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Showing preservation of properties under
multiplication via difference of squares

Toby Lam
University of Oxford

March 21, 2023
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Summary

Idea: Multiplication = Squaring + Linear Combination
through the identity

ab =
1
4(a + b)2 − 1

4(a − b)2

We’d start proving preservation of analytic properties under
multiplication using the identity

Algebra of limits
Product Rule
Integrability

Then we’re going to generalise the method of proof and talk
about similar ideas
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Basic Structure

We’re going to try to prove theorems using this structure
It usually produces an easier proof

Theorem
Suppose P ⊆ V. Show that ∀x, y ∈ V, if x, y ∈ P, then xy ∈ P

Proof.
1 Prove that linear combinations of elements of P are in P
2 Prove that if x ∈ P, then x2 ∈ P
3 Use the identity to deduce that

xy = 1
4
[
(x + y)2 − (x − y)2] ∈ P
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Algebra of Limits

Theorem
If(an) → L, (bn) → M then (anbn) → LM

Proof.
1 Show that linear combinations of convergent sequences

converges to the linear combinations of the limits.
2 Prove (a2

n) → L2 if (an) → L
3 Use the identity anbn = 1

4
[
(an + bn)2 − (an − bn)2] ∈ P to

show anbn → 1
4
[
(L + M)2 − (L − M)2] = LM
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Algebra of Limits

Lemma
If (an) converges to L, (a2

n) converges to L2

Proof.
Take ϵ > 0. We may assume that ϵ < 1. Suppose an → L, then by
definition ∃N ∈ Z such that if n ≥ N then ∥an − L∥ < ϵ. We have,

∥a2
n − L2∥ = ∥an + L∥ · ∥an − L∥

≤ (∥an∥+ ∥L∥) · ∥an − L∥
≤ (2∥L∥+ ϵ) · ϵ ≤ (2∥L∥+ 1) · ϵ

As (2∥L∥+ 1) is constant, this is enough to show that (a2
n) is

convergent.
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Product Rule

Theorem
If f, g is differentiable then fg is differentiable and (fg)′ = f ′g + fg′

Proof.
1 Show that linear combinations of differentiable functions are

differentiable
2 Prove that if f differentiable then f 2 differentiable and

(f 2)′ = 2f · f ′

3 Use the identity to deduce that fg = 1
4
[
(f + g)2 − (f − g)2] is

differentiable and its formula is fg ′ + f ′g
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Product Rule

Lemma
If f differentiable then f 2 is differentiable and (f 2)′ = 2f · f ′

Proof.

lim
x→x0

f (x)2 − f (x0)2

x − x0
= lim

x→x0

[(
f (x) + f (x0)

) f (x)− f (x0)

x − x0

]
= 2f (x0) · f ′(x0)
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Product Rule

Theorem
If f, g is differentiable then fg is differentiable and (fg)′ = f ′g + fg ′

Proof.
First proving that (λf ) ′ = λf ′, (f + g) ′ = f ′ + g ′,

(fg)′ = 1
4

{[
(f + g)2]′ − [

(f − g)2]′}
=

1
2

[
(f + g)(f ′ + g ′)− (f − g)(f ′ − g ′)

]
= f ′g + fg ′
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Gradient

Theorem
∇(fg) = f ∇g + g ∇f

Proof.
1 Show ∇(f 2) = 2f ∇f directly

(Direction of gradient of f 2 is identical to that of f )
2

∇(fg) = 1
2

[
(f + g)(∇f +∇g)− (f − g)(∇f −∇g)

]
= f ∇g + g ∇f
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Riemann integrability

Theorem
If f, g are integrable then fg is integrable.

Proof.
1 Prove that linear combinations of integrable functions are

integrable
2 Prove that if f is integrable then f 2 is integrable
3 Use the identity to deduce that fg = 1

4
[
(f + g)2 − (f − g)2] is

integrable

Similarly for simple / piece-wise linear / Lebesgue measurable
functions
(Chapter 1, Thm 8.4, Theory of the Integral, Stanislaw Saks)
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Generalisation preliminaries

Definition
Characteristic of a field
The smallest number of times one must use the ring’s
multiplicative identity (1) in a sum to get the additive identity (0)
If such a number doesn’t exist, the characteristic is 0

Example
R has characteristic 0
Z/pZ for prime p has characteristic p
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Generalisation Goal

Theorem
Suppose P ⊆ V. Show that ∀x, y ∈ V, if x, y ∈ P, then xy ∈ P

Proof.
1 Prove that linear combinations of elements in P are in P
2 Prove that if x ∈ P, then x2 ∈ P
3 Use the identity to deduce that xy =

1
2
[
(x+ y)2 − x2 − y2] ∈ P

Theorem

Let V be a vector space over some field F with characteristic 0 or
greater than 2. Let there be a symmetric bilinear map V × V → V
denoted by × . Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P
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Generalisation Goal

Theorem
Suppose P ⊆ V. Show that ∀x, y ∈ V, if x, y ∈ P, then xy ∈ P

Proof.
1 Prove that linear combinations of elements in P are in P
2 Prove that if x ∈ P, then x2 ∈ P
3 Use the identity to deduce that xy =

1
2
[
(x+ y)2 − x2 − y2] ∈ P

Theorem
Let V be a vector space

over some field F with characteristic 0 or
greater than 2. Let there be a symmetric bilinear map V × V → V
denoted by × .

Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P
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Generalisation Goal

Theorem
Suppose P ⊆ V. Show that ∀x, y ∈ V, if x, y ∈ P, then xy ∈ P

Proof.
1 Prove that linear combinations of elements in P are in P
2 Prove that if x ∈ P, then x2 ∈ P
3 Use the identity to deduce that xy =

1
2
[
(x+ y)2 − x2 − y2] ∈ P

Theorem
Let V be a vector space

over some field F with characteristic 0 or
greater than 2.

Let there be a

symmetric

bilinear map V × V → V
denoted by × . Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P
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Generalisation Goal

Theorem
Suppose P ⊆ V. Show that ∀x, y ∈ V, if x, y ∈ P, then xy ∈ P

Proof.
1 Prove that linear combinations of elements in P are in P
2 Prove that if x ∈ P, then x2 ∈ P
3 Use the identity to deduce that xy =

1
2
[
(x+ y)2 − x2 − y2] ∈ P

Theorem
Let V be a vector space over some field F with characteristic 0 or
greater than 2. Let there be a symmetric bilinear map V × V → V
denoted by × . Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P
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Proof

Theorem
Let V be a vector space over some field F with characteristic 0 or
greater than 2. Let there be a symmetric bilinear map V × V → V
denoted by × . Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P

Proof.
=⇒ : Suppose v,w ∈ P, then v + w, v − w ∈ P so
(v + w)× (v + w)− v × v − w × w ∈ P by linearity and assumption
of P. By commutativity of × we deduce that (1F + 1F)v × w ∈ P.
As the characteristic of F is greater than 2, (1F + 1F)−1 exists and
is in F so v × w ∈ P.
⇐= : Immediate
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Application

Theorem
Let V be a vector space over some field F with characteristic 0 or
greater than 2. Let there be a symmetric bilinear map V × V → V
denoted by × . Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P

AOL Product Rule Integrability
V Sequences R → R func. R → R func.
P Conv. seq. diff. func. int. func.
+ Term-by-term addition addition addition
× Term-by-term mult. mult. mult.
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Remarks

Theorem
Let V be a vector space over some field F with characteristic 0 or
greater than 2. Let there be a symmetric bilinear map V × V → V
denoted by × . Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P

Does the bilinear map need to be symmetric?
So that v × w + w × v = (1F + 1F)v × w
Alternatively, consider the cross product as a counterexample.
Set P to be a plane.

Does P need to be a subspace?
For the proof in its current state to work you’d need
p1 + p2, p1 − p2,

1
2 p1 ∈ P ∀p1, p2 ∈ P

It might as well be one
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Further Remarks

Theorem
Let V be a vector space over some field F with characteristic 0 or
greater than 2. Let there be a symmetric bilinear map V × V → V
denoted by × . Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P

Why require the characteristic to be 0 or greater than 2?
So that 2F := 1F + 1F ̸= 0F and hence 2F is invertible

Why use vw = 1
2
[
(v + w)2 − v2 − w2]?

So that we avoid assuming the invertability of 4. Although in
reality 2 is invertible if and only if 4 is invertible as fields can
only have 0, 1 or prime characteristics.
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Summary

Theorem
Let V be a vector space over some field F with characteristic 0 or
greater than 2. Let there be a symmetric bilinear map V × V → V
denoted by × . Let P be a subspace of V.

Then v × v ∈ P ∀v ∈ P is equivalent to v × w ∈ P ∀v,w ∈ P

AOL Product Rule Integrability
V Sequences R → R func. R → R func.
P Conv. seq. diff. func. int. func.
+ Term-by-term addition addition addition
× Term-by-term mult. mult. mult.
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Related ideas - Dot product

Isometries in Geometry
A map T from Rn to Rn is called an isometry if
∥T(u)− T(v)∥ = ∥u − v∥ ∀u, v ∈ Rn, i.e. it preserves distance
Rotations, reflections and translations are all examples of
isometries.
Claim: T(u) · T(v) = u · v if T(0) = 0
Proof: Show T(u) · T(u) = u · u by definition. Then use
u · v = 1

4 (u + v) · (u + v)− 1
4 (u − v) · (u − v) to show

T(u) · T(v) = u · v
Multivariable calculus

You can prove
∇(u · v) = (u · ∇)v + u × (∇× v) + (v · ∇)u + v × (∇× u)
from proving ∇(u · u) = 2[(u · ∇)u + u × (∇× u)]
You can prove the above neatly using Levi-Cevita Symbols
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Related ideas

Cauchy–Schwarz inequality:

| ⟨u, v⟩ |2 ≤ ⟨u,u⟩ ⟨v, v⟩

Idea: Bound products with squares
Results:

1 Triangle inequality
2 If ⟨v, v⟩ bounded for all v ∈ V, then ⟨u, v⟩ bounded for all

u, v ∈ V
3

Var(X)Var(Y) = Cov(X,X)Cov(Y,Y)
≥ Cov(X,Y)2
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Related ideas

Young’s inequality for products
If a, b ≥ 0 and p, q > 1 such that p−1 + q−1 = 1, then

ab ≤ ap

p +
bq

q

with equality if and only if ap = bq

Hölder’s inequality for integrals
If p, q > 1 such that p−1 + q−1 = 1, then∫ b

a
|fg | ≤

[ ∫ b

a
|f |p

]1/q[ ∫ b

a
|g |q

]1/p

Functional Analysis
Study of vector spaces endowed with some kind of limit-related
(topological) structure
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The End

Takeaway: Transform facts about powers (squares) into
facts about products
Website: tobylam.xyz
Email: toby.lam@balliol.ox.ac.uk
Questions away!
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