Examples in Analysis

Generalisation

Conclusion

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Showing preservation of properties under multiplication via difference of squares

Toby Lam University of Oxford

March 21, 2023

Introduction	Examples in Analysis	Generalisation	Conclusion
●0	0000000	000000	00000
Summary			

• Idea: Multiplication = Squaring + Linear Combination through the identity

$$ab = rac{1}{4}(a+b)^2 - rac{1}{4}(a-b)^2$$

- We'd start proving preservation of analytic properties under multiplication using the identity
 - Algebra of limits
 - Product Rule
 - Integrability
- Then we're going to generalise the method of proof and talk about similar ideas

We're going to try to prove theorems using this structure It usually produces an easier proof

Theorem

Suppose $P \subseteq V$. Show that $\forall x, y \in V$, if $x, y \in P$, then $xy \in P$

Proof.

Prove that linear combinations of elements of P are in P

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2 Prove that if $x \in P$, then $x^2 \in P$

3 Use the identity to deduce that

$$xy = \frac{1}{4} [(x+y)^2 - (x-y)^2] \in P$$

Introduction	Examples in Analysis	Generalisation	Conclusion
00	●000000	000000	00000
Algebra of Limit	:S		

$$\mathit{lf}(\mathsf{a}_n)
ightarrow \mathit{L}, (\mathit{b}_n)
ightarrow \mathit{M}$$
 then $(\mathit{a}_n \mathit{b}_n)
ightarrow \mathit{LM}$

Proof.

Show that linear combinations of convergent sequences converges to the linear combinations of the limits.

2 Prove
$$(a_n^2) o L^2$$
 if $(a_n) o L^2$

3 Use the identity
$$a_n b_n = \frac{1}{4} [(a_n + b_n)^2 - (a_n - b_n)^2] \in P$$
 to
show $a_n b_n \to \frac{1}{4} [(L + M)^2 - (L - M)^2] = LM$

Introd	

Generalisation

Algebra of Limits

Lemma

If
$$(a_n)$$
 converges to L, (a_n^2) converges to L^2

Proof.

Take $\epsilon > 0$. We may assume that $\epsilon < 1$. Suppose $a_n \to L$, then by definition $\exists N \in \mathbb{Z}$ such that if $n \ge N$ then $||a_n - L|| < \epsilon$. We have,

$$\begin{aligned} \|a_n^2 - L^2\| &= \|a_n + L\| \cdot \|a_n - L\| \\ &\leq (\|a_n\| + \|L\|) \cdot \|a_n - L\| \\ &\leq (2\|L\| + \epsilon) \cdot \epsilon \leq (2\|L\| + 1) \cdot \epsilon \end{aligned}$$

As (2||L|| + 1) is constant, this is enough to show that (a_n^2) is convergent.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → ⊙ < ⊙

Introduction	Examples in Analysis	Generalisation	Conclusion
00	00●0000	000000	00000
Product Rule			

If f, g is differentiable then fg is differentiable and (fg)' = f'g + fg'

Proof.

- Show that linear combinations of differentiable functions are differentiable
- Prove that if f differentiable then f^2 differentiable and $(f^2)' = 2f \cdot f'$
- 3 Use the identity to deduce that $fg = \frac{1}{4} \left[(f+g)^2 (f-g)^2 \right]$ is differentiable and its formula is fg' + f'g

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00	Examples in Analysis 0000000	Generalisation 000000	Conclusion
Product Rule			

Lemma

If f differentiable then f^2 is differentiable and $(f^2)' = 2f \cdot f'$

Proof.

$$\lim_{x \to x_0} \frac{f(x)^2 - f(x_0)^2}{x - x_0} = \lim_{x \to x_0} \left[\left(f(x) + f(x_0) \right) \frac{f(x) - f(x_0)}{x - x_0} \right]$$
$$= 2f(x_0) \cdot f'(x_0)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Examples in Analysis	Generalisation	Conclusion
Product Rule			

If f, g is differentiable then fg is differentiable and (fg)' = f'g + fg'

Proof.

First proving that
$$(\lambda f)' = \lambda f', (f+g)' = f' + g'$$
,

$$(fg)' = \frac{1}{4} \left\{ \left[(f+g)^2 \right]' - \left[(f-g)^2 \right]' \right\} \\ = \frac{1}{2} \left[(f+g)(f'+g') - (f-g)(f'-g') \right] \\ = f'g + fg'$$

Introduction	Examples in Analysis	Generalisation	Conclusion
00	0000000	000000	00000
Gradient			

$$\nabla(fg) = f \nabla g + g \nabla f$$

Proof.

2

 Show ∇(f²) = 2f∇f directly (Direction of gradient of f² is identical to that of f)

$\nabla(fg) = \frac{1}{2} \left[(f+g)(\nabla f + \nabla g) - (f-g)(\nabla f - \nabla g) \right]$ $= f \nabla g + g \nabla f$

Introduction	Examples in Analysis	Generalisation	Conclusion
00		000000	00000
Riemann integra	ability		

If f, g are integrable then fg is integrable.

Proof.

- Prove that linear combinations of integrable functions are integrable
- **2** Prove that if f is integrable then f^2 is integrable
- 3 Use the identity to deduce that $fg = \frac{1}{4} \left[(f+g)^2 (f-g)^2 \right]$ is integrable

Similarly for simple / piece-wise linear / Lebesgue measurable functions (Chapter 1, Thm 8.4, Theory of the Integral, Stanislaw Saks)

Introduction	Introduction Examples in Analysis		Generalisation	Conclusion
00			●00000	00000
-				

Generalisation preliminaries

Definition

Characteristic of a field The smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0) If such a number doesn't exist, the characteristic is 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

- \mathbb{R} has characteristic 0
- $\mathbb{Z}/p\mathbb{Z}$ for prime *p* has characteristic *p*

00		00000	00000
Generalisati	on Goal		

Suppose $P \subseteq V$. Show that $\forall x, y \in V$, if $x, y \in P$, then $xy \in P$

Proof.

- **(**) Prove that linear combinations of elements in P are in P
- **2** Prove that if $x \in P$, then $x^2 \in P$
- Use the identity to deduce that $xy = \frac{1}{2} [(x+y)^2 x^2 y^2] \in P$

Theorem

00	0000000	00000	00000
Generalisati	on Goal		

Suppose $P \subseteq V$. Show that $\forall x, y \in V$, if $x, y \in P$, then $xy \in P$

Proof.

() Prove that linear combinations of elements in P are in P

2 Prove that if
$$x \in P$$
, then $x^2 \in P$

• Use the identity to deduce that $xy = \frac{1}{2} [(x+y)^2 - x^2 - y^2] \in P$

Theorem

Let V be a vector space

Let P be a subspace of V.

00	0000000	00000	00000
Generalisat	ion Goal		

Suppose $P \subseteq V$. Show that $\forall x, y \in V$, if $x, y \in P$, then $xy \in P$

Proof.

() Prove that linear combinations of elements in P are in P

2 Prove that if
$$x \in P$$
, then $x^2 \in P$

• Use the identity to deduce that $xy = \frac{1}{2} [(x+y)^2 - x^2 - y^2] \in P$

Theorem

Let V be a vector space

 $\begin{array}{ccc} \mbox{Let there be a} & \mbox{bilinear map } V \times V \rightarrow V \\ \mbox{denoted by \times . Let P be a subspace of V.} \end{array}$

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

00	0000000	00000	00000
Generalisati	on Goal		

Suppose $P \subseteq V$. Show that $\forall x, y \in V$, if $x, y \in P$, then $xy \in P$

Proof.

() Prove that linear combinations of elements in P are in P

2 Prove that if
$$x \in P$$
, then $x^2 \in P$

• Use the identity to deduce that $xy = \frac{1}{2} [(x+y)^2 - x^2 - y^2] \in P$

Theorem

Let V be a vector space over some field F with characteristic 0 or greater than 2. Let there be a symmetric bilinear map $V \times V \rightarrow V$ denoted by \times . Let P be a subspace of V.

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

Introduction	Examples in Analysis	Generalisation	Conclusion
00	0000000	00●000	00000
Proof			

Let V be a vector space over some field F with characteristic 0 or greater than 2. Let there be a symmetric bilinear map $V \times V \rightarrow V$ denoted by \times . Let P be a subspace of V.

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

Proof.

⇒ : Suppose $v, w \in P$, then $v + w, v - w \in P$ so $(v + w) \times (v + w) - v \times v - w \times w \in P$ by linearity and assumption of P. By commutativity of \times we deduce that $(1_F + 1_F)v \times w \in P$. As the characteristic of F is greater than 2, $(1_F + 1_F)^{-1}$ exists and is in F so $v \times w \in P$. \Leftarrow : Immediate

Introduction	Examples in Analysis	Generalisation	Conclusion
00	0000000	000●00	00000
Application			

Let V be a vector space over some field F with characteristic 0 or greater than 2. Let there be a symmetric bilinear map $V \times V \rightarrow V$ denoted by \times . Let P be a subspace of V.

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

	AOL	Product Rule	Integrability
V	Sequences	$\mathbb{R} \to \mathbb{R}$ func.	$\mathbb{R} \to \mathbb{R}$ func.
Ρ	Conv. seq.	diff. func.	int. func.
+	Term-by-term addition	addition	addition
×	Term-by-term mult.	mult.	mult.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○○○

Introduction	Examples in Analysis	Generalisation	Conclusion
00	0000000	000000	00000
Remarks			

Let V be a vector space over some field F with characteristic 0 or greater than 2. Let there be a symmetric bilinear map $V \times V \rightarrow V$ denoted by \times . Let P be a subspace of V.

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

- Does the bilinear map need to be symmetric?
 - So that $v \times w + w \times v = (1_F + 1_F)v \times w$
 - Alternatively, consider the cross product as a counterexample. Set *P* to be a plane.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Does *P* need to be a subspace?
 - For the proof in its current state to work you'd need $p_1 + p_2, p_1 p_2, \frac{1}{2}p_1 \in P \ \forall p_1, p_2 \in P$
 - It might as well be one

Generalisation 00000●

Further Remarks

Theorem

Let V be a vector space over some field F with characteristic 0 or greater than 2. Let there be a symmetric bilinear map $V \times V \rightarrow V$ denoted by \times . Let P be a subspace of V.

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

- Why require the characteristic to be 0 or greater than 2?
 - So that $2_F := 1_F + 1_F \neq 0_F$ and hence 2_F is invertible
- Why use $vw = \frac{1}{2} [(v+w)^2 v^2 w^2]?$
 - So that we avoid assuming the invertability of 4. Although in reality 2 is invertible if and only if 4 is invertible as fields can only have 0, 1 or prime characteristics.

Introduction	Examples in Analysis	Generalisation	Conclusion
00	0000000	000000	●0000
Summary			

Let V be a vector space over some field F with characteristic 0 or greater than 2. Let there be a symmetric bilinear map $V \times V \rightarrow V$ denoted by \times . Let P be a subspace of V.

Then $v \times v \in P \ \forall v \in P$ is equivalent to $v \times w \in P \ \forall v, w \in P$

	AOL	Product Rule	Integrability
V	Sequences	$\mathbb{R} ightarrow \mathbb{R}$ func.	$\mathbb{R} ightarrow \mathbb{R}$ func.
Ρ	Conv. seq.	diff. func.	int. func.
+	Term-by-term addition	addition	addition
×	Term-by-term mult.	mult.	mult.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	Examples in Analysis	Generalisation	Conclusion
00	0000000	000000	⊙●○○○
Related ideas -	Dot product		

Isometries in Geometry

- A map T from \mathbb{R}^n to \mathbb{R}^n is called an isometry if $\|T(\mathbf{u}) - T(\mathbf{v})\| = \|\mathbf{u} - \mathbf{v}\| \forall \mathbf{u}, \mathbf{v} \in \mathbb{R}^n$, i.e. it preserves distance
- Rotations, reflections and translations are all examples of isometries.
- Claim: $T(\mathbf{u}) \cdot T(\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$ if $T(\mathbf{0}) = \mathbf{0}$
- Proof: Show $T(\mathbf{u}) \cdot T(\mathbf{u}) = \mathbf{u} \cdot \mathbf{u}$ by definition. Then use $\mathbf{u} \cdot \mathbf{v} = \frac{1}{4}(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) - \frac{1}{4}(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})$ to show $T(\mathbf{u}) \cdot T(\mathbf{v}) = \mathbf{u} \cdot \mathbf{v}$
- Multivariable calculus
 - You can prove $\nabla(\mathbf{u} \cdot \mathbf{v}) = (\mathbf{u} \cdot \nabla)\mathbf{v} + \mathbf{u} \times (\nabla \times \mathbf{v}) + (\mathbf{v} \cdot \nabla)\mathbf{u} + \mathbf{v} \times (\nabla \times \mathbf{u})$ from proving $\nabla(\mathbf{u} \cdot \mathbf{u}) = 2[(\mathbf{u} \cdot \nabla)\mathbf{u} + \mathbf{u} \times (\nabla \times \mathbf{u})]$
 - You can prove the above neatly using Levi-Cevita Symbols

Introduction	Examples in Analysis	Generalisation	Conclusion
00	0000000	000000	00000
Related ideas			

• Cauchy–Schwarz inequality:

$$\left< \mathbf{u}, \mathbf{v} \right> |^2 \leq \left< \mathbf{u}, \mathbf{u} \right> \left< \mathbf{v}, \mathbf{v} \right>$$

- Idea: Bound products with squares
- Results:
 - Triangle inequality
 - If ⟨v, v⟩ bounded for all v ∈ V, then ⟨u, v⟩ bounded for all u, v ∈ V

3

$$\begin{aligned} \mathsf{Var}(X)\mathsf{Var}(Y) &= \mathsf{Cov}(X,X)\mathsf{Cov}(Y,Y) \\ &\geq \mathsf{Cov}(X,Y)^2 \end{aligned}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Introduction	Examples in Analysis	Generalisation	Conclusion
00	0000000	000000	
Related ideas			

- Young's inequality for products
 - If $a, b \geq 0$ and p, q > 1 such that $p^{-1} + q^{-1} = 1$, then

$$ab \leq rac{a^p}{p} + rac{b^q}{q}$$

with equality if and only if $a^p = b^q$

- Hölder's inequality for integrals
 - If p,q>1 such that $p^{-1}+q^{-1}=1$, then

$$\int_{a}^{b} |fg| \leq \left[\int_{a}^{b} |f|^{p}\right]^{1/q} \left[\int_{a}^{b} |g|^{q}\right]^{1/p}$$

- Functional Analysis
 - Study of vector spaces endowed with some kind of limit-related (topological) structure

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Takeaway: Transform facts about powers (squares) into facts about products
- Website: tobylam.xyz
- Email: toby.lam@balliol.ox.ac.uk
- Questions away!