
Modelling the in situ solar and thermal radiation environment for future entry probe missions to Venus

P.G.J. Irwin, C.F. Wilson, J. Alday (AOPP, University of Oxford, UK), M. Roos-Serote (Lightcurve Films),

J. Barstow (Open University, UK),

S. Aslam (NASA Goddard Space Flight Center, USA).

patrick.irwin@physics.ox.ac.uk

Motivation

- Work arose from study of a Net Flux Radiometer for possible inclusion on a probe mission to Uranus or Neptune (EPSC2020-306).
- We wanted to check the veracity of our calculations and realized that with Venus we have in situ observations from Pioneer Venus and Venera landers to compare with.
- Since the radiative transfer model we use (NEMESIS) can be applied to any planet it was straightforward to reconfigure for Venus.
- In doing so, we actually captured and fixed a significant bug!

In situ observations of Venus' atmosphere

- Pioneer Venus (Large probe).
 - December 9th 1978 at 4.4°N, 304°E
 - solar zenith angle 65.7°
- Venera 11.
 - December 25th 1978
 - 14°S, 299°E, solar zenith angle 20°
- Venera 13.
 - March 1st 1982
 - 7.5°S, 303.5°E, solar zenith angle 36°
- Venera 14.
 - March 5th 1982
 - 13°S, 310°E, solar zenith angle 35.5°

Pioneer Venus Clouds

- Knollenberg and Hunten (JGR <u>85</u>, 8039, 1980) analyse Pioneer Venus LCPS data and find three main H₂SO₄ cloud layers and 3 main particle types.
- Cloud model later updated by Crisp (Icarus <u>67</u>, 484, 1986) with mode 2 split. Further updated by Pollack et al. (Icarus <u>103</u>, 1, 1993). H_2SO_4 particles with sizes:

Mode	Mean Radius (μm)	σ		
Mode 1	0.30	0.44		
Mode 2	1.00	0.25		
Mode $2'$	1.40	0.21		
Mode 3	3.65	0.25		
$n(r) \propto r^{-1} \exp[-(\ln r - \ln \bar{r})^2/(2\sigma^2)]$				

 Tomasko et al. (JGR 85, 8167, 1980) give estimates of opacities of different cloud layers and estimate solar flux absorbed at ground to be 17 W/m².

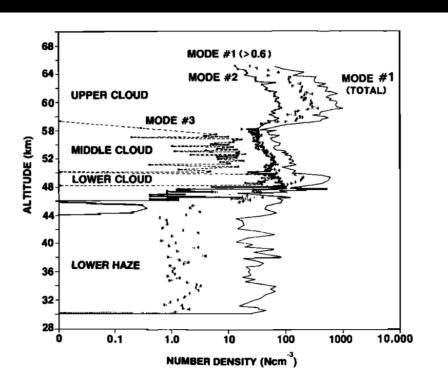
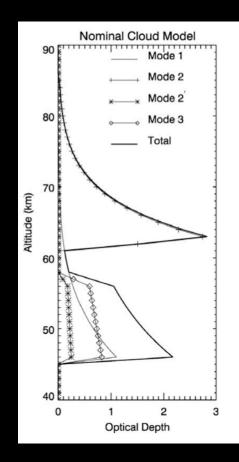


Fig. 16. Modal partitioning of number density. Mode 1 is shown for both the sizes measured by the LCPS and the total expected from modeling efforts. The greatest difference is in the lower haze where we also are least confident.

Pioneer Venus Clouds


- Knollenberg and Hunten (JGR <u>85</u>, 8039, 1980) analyse Pioneer Venus LCPS data and find three main H_2SO_4 cloud layers and 3 main particle types.
- Cloud model later updated by Crisp (Icarus <u>67</u>, 484, 1986) with mode 2 split. Further updated by Pollack et al. (Icarus <u>103</u>, 1, 1993). H_2SO_4 particles with sizes:

Mode	Mean Radius (µm)	σ	
Mode 1	0.30	0.44	
Mode 2	1.00	0.25	
Mode $2'$	1.40	0.21	
Mode 3	3.65	0.25	
$n(r) \propto r^{-1} \exp[-(\ln r - \ln \bar{r})^2/(2\sigma^2)]$			

- Tomasko et al. (JGR 85, 8167, 1980) give estimates of opacities of different cloud layers and estimate solar flux absorbed at ground to be 17 W/m².
- Barstow et al. (Icarus 217, 542, 2012) update cloud opacities to model Venus Express/VIRTIS data.
- Initial studies found too little absorption at short wavelengths. Properties of mode 1 particles modified to simulate UV/blue absorber coefficients of Crisp (1986). Otherwise use 85% concentration and coefficients of Palmer and Williams (1986).
- Found bug in code with Rayleigh-scattering single-scattering albedo!

Mode	Barstow	Tomasko
Mode 1	9	5.9
Mode 2	13.7	3.4
Mode 2'	2.7	5.7
Mode 3	8.9	17.6

Column opacity (630 nm)

NEMESIS ANALYSIS

- Non-linear Optimal Estimator for MultivariatE Spectral AnalySIS
- Originally developed for solar system studies, but extended for exoplanets/brown dwarfs.
- Core retrieval code based on Optimal Estimation, but also extended for Bayesian Nested-Sampling retrievals.
- For multiple-scattering NEMESIS uses plane-parallel Matrix operator scattering code.
- Line-by-line and correlated-k used for gaseous absorption.
- k-tables generated from HITRAN and other sources

Venera 11,13,14

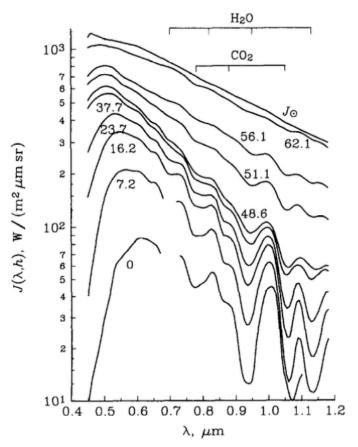
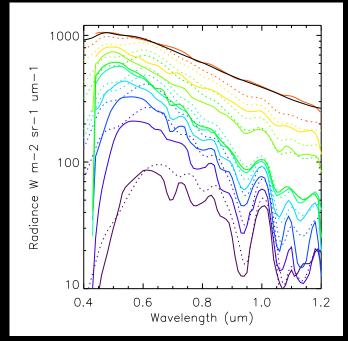
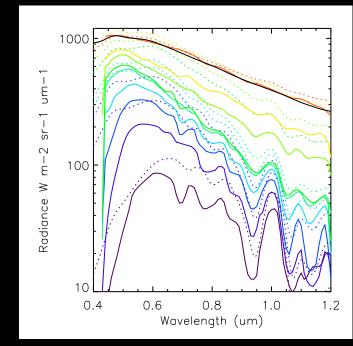
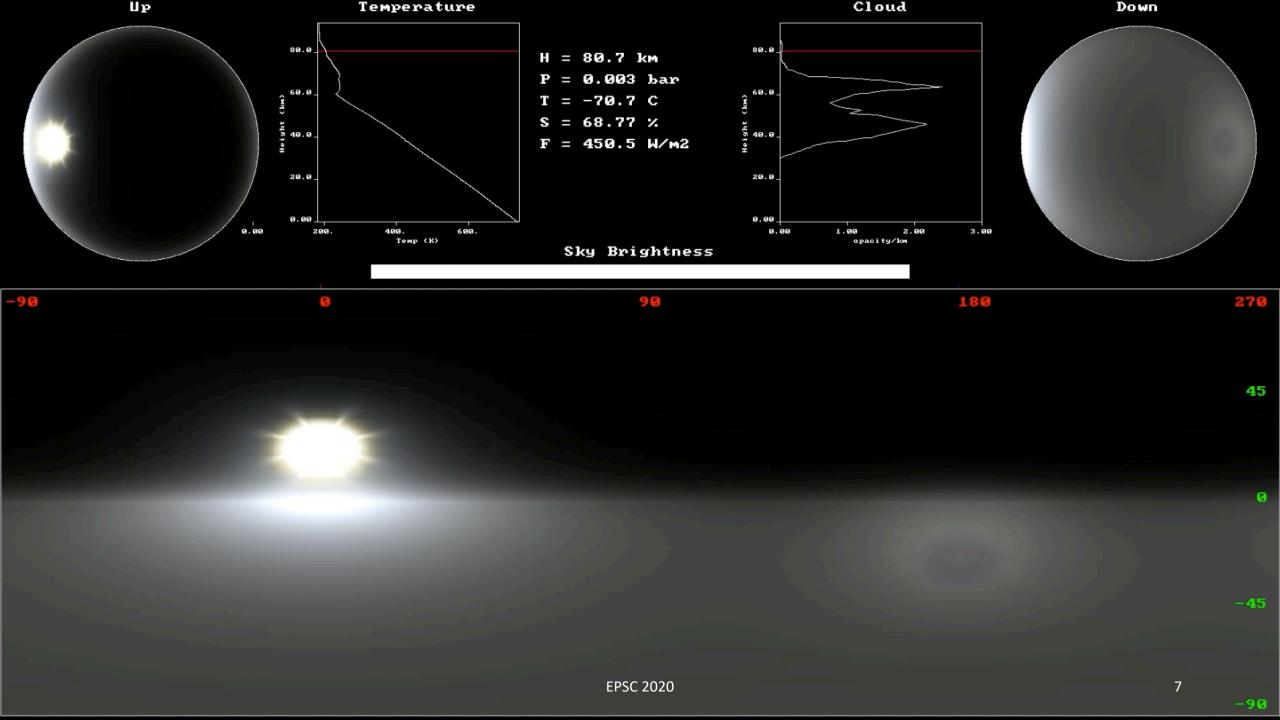
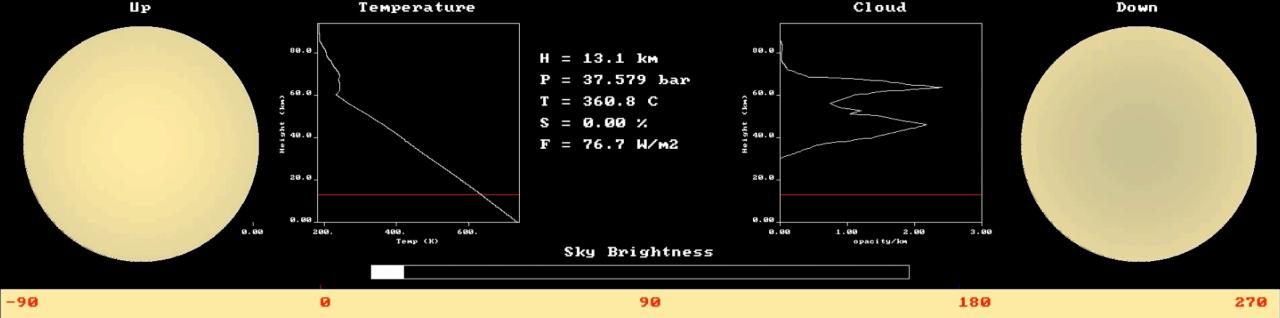




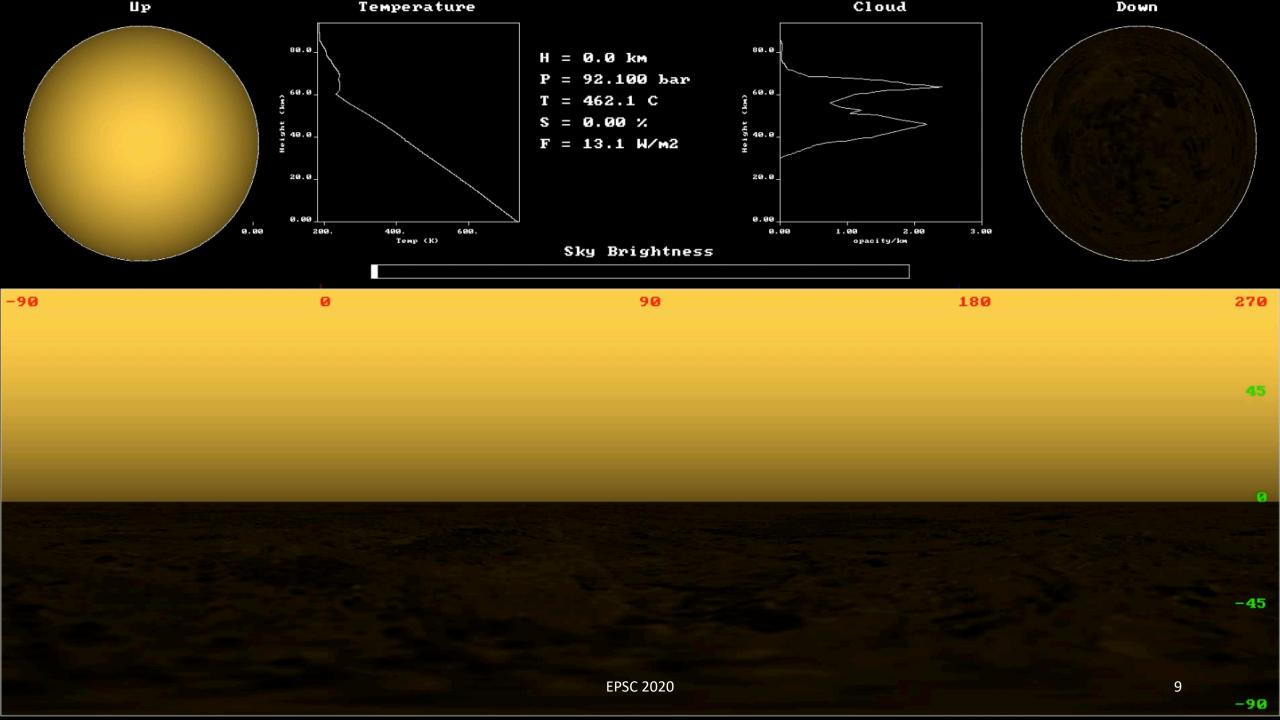
Fig. 1. Examples of the Venera 11 spectra of solar radiation scattered in the Venus atmosphere at some altitudes h (numbers near curves) above the ground

- Ignatiev et al. (PSS <u>45</u>, 427, 1997) show spectra measured by spacecraft in upwards direction at different altitude.
- Used to compare simulations.

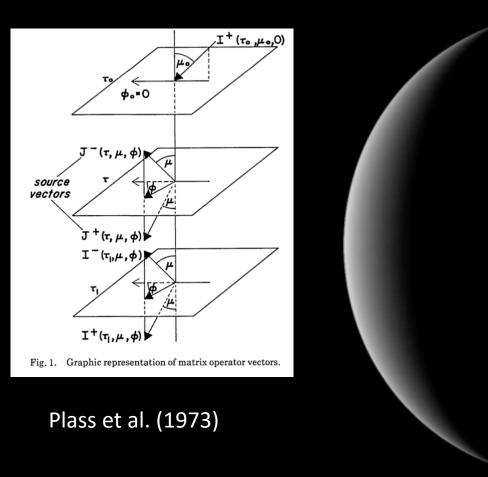



Barstow clouds

Barstow clouds – Tomasko opacity



-45


45

0

3D-Modelling with Plane-Parallel Code

- Matrix-Operator multiplescattering code assumes planeparallel atmosphere.
- However can be used to simulate 3-D planets by assuming conditions locally plane-parallel, but setting solar zenith, viewing zenith and azimuth angles to those computed at points on planet using 3-D geometry.

EPSC 2020

Conclusion

- NEMESIS provides accurate modelling of probe NFR data.
- But work in progress!
 - Need to work on cloud model to match better the observations of Pioneer Venus and VENERA 12, 13 and 14.
 - Need to implement a fitting procedure to fit the cloud opacity at each level. Once done, can also revisit the retrieval of the H₂O abundance profile.
- Can also use model to simulate overall illumination conditions for a Venus entry probe.
- <u>https://www.youtube.com/watch?v=YkeWhgwp7Xo&t=7s</u>
- <u>https://www2.physics.ox.ac.uk/news/2020/07/24/flights-of-fancy-exploring-uranus-and-landing-on-venus</u>

