$$ab = \frac{1}{4}[(a+b)^2 - (a-b)^2]$$

Toby Lam

October 21, 2022

- Title identity comes from $a^2 b^2 = (a + b)(a b)$
- The main idea is that we can express an arbitrary product as a difference of squares
- Similar to Cauchy-Schwarz

$$ab = \frac{1}{4} [(a+b)^2 - (a-b)^2]$$
$$\langle u, v \rangle \le \langle u, u \rangle \cdot \langle v, v \rangle$$

Basic Structure

We're going to try to prove theorems using this structure We would generalise this later on

Theorem

Suppose $P \subseteq V$. Show that $\forall x, y \in V$, if $x, y \in P$, then $xy \in P$

- 1 Prove that linear combinations of elements in P are in P
- 2 Prove that if $x \in P$, then $x^2 \in P$
- Use the identity to deduce that

$$xy = \frac{1}{4}[(x+y)^2 - (x-y)^2] \in P$$

Integrability

Theorem

If f, g are integrable then fg is integrable.

- Prove that linear combinations of integrable functions are integrable
- 2 Prove that if f is integrable then f^2 is integrable
- ① Use the identity to deduce that $fg = \frac{1}{4} \left[(f+g)^2 (f-g)^2 \right]$ is integrable

Algebra of Limits

Theorem

If
$$(a_n) \to L, (b_n) \to M$$
 then $(a_nb_n) \to LM$

- Show that linear combinations of convergent sequences converges to the linear combinations of the limits.
- 2 Prove $(a_n^2) \rightarrow L^2$ if $(a_n) \rightarrow L$
- **3** Use the identity $a_nb_n=\frac{1}{4}\big[(a_n+b_n)^2-(a_n-b_n)^2\big]\in P$ to show $a_nb_n\to LM$

Algebra of Limits

Lemma

If (a_n) converges to L, (a_n^2) converges to L^2

Proof.

Take $\epsilon > 0$. We may assume that $\epsilon < 1$. Suppose $a_n \to L$, then by definition $\exists N \in \mathbb{Z}$ such that if $n \ge N$ then $||a_n - L|| < \epsilon$. We have,

$$||a_n^2 - L^2|| = ||a_n + L|| \cdot ||a_n - L||$$

$$\leq (||a_n|| + ||L||) \cdot ||a_n - L||$$

$$\leq (2||L|| + \epsilon) \cdot \epsilon \leq (2||L|| + 1) \cdot \epsilon$$

As (2||L||+1) is constant, this is enough to show that (a_n^2) is convergent.

Product Rule

Theorem

If f, g is differentiable then fg is differentiable and (fg)' = f'g + fg'

- Show that linear combinations of differentiable functions are differentiable
- ② Prove that if f differentiable then f^2 differentiable and $(f^2)' = 2f \cdot f'$
- **3** Use the identity to deduce that $fg = \frac{1}{4} [(f+g)^2 (f-g)^2]$ is differentiable and its formula is fg' + f'g

Product Rule

Lemma

If f differentiable then f^2 is differentiable and $(f^2)' = 2f \cdot f'$

$$\lim_{x \to x_0} \frac{f(x)^2 - f(x_0)^2}{x - x_0} = \lim_{x \to x_0} \left[\left(f(x) + f(x_0) \right) \frac{f(x) - f(x_0)}{x - x_0} \right]$$
$$= 2f(x_0) \cdot f'(x_0)$$

Product Rule

Theorem

If f, g is differentiable then fg is differentiable and (fg)' = f'g + fg'

Proof.

First proving that $(\lambda f)' = \lambda f', (f+g)' = f'+g',$

$$(fg)' = \frac{1}{4} \left\{ \left[(f+g)^2 \right]' - \left[(f-g)^2 \right]' \right\}$$

$$= \frac{1}{2} \left[(f+g)(f'+g') - (f-g)(f'-g') \right]$$

$$= f'g + fg'$$

Gradient

Theorem

$$\nabla(fg) = f \nabla g + g \nabla f$$

Proof.

• Show $\nabla(f^2) = 2f \nabla f$ directly

2

$$\nabla(fg) = \frac{1}{2} \left[(f+g)(\nabla f + \nabla g) - (f-g)(\nabla f - \nabla g) \right]$$
$$= f \nabla g + g \nabla f$$

Generalisation preliminaries

Definition

Characteristic of a field

The smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0)

Example

- ■ R has characteristic 0
- $\mathbb{Z}/p\mathbb{Z}$ for prime p has characteristic p

Generalisation Goal

We want to generalise the following

Theorem

Suppose $P \subseteq V$. Show that $\forall x, y \in V$, if $x, y \in P$, then $xy \in P$

- \bigcirc Prove that linear combinations of elements in P are in P
- 2 Prove that if $x \in P$, then $x^2 \in P$
- Use the identity to deduce that $xy = \frac{1}{2} [x^2 + y^2 (x y)^2] \in P$

Generalisation

Theorem

Let V be a vector space over some field F with characteristic 0 or greater than 2. Let there be a symmetric bilinear product $V \times V \to V$ denoted by \times . Let P be a subspace of V.

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

Proof

Proof.

 \implies : Suppose $v, w \in P$, then $v + w, v - w \in P$ so $(v + w) \times (v + w) - v \times v - w \times w \in P$ by linearity and assumption of P. By commutativity of \times we deduce that $(1_F + 1_F)v \times w \in P$. As the characteristic of F is greater than 2, $(1_F + 1_F)^{-1}$ exists and is in F so $v \times w \in P$.

 \iff : Immediate

Generalisation

- Why use $vw = \frac{1}{2}[(v+w)^2 v^2 w^2]$?
 - So that we avoid stating the invertbility of 4. Although it is actually equivalent as fields can only have 0, 1 or prime characteristics.
- Why require the characteristic to be 0 or greater than 2?
 - So that $1_F + 1_F \neq 0_F$ and hence invertible
- Why does P need to be a subspace?
 - For the proof in its current state to work you'd need $p_1+p_2, p_1-p_2, \frac{1}{2}p_1 \in P \ \forall p_1, p_2 \in P$
 - It might as well be one
- Why does the bilinear product need to be symmetric?
 - So that $v \times w + w \times v = (1_F + 1_F)v \times w$
 - Alternatively, consider the cross product as a counterexample

Conclusion

Summary

We can retroactively use the theorem for the three examples.

	AOL	Product Rule	Integrability
V	Sequences	$\mathbb{R} o \mathbb{R}$ func.	$\mathbb{R} o \mathbb{R}$ func.
Р	Conv. seq.	diff. func.	int. func.
+	Term-by-term addition	addition	addition
×	Term-by-term mult.	mult.	mult.

Theorem

Let V be a vector space over some field F with characteristic 0 or greater than 2. Let there be a symmetric bilinear product $V \times V \rightarrow V$ denoted by \times . Let P be a subspace of V.

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

Related ideas

- Isometries in Geometry
 - A map T from \mathbb{R}^n to \mathbb{R}^n is called an isometry if $||T(u) T(v)|| = ||u v|| \, \forall u, v \in \mathbb{R}^n$
 - Show $T(u) \cdot T(u) = u \cdot u$ by definition
 - Use $u \cdot v = \frac{1}{4}(u+v) \cdot (u+v) \frac{1}{4}(u-v) \cdot (u-v)$ to show $T(u) \cdot T(v) = u \cdot v$

Related ideas

- Young's inequality for products
 - If $a, b \ge 0$ and p, q > 1 such that $p^{-1} + q^{-1} = 1$, then

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$

with equality if and only if $a^p = b^q$

- Hölder's inequality for integrals
 - If p, q > 1 such that $p^{-1} + q^{-1} = 1$, then

$$\int_{a}^{b} |fg| \leq \left[\int_{a}^{b} |f|^{p} \right]^{1/q} \left[\int_{a}^{b} |g|^{q} \right]^{1/p}$$

Conclusion

Control products by controlling squares

The End

Any Questions?