating
and validating DNA amplification using fluorescence in
situ hybridisation (FISH), and protein levels using immu-
nohistochemistry. TMAs provide a cost-effective method
for examining multiple biomarkers on a large number of
patients, both retrospectively and prospectively. In a large
series of cases it is possible to perform multiple assays on
consecutive sections without significant depletion of refer-
ence tissue resources. TMAs thus facilitate the survey of
large numbers of tumors simultaneously, allowing the
rapid analysis of hundreds of markers in the same set of
specimens [20]. The evidence that TMAs are equivalent to
traditional whole tissue specimens was vital for the
technology to gain widespread acceptance [21]. In less
than ten years the validated technique has been proven for
many different markers on various tumor types in multiple
studies [22].

Direct observation of cancer phenotype and protein
distribution within cancer tissues using optical methods
has a long history in the field of medical diagnosis. The
biomolecular specificity possible with optical methods
has been particularly valuable in microscopy and histo-
pathology. The application of optical histology methods
to the modernized version of TMAs [20], which allow
examination of high numbers of patient samples, has
become the most used proteomic technique in high-
throughput molecular pathology research [23]. More
quantitative, optically based techniques with a high linear
dynamic range of detection are required.

Immunohistochemistry has limitations, such as the
subjectivity of manual scoring which is only semi-
quantitative, and exhibits nonlinearity of the staining
intensity [23]. In this review novel high-throughput assays
based on advanced optical techniques are described that can

report on protein modifications beyond the level of protein
expression and distribution.

Fluorescence: fluorescent protein transfection,
fluorescent probes and fluorophore-conjugated proteins

A fluorophore is a molecule capable of absorbing light
energy at specific wavelengths and re-emitting this energy
at higher wavelengths. Fluorescence is the energy loss
process through the emission of light by excited molecules
as they revert to the ground state. The fluorescence lifetime,
τ (tau), is the average time that each fluorophore remains in
an excited state [24]. Förster resonance energy transfer,
FRET, is the process of energy transfer from an excited
donor fluorophore to an acceptor fluorophore in close
proximity (Fig. 2). For FRET to occur, spectrally over-
lapping fluorophores must be in close proximity. FRET
efficiency (FRETeff ) depends on the distance between the
two molecules (donor and acceptor fluorophores). The
Förster radius, R0, is the distance at which FRETeff is half
its maximum value (typically 2–10 nm [25]). R0 further
depends on the spectral characteristics of the fluorophores.
This energy transfer is indirectly proportional to the sixth
power of the distance between the two fluorophores. This
fact makes FRET a powerful indicator of molecular
proximity, which in practice can only be observed if
proteins are interacting (Table 1). A far-field technique
can thus be used to provide information at distance scales
normally associated with near-field techniques.

If a protein is labeled with a donor fluorophore and a
second protein labeled with an acceptor fluorophore, then
FRET between donor and acceptor is interpreted as the
interaction of these proteins. Protein-protein interactions
within a cell can be studied using microscopy methods by
tagging the protein of interest with a fluorophore and
introducing DNA coding for the protein to the immortalized
cancer cell. Multiple proteins can be imaged in a single cell
by transfecting each protein of interest with a different
fluorescent tag and performing sample excitation and image
acquisition at appropriate wavelengths.

Alternatively, fluorophores can be directly conjugated to
antibodies against proteins involved in cancer cell migra-
tion (Fig. 3). When such an antibody is applied to cancer
tissue the fluorescence reports on the location where each
protein is present. Automated computer algorithms can
rapidly and efficiently analyze the images of fluorescently
stained tissue, thus quantifying levels of protein expression
and subcellular localization. Several proteins can be labeled
with different fluorophores enabling simultaneous assess-
ment of multiple proteins in a single tissue section,
including their colocalization [26–28], by automatically
altering the excitation wavelength of the microscope whilst
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capturing images in appropriate fluorophore emission
wavelength channels. Colocalization studies, while useful,
can only determine the presence or absence of the
fluorophore(s) on a distance scale limited by the resolution
of the microscope used: in practice this is limited to around
250–500 nm in most automated systems. However, the
fluorescence signal contains further information about the
biophysical environment of the fluorophore and ultimately
the tissue in which it is imaged [29]. A specific phenomenon,
Förster resonance energy transfer, FRET, can be exploited to
provide information at distance scales far below the
optical resolution of the microscope. By using pairs of
fluorescently labeled antibodies applied to tissue specimens
from tumor samples, nanometer proximity between the
fluorophores can be determined. Combined with imaging,
this is a powerful approach, as FRET yields proximity
information well below the optical resolution limit that can
be achieved by colocalization imaging of two fluorophores
[29].

Fluorescence lifetime imaging microscopy

The use of FLIM to measure FRET in live and fixed cells
has significantly improved our understanding of the
molecular pathways by which extracellular and environ-
mental signals are sensed by breast cancer cells, transduced
through the cell signaling machinery, in order to trigger
remodeling of the cytoskeleton, thus leading to cancer cell
invasion and metastases. These assays provide important
spatiotemporal information about the post-translational
modifications (e.g., protein phosphorylation [30–33], ubiq-
uitination [34]/sumoylation [35], conformational change

associated with, e.g., GDP-GTP exchange [36–38]), pro-
teolytic processing [39], as well as interactions between
signaling receptors (integrins, CD44, chemokine receptors
and receptor tyrosine kinases (RTK)), protein kinases and
many cytoskeletal remodeling proteins [40–51]. FRET-
FLIM techniques have reported on signaling processes in
archived pathological material [30, 52, 53]. Measuring
FRET on TMAs allows in situ quantification of post-
translation modifications. Specifically, a two-antibody
FRET approach has been applied to human cancer tissues
to detect the nano-proximity between a donor fluorophore-
conjugated anti-protein kinase C (PKC) or anti-epidermal
growth factor receptor (EGFR) antibody, and an acceptor
fluorophore-labelled phospho-specific antibody, providing
a highly specific quantification of PKC7 or EGFR
phosphorylation [52, 53] in cancer tissues.

A major obstacle to the analysis of protein function and
protein complex formation in disaggregated breast cancer
tissues is contamination of epithelial components by the
high admixture of non-neoplastic stroma and inflammatory
cells (fibroblasts, immune cells, blood vessels). By using
FRET-FLIM imaging approaches on FFPE tissue sections,
which retain architecture, relevant portions of the tissues
can be chosen for assessment. Furthermore, preservation
of protein phosphorylation and protein complexes is
improved due to the absence of a protein extraction
procedure.

Data analysis

High throughput, automatically acquired imaging of protein
interactomes in cells and tissues yields data on multiple

τ τ

Cy2 is photo-excited in isolation Cy2 photo-excited in close proximity to Cy3
FRET occurs: τ shortens τ remains long 

donor
emission

MP/SP laser 
excitation

donor
emission

acceptor
emission

FRET

Fig. 2 Jablonski representation of FRET As a fluorophore absorbs
light it is excited from the ground state (S0) to a higher vibrational
level (S1=first electronic state, S2 etc). At each energy level it exists
in a number of closely spaced vibrational energy levels (horizontal
lines). Fluorescence results when a molecule returns to S0 from the
lowest energy vibrational state of S1. The length of time spent in the
higher energy state prior to reverting to the ground state is termed tau,

τ, the fluorescence lifetime, and is typically in the pico- to nano-
second range. The donor fluorophore (e.g., Cy2) is excited in isolation
(left) if donor and acceptor (e.g., Cy3) fluorophores are in close
proximity, energy is transferred from the excited donor fluorophore to
the acceptor fluorophore, generating an excited acceptor molecule that
in turn can then emit fluorescence by reverting to its ground state
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protein pairs. These dense multiparametric data require an
analysis method that is rational, rapid and robust. Novel
methods of interrogating the optical data acquired in
relation to clinical outcome are necessary.

Traditional histopathological scoring systems, describing
the expression proteins in breast tumors offers information
based on tissue morphology and architecture. Such scoring

systems can be used in isolation by individual histopathol-
ogists or a consensus score can be arrived at, with multiple
scorers reviewing images together. Often these systems are
subjective and difficult to analyze, with wide inter- and
intra- observer variability. Automated scoring of protein
distributions performed with a computer algorithm is
desirable and indeed possible. Widefield images of fluores-

Table 1 Conditions for a successful FRET assay
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cent antibody-marked proteins can be used to automatically
score levels of protein staining in specific subcellular
locations; segmenting membrane, cytoplasm and nucleus.
Iterative fitting can derive a scale and generate masks that
segmenting regions and automatically scoring the staining
within each compartment. Such scoring systems are
rational, rapid and robust and highly economical in terms
of expert histopathologist time. They also circumvent the
issues of score variability.

Automated analysis of protein colocalization is also
possible. Correlation maps between the widefield images of
two or more proteins can be produced and the colocalized
areas can be found by thresholding out the area of low
correlation [54]. Background pixels corresponding to areas
where overlap distribution [26] is low and can be efficiently
masked out. The highly colocalized areas between the two
stains are then found by calculating the Pearson distribution
[27] and masking out the regions where the local Pearson
coefficient is low. The colocalization intensity image of the

remaining highly colocalized pixels can be built and its
average value calculated.

Automated microscopy generates large image datasets
which can be time consuming to process [55]. This is
particularly true for FLIM where exponential curve fitting
has to be performed to produce sets of parametric images
(e.g., lifetime and interacting fraction maps). These files
can be automatically analyzed to produce a distribution of
lifetime and an average lifetime. The analysis has been
made robust to noise and to low photon counts, providing
fast execution and amenability to automation and batch
processing [56]. Processing of this type can also be
performed on parallel processors or computer clusters
where more immediate results are required. Nevertheless,
a significant obstacle to more widespread application is the
considerably slower image acquisition time: accurate
determination of FLIM information is considerably slower
than more standard widefield methods. While numerous
acquisition technologies are available, acquisition speed is,
in general, inversely proportional to accuracy and propor-
tional to the likelihood of generating artifacts. Many recent
contributions have emerged in the area of FLIM analysis
[56–60] and offered different technical solutions to fluores-
cence lifetime imaging analysis. The technical details and
individual merits associated with each method are however
beyond the scope of this article.

The high dimensional optical data acquired in by FRET/
FLIM TMA experiments requires novel data analysis. For
instance, Bayesian machine learning algorithms or simple
artificial neural networks of the perceptron type [61] can be
used to relate input and output data according to the image
traits derived, termed the input data. Both clustering trees
and self-organizing maps (two dimensional, discretized
topology-conserving representations) [62] can be produced
to visualize these high-dimensional data.

Preclinical utility of FRET-FLIM assays

Cell line models of human cancers

In order to improve understanding of the basic biology of
cancer, immortalized cell line models of neoplasia are often
studied in the laboratory. FRET-FLIM assays in cell lines
have great power in progressing beyond biochemical assays
of protein interaction and network complexity. Furthermore,
preclinical data cell lines cancer studies can inform on how
aberrant oncogenic molecular pathways respond to drugs at
the individual protein level.

EGFR/HER signaling plays an important role in the
pathogenesis of a variety of tumor types. For instance, in
breast cancer, antibody therapy against HER2 has demon-
strated efficacy in patients with advanced breast cancer and

A

B

Fig. 3 Protein colocalization does not define interaction a Protein
proximity: when two proteins are close but not interacting, the
fluorophores to which they are attached are some distance apart, more
than 10 nm. FRET cannot occur between Cy2 and Cy3 (conjugated to
anti-ezrin and anti-PKCα, respectively). b Protein:protein interaction:
The conformational changes that occur upon interaction between ezrin
and PKCα bring the fluorophores into close proximity. FRET can
occur. Thus FRET distinguishes protein interaction from protein
proximity
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may prove to prevent metastases in the adjuvant setting
[63]. However, responses to HER targeted therapies do not
correlate with receptor levels [16], and tumors eventually
escape biological control. The basic molecular biology
behind this primary and secondary resistance is not yet
clear, but optical proteomics offers a novel approach in
answering these questions.

The HER2/HER3 heterodimer has been shown to
function as an oncogenic unit, with HER2 requiring
dimerization with HER3 to drive proliferation [64]. HER3
couples active HER2 to the phosphatidylinositol 3-kinase
(PI3K) intracellular signaling pathway. HER3 has also been
shown to recruit PI3K in gefitinib-resistant cells, thus
escaping gefitinib treatment [65]. Therefore, the quantifi-
cation of FRET between HER2 and HER3, indicating
heterodimer formation should be of functional significance
and has now been measured in cancer cells by FLIM
(Fig. 4a). The reported stabilizing effect of small molecule
inhibitors such as lapatinib on HER2/HER3 heterodimers
[66] can now be accurately quantified in cells and tissues in
situ.

In order to overcome problems with relative expression
levels of different protein-fluorophore constructs in cells, a
number of research groups have produced sensor probes,
whereby the proteins of interest are placed between the
donor and acceptor fluorophores. The Raichu-Cdc42 FRET
biosensor probe is one such example (Fig. 4b). This type of
intramolecular FRET sensor can be expressed in living cells
with negligible perturbation of endogenous protein function
[67, 68], and permits monitoring of the subcellular
“microenvironment” that regulates GTPase activities in
living cells. Such probes can be used to monitor protein
activity in a living tumor using intravital techniques (please
see the below section on preclinical molecular pathway
evaluation in animal models using optical imaging)
Furthermore, the probe plasmids can be delivered intra-
tumorally by electroporation in live, anaesthetized animals,
as described previously [69].

For monitoring localized small Rho GTPase activities
(Cdc42, Rac1, RhoA) in cells, YFP-Raichu-CFP probes
have been reported previously [70]. The original Raichu
probes were designed for intensity measurements of
sensitized acceptor emission to detect FRET. The benefits
of using donor FLIM to detect FRET are that it is largely
independent of fluorophore concentration, it is independent
of donor-acceptor stoichiometry (as long as the acceptor is
in excess) and light path length. It is therefore better suited
to studies in intact cells than intensity-based methods [32,
71]. We have established Raichu-FLIM [37], whereby upon
GTP binding, Rac1/Cdc42/RhoA exhibits a higher affinity
towards the corresponding RhoGTPase-interacting domain,
bringing the two different fluorescent proteins of the
biosensor into close proximity and enabling FRET between

GFP and mRFP1. FRET results in a decrease in the
observed GFP fluorescence lifetime (τ). The Raichu-Cdc42
fluorescence biosensor has been used to demonstrate spatio-
temporal images of EGF-induced Cdc42 activation in cancer
cells (see Fig. 4c).

Resistance to many biological treatments could be
understood better by imaging the recruited signaling path-
ways in response to drug combinations. Such mechanisms
are responsible for both primary resistance and diminishing
responses to targeted therapy. The mechanisms of action of
novel inhibitors can be further elucidated at the molecular
level by optical imaging, thus providing valuable preclin-
ical information on how tumor cells overcome their
vulnerability to targeted therapy. Translating such assays
into clinical benefit will guide the rational use of expensive
drugs. The disappointment of a tumor failing to respond to
targeted therapy could be challenged and overcome by
imaging the recruited resistance pathways, followed by
designing treatment combinations specific to each patient’s
tumor, in order to circumvent these mechanisms of
resistance.

Preclinical molecular pathway evaluation in animal models
using optical imaging

Animal imaging plays multiple roles in new drug develop-
ment by providing, in preclinical models, important
information which can lead to ways of improving cancer
patient management. The objectives of the preclinical
imaging activities [72] include: [i] monitoring the response
of both primary tumors and secondary metastases during
potential therapies and also assessment of tumor recurrence
upon cessation of treatment; [ii] analysis of the distribution
of agents within the body, i.e., pharmacokinetic studies, and
dose optimization; [iii] determination of the efficacy of an
agent against the activity of its intended target at the
molecular mechanistic level; and [iv] monitoring the effects
of agents on pathophysiological processes such as changes
in the vascular volume of tumors in response to blocking
proangiogenic signals.

Despite the enormous investment in genomics and
screening technologies over the past 20 years, the cost of
new drug discovery continues to rise while approval rates
fall [73]. In the drug discovery context, the desire to exploit
the wealth of the proteome has also come face to face with
the realization that knowing a target is not the same as
knowing what the target does, let alone knowing the effects
of a chemical inhibitor in diverse disease settings. For
instance, clinical studies of EGFR inhibitors have shown
response rates of the order of 5%–15% in a variety of
cancer types [74–77] and responses to ErbB-targeted
therapies do not however correlate necessarily with the
receptor levels [16]. Much needed is the means of
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Fig. 4 FRET/FLIM examples in cell-line models of cancer a MCF-7
breast cancer cells were transfected with HER2-GFP and HER3-
mRFP1. The HER2-GFP transmembrane receptor is seen within the
cell membrane and intracellular compartments. HER3-mRFP1 colo-
calized with HER2 at both cell membrane and several intracellular/
sub-plasmalemmal vesicles. In the example shown, the FRET
population, or fraction of interacting molecules (F2), was determined
using bi-exponential fitting and global analysis, as described [56].
HER2-HER3 receptor dimers were found to localize to both cell
protrusions (top arrow) and internal vesicular structures including
the sub-plasmalemmal endocytic compartment shown (white arrow)
b This cartoon shows the molecular domains of the modified Raichu
cdc42 biosensor in its inactive and activated state. Upon activation,

cdc42 bind the PAK1 domain and consequently brings the two
attached fluorophores in close proximity thus enabling FRET. The
level of FRET can be measured by the fluorescence lifetime decrease
of the donor fluorophore GFP. CAAX (or CAAX-box), genetically
engineered modification to the C-terminusof the probe to enable the
probe to monitor the activity-change at the plasma membrane [67]
c A431 cells expressing the Raichu-Cdc42 biosensor were stimulated
with EGF (100 ng/ml) for 10 min, and subsequently imaged by
multiphoton FLIM. Stimulated cells had a significantly greater
interacting fraction (F2) compared to unstimulated cells (p<0.02,
two tailed independent samples t-test). The results confirm that a
growth factor-induced increase in Cdc42 activity is a direct result of
EGFR activation
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monitoring the pathway responses to a specific targeted
therapy and their translation to organ and organism level
physiology.

Optical imaging techniques, in particular those which
can be used to reliably measure FRET between two protein
partners, have in recent years been used to monitor the
pathway response (within the proteome) to both chemical
and genetic perturbations, as well as its timing and
subcellular localization, within live/intact cancer cells ex
vivo. These assays provide important spatiotemporal
information about the post-translational modifications as
well as interactions between proteins. For determining
directly the efficacy of targeted cancer therapies, we have
now developed intravital FRET by FLIM assays in murine
models of human cancers.

In order to acquire intravital imaging microscopic
information in three dimensions, optical sectioning of a
sample and exclusion of out-of-focus light from fluoro-
phores outside the planes of interest is crucial. The latter
can be achieved by confocal laser scanning microscopy,
which uses linear single photon excitation (SPE) and a
confocal pinhole to achieve optical sectioning. However, all
fluorophores within the light path are excited and are thus
prone to photo-toxic effects and bleaching. Furthermore,
conventional SPE light is scattered in thick samples,
hampering the resolution of imaging in depth. By replacing
SPE with non-linear two-photon excitation (TPE, often also
termed MPE, multi-photon excitation) the excited volume
can be reduced drastically, thereby protecting the fluoro-
phores outside the plane of interest and achieving optical
sectioning via excitation of only the section of interest [78,
79]. TPE excitation is achieved by the use of less
phototoxic near-infrared light of approximately half the
excitation energy required to excite a fluorophore as
compared to SPE. Near-infrared light is also scattered to a
much lesser extent in tissue, thereby improving its
penetration depth and enabling controlled excitation of
fluorophores that are located even deeper within the tissue.
By combining TPE with laser scanning microscopy
(TPLSM), it was possible to increase the imaging depth
from tens of micrometres up to nearly 1 millimetre [80]
while protecting not only the fluorophores but also the
surrounding tissue from photo-damage. This technique was
successfully applied for imaging endogenous and/or intro-
duced fluorophores deep inside biological tissue [81–85].
An additional benefit of TPE is that it also enables the
label-free imaging of highly ordered structures like fibrillar
collagen via a process termed second harmonic generation
(SHG) [86]. SHG permits the collection of information
regarding structure and concentration within biological
material as long as there are sufficient highly ordered
structures available [87]. For instance, many solid tumors
have a peripheral capsule, which contains high concen-

trations of fibrillar collagen and thereby the tumor boundary
can be easily visualized. In the context of cancer invasion
and metastasis, intravital deep-tissue TPLSM has provided
further insight into processes like the invasiveness of tumor
cells and the efficacy of drugs affecting cellular motility
[72, 88]. This technique was also used to investigate agents
that modify the extracellular matrix and the diffusion of
components of the interstitial fluid [89]. Furthermore, the
leakiness of the (tumor) vasculature [90] and the effects of
antiangiogenic drugs [91, 92] have been studied, as well as
the efficiency of oxygen delivery [93–95].

In order to establish in situ measurements of the
aforementioned pathway/proteome response in thick samples
of living biological tissue, we aimed at combining TPLSM
with the advantages of measuring FRET by FLIM and
developing this technology for intravital FRET imaging in
animal models of cancer. With the development of this
technique, it should be possible for the first time to gain
insight into, e.g., the efficacy of an agent against the activity of
its intended target within tumor cells, cells of the tumor
microenvironment, or metastasizing cells in vivo.

Currently, the use of intravital FRET-FLIM techniques to
monitor protein activity or protein-protein interactions is an
emerging technology and the first promising results were
reported very recently [96]. An example of the state-of-the-art
of this novel imaging technique to probe a specific protein-
protein interaction that is purported to support breast cancer
metastasis is depicted in Fig. 5. Mammary adenocarcinoma
cells were genetically modified to express a fusion protein of
green fluorescent protein (GFP) and the chemokine receptor
CXCR4, which is implicated in metastasis of many types of
cancer [97, 98]. Protein kinase C alpha (PKCα) was reported
to be a modulator of CXCR4, recycling in human breast
cancer cells by directly interacting with this receptor [46].
We fused PKCα to a monomeric red fluorescent protein
(mRFP1) and introduced this fusion protein into the
mammary cells already stably expressing CXCR4-GFP. In
this new cell line, CXCR4-GFP is the molecule being
observed by FLIM and serves as the FRET donor. Upon its
interaction with PKCα-mRFP1 (FRET acceptor), a reduction
in the fluorescence lifetime of GFP can be observed that
accounts for a direct protein-protein interaction between
CXCR4 and PKCα. Following xeno-transplantation of such
modified cancer cells into an immuno-compromised mouse
model, we obtained solid tumors after several weeks of
growth. The animal was imaged under anesthesia in a
temperature-controlled environment and fluorescence life-
time images were acquired by intravital FLIM as described
[96]. The collagen-rich tumor boundary in this animal model
was imaged by SHG and the area where the plasma
membranes of the first tumor cells were observed was
defined as the tumor edge. All further images were acquired
parallel to this plane and depth values were assigned relative
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to this optical section. Two-photon-excited GFP fluorescence
intensity images show that deep-tissue imaging was
performed with no loss in lateral resolution while increasing
imaging depth (Fig. 5). FRET between GFP and mRFP1
results in shortening of the fluorescence lifetime (τ) of GFP
(red on the pseudocolor scale). The fluorescence lifetimes
determined within the tumor core (60 μm, 100 μm from the
edge) are constant and in agreement with the values obtained
for a tumor in the absence of a suitable acceptor fluorophore
(data not shown) suggesting no direct interaction between
CXCR4-GFP and PKCα-mRFP. Interestingly, we found that
in optical sections close to the tumor boundary (20 μm from
the edge), there is interaction between CXCR4 and PKCα as
revealed by the reduced fluorescence lifetimes. We are
currently investigating the pathophysiological significance
of the assembly of this pro-migratory receptor:kinase
complex [46], close to the edge of tumor. Small molecule
inhibitors that can reverse this protein complex assembly
may perturb this early stage of cancer invasion. Intravital

FLIM is a technology that for the first time allows us to
perform in situ protein:protein interaction measurements by
FRET not only in vitro in two dimensions, but also in vivo
in three dimensions. Further development of this imaging
technology will find utility in preclinical research and
facilitate novel therapeutic and associated biomarker
discovery.

Clinical utility of FRET-FLIM assays

Utility of FRET-FLIM assays in archived patient material

Many studies have described protein distribution and
expression level changes which correlate with prognosis
across the spectrum of human cancers. One such study
applied immunohistochemistry techniques to tissue micro-
arrays (TMA) of breast cancer. Patient clusters were identified
according to their protein expression and differences were
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Fig. 5 Combination of TPLSM
with FLIM measurements
reliably reveals fluorescence
lifetime differences in vivo.
Tumors were established by
subcutaneous injection of
mammary adenocarcinoma cells
stably expressing CXCR4-GFP
and PKCα-RFP into immuno-
compromized mice. The animals
were imaged alive under
anesthesia using a two-photon
laser scanning microscope
capable of detecting second-
harmonic-generated (SHG) and
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(FLIM) data, and z-stacks were
acquired. Three optical image
planes are shown beneath a
cartoon for orientation purpose.
Depth values represent distances
of the corresponding optical
section relative to the tumor
boundary. Monochrome images
represent two-photon intensity
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from these was used to calculate
the corresponding fluorescence
lifetime maps on a pixel-by-pixel
basis. The fluorescence lifetime
images are pseudo-colored to
facilitate recognition of areas
with increased interaction
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noted in terms of established prognostic factors and clinical
outcomes [99]. This study demonstrated that tumors which
appear similar on the basis of established prognostic
methods, display wide heterogeneity when examined with
respect to protein expression.

Large-scale quantification of specific protein-protein
interactions in patient-derived tissue samples has not yet
been documented. In our laboratory we have achieved semi-
automated (with pathologist input for selection of tumor
regions), spatially resolved and high-resolution FRET-FLIM
assays using formalin-fixed paraffin-embedded tissue. The
high volume of data acquired was analyzed using novel
artificial neural network techniques and correlatedwith patient
clusters and clinical outcome (Fig. 6 and Kelleher et al,
unpublished data).

This technology platform is evolving. Our prototype
optical proteomic biomarker, based on a small protein
network involved in cancer cell metastasis, has yielded
statistically significant prognostic information. Further
prospective validation is required prior to demonstrating
clinical significance. Nevertheless it demonstrates how a
combined optical imaging/mathematical modeling approach
can offer additional information, pertaining to protein
function and network formation, over simple intensity-
based protein quantification.

Advances in molecular and cell biology are providing
an improved understanding of cancer, from the germ line
to specific somatic changes of one patient’s cancer. The
potential for individualizing prognosis is significant, and
allows patients with an excellent prognosis to be spared
the toxicity of adjuvant therapy. By assessing molecular
pathways in those at high risk, improved selection of
targeted therapy will ensue. Expensive drugs will be
tailored to the patients whose tumor biology predicts
response.

FRET-FLIM assays have further potential clinical
utility in the assessment of response to targeted therapy.
In the neoadjuvant setting, repeat tumor biopsies could
be analyzed to assess whether the specific aberrant
pathway blocked by the targeted biological drug is
indeed perturbed appropriately. In instances where tumor
tissue is not available, FRET-FLIM assays could also be
performed in surrogate tissue samples from patients
receiving treatment. Clinicians could choose treatment
rationally for each patient and tailor subsequent therapies
based on that individual’s molecular response or resistance
mechanisms.

Discussion

Significant advances have been made in cancer treatment
over the past 50 years, many of them empirical, more

latterly based on international randomized clinical trials
involving thousands of patients. Early diagnostic screen-
ing program, improved surgical procedures, advanced
radiotherapy techniques and combinations with adjuvant
cytotoxic drugs have all contributed to survival improvements
across the spectrum of human cancers. Modifications to all of
these treatment modalities are continually reviewed, but
further improvements in cancer survival are likely to be
modest.

Rational biological treatment of cancer, targeted at
specific molecular pathways has shown efficacy and
promises a changing future in oncology. The current
approach is to combine existing breast cancer therapies
with novel agents that interfere with major signaling
pathways. Nonetheless, targeted therapy is no panacea.
Though it holds great promise, many patients do not
respond to targeted drugs de novo, and countless more
develop acquired resistance. In this technologically
advanced post-genomic era, future advances in cancer
treatment must address both the genetic profiles and
proteomic signatures of individual neoplasms. Assays
aimed at the identification of tumors with explicit
changes in the molecular pathways that are specific to
individual patients, will identify the population of
patients most likely to benefit from specific targeted
treatment. Only by discovering the oncogenic pathways
that propel each individual’s cancer we can hope to truly
tailor therapy to all patients with cancer. Dynamic
personalized therapy, changing as the tumor evolves,
will improve treatment efficacy and prolong survival for
many cancer patients.

The introduction of novel targeted therapeutics has
revolutionized cancer care and may offer the potential for
cure to more patients. Better selection of patients likely to
respond to these drugs will reduce costs significantly. If a
goal of translational research is to prevent cancer deaths,
then basic science must continue to interrogate the
metastatic process. Optical proteomics aims to devise new
prognostic tools by analyzing the detailed molecular make-up
of individual tumors and estimating the metastatic and
survival potential therein (Fig. 7).

In vitro diagnostic multigene index assays (IVDMIAs)
have been generating excitement for more than a decade,
demonstrating clinical utility in select groups of patient.
Prospective clinical trials have not yet reported improved
patient outcome on the basis of treatment decisions made
according to IVDMIAs, though it is hoped that this will
be the case in the near future. Combined genomics and
proteomics should reduce healthcare costs by reducing
the number of cancer patients selected for adjuvant
treatment without compromising clinical outcome. Toxicity
could be spared and resources focused to combat metastatic
cancer.
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Fig. 6 FRET-FLIM imaging of protein complexes in patient tumor
material. The PKCα-ezrin protein complex was first detected by FRET/
FLIM and was shown [45] to promote directional cancer cell motility
and hence the metastatic potential of MCF-7 cells. The direct interaction
between endogenous ezrin and activated PKCα has been demonstrated
by multiphoton FLIM, in patient-derived cancer tissues that have been
labeled with Cy2-labeled anti-ezrin-antibody (2H3) and Cy3 labeled
anti-T(P)250-PKCα antibody [30]. FRET efficiency (in each pixel)=1 -
τda/τcontrol, where τda is the Cy2 lifetime of tumor section costained
with Cy2-labelled anti-ezrin-antibody and Cy3 labeled anti-T(P)250-
PKCα antibody; and τcontrol is the average Cy2 lifetime (for the whole
field of view) measured in the absence of the Cy3 acceptor-labeled
antibody. Another control is provided by an irrelevant Cy3-labeled
antibody against a protein that is known not to interact with ezrin. In
normal breast tissue the labeled proteins are close but not interacting;

the fluorophores to which they are attached do not show FRET because
the proteins are too far apart (“cold” colors in the FRET efficiency map).
In contrast, in the sample of invasive breast cancer, not only are ezrin
and PKCα close (white arrows) but they are also interacting (“warm”
colors in the FRET efficiency map). The anti-T(P)250-PKCα antibody
is known to interact with a non-PKC, 180 kDa nuclear antigen [30];
both membrane and nuclear staining can therefore be detected in the
tumors. This antibody specificity issue is overcome by donor FLIM
which only quantifies the population of Cy2 in close proximity to Cy3
acceptor, i.e., the assay requires only the donor fluorophore-labeled
antibody (in this case an in-house anti-ezrin monoclonal antibody with
proven specificity [45]). The resolution of the FRET efficiency map
does not match that of the corresponding intensity map because pixel
binning was required to increase the photon counts for lifetime
estimation
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The optimal use of “omic” technologies will require
close collaboration between oncologists and basic scien-
tists. In the analysis of high dimensional data, great care
must be taken to validate results in a separate patient
population. To this effect, statisticians, mathematicians,
bioinformaticians and epidemiologists all have a crucial
role to play in this translation of exciting, novel
laboratory research into “real-life” benefits for cancer
patients. There are surmountable obstacles to overcome
to achieve the goal of translating advanced optical

proteomic science into real-life benefit for cancer patients
and their physicians.
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