Symmetries of differential equations

Toby Lam

Introduction

What are symmetries of differential equations?

- Largest group of transformations acting on independent and dependent variables with the property that it transforms solutions to other solutions

Solutions to differential equations describe phenomena that could possibly happen. So symmetries relate physical / chemical / biological phenomena.

Why do we care?

- Noether's theorem: Gives us invariants, in turn make equations integrable ...

Example

$\ddot{y}=-y$ is not directly integrable, but $E=\frac{1}{2} \dot{y}^{2}+\frac{1}{2} y^{2}$ gives you an integrable equation.

- How are solutions / phenomena related to each other?
- Generate new solutions from old ones
- Why do those relationships exist?
- Especially relevant for PDEs

Straight lines

What are the symmetries of $\frac{d^{2} s}{d t^{2}}=0$? The solutions are $s=v t+s_{0}$ for constants v, s_{0}, i.e. straight lines.
Most of the symmetries are straightforward

(\hat{t}, \hat{s})	Interptation
$(t+\epsilon, s)$	Horizontal translation
$(t, s+\epsilon)$	Vertical translation
$\left(e^{\epsilon} t, s\right)$	Horizontal scaling
$\left(t, e^{\epsilon} s\right)$	Vertical scaling
$(t+\epsilon s, s)$	Horizontal shearing
$(t, s+\epsilon t)$	Vertical shearing

Straight lines

What are the symmetries of $\frac{d^{2} s}{d t^{2}}=0$? The solutions are $s=v t+s_{0}$ for constants v, s_{0}, i.e. straight lines.
Most of the symmetries are straightforward

Vtr. Field	(\hat{t}, \hat{s})	Interptation
$(1,0)$	$(t+\epsilon, s)$	Horizontal translation
$(0,1)$	$(t, s+\epsilon)$	Vertical translation
$(t, 0)$	$\left(e^{\epsilon} t, s\right)$	Horizontal scaling
$(0, s)$	$\left(t, e^{\epsilon} s\right)$	Vertical scaling
$(s, 0)$	$(t+\epsilon s, s)$	Horizontal shearing
$(0, t)$	$(t, s+\epsilon t)$	Vertical shearing

Synonyms:

$(\hat{t}, \hat{s}): \quad$ Transformation, Symmetry, Lie group element ...
Vtr. Field: Velocity vtr. field, Lie algebra

Straight lines

What are the symmetries of $\frac{d^{2} s}{d t^{2}}=0$? The solutions are $s=v t+s_{0}$ for constants v, s_{0}, i.e. straight lines.
Most of the symmetries are straightforward

Vtr. Field	(\hat{t}, \hat{s})	Interptation
$(1,0)$	$(t+\epsilon, s)$	Horizontal translation
$(0,1)$	$(t, s+\epsilon)$	Vertical translation
$(t, 0)$	$\left(e^{\epsilon} t, s\right)$	Horizontal scaling
$(0, s)$	$\left(t, e^{\epsilon} s\right)$	Vertical scaling
$(s, 0)$	$(t+\epsilon s, s)$	Horizontal shearing
$(0, t)$	$(t, s+\epsilon t)$	Vertical shearing

Remark: You could think of the vector fields as a velocity vector field and we integrate it to get the displacement. Alternatively, the vector fields forms a Lie algebra and we exponentiate it to get the Lie group element (\hat{x}, \hat{y})

Straight lines

However there's two "nonlinear" transformations

Vtr. Field	(\hat{t}, \hat{s})	Interptation
$\left(t^{2}, t s\right)$	$\left(\frac{t}{1-\epsilon t}, \frac{s}{1-\epsilon t}\right)$	$?$
$\left(t s, s^{2}\right)$	$\left(\frac{t}{1-\epsilon s}, \frac{s}{1-\epsilon s}\right)$	$?$

Let's see it in action!

Straight lines

However there's two "nonlinear" transformations

Vtr. Field	(\hat{t}, \hat{s})	Interptation
$\left(t^{2}, t s\right)$	$\left(\frac{t}{1-\epsilon t}, \frac{s}{1-\epsilon t}\right)$	Horizontal "Panning"
$\left(t s, s^{2}\right)$	$\left(\frac{t}{1-\epsilon s}, \frac{s}{1-\epsilon s}\right)$	Vertical "Panning"

Remark: Rather interesting we could get something extrinsic (projective linear transformations) out of finding out intrinsic symmetries.

Laplace Equation (Elliptic)

Symmetries of $u_{x x}+u_{y y}=0$

- Conformal maps preserves harmonicity of functions
- Orientation preserving conformal \Longleftrightarrow Holomorphic
- Symmetries (in terms of vector fields) must come from derivatives of holomorphic functions
- As such, any vector field $\xi \partial_{x}+\eta \partial_{y}$ that satisifies the Cauchy-Riemann relations

$$
\begin{aligned}
\xi_{x} & =\eta_{y} \\
\xi_{y} & =-\eta_{x}
\end{aligned}
$$

forms a symmetry.
Remark: "Elliptic" makes you think of circles

Heat Equation (Parabolic)

Symmetries of $u_{t}-u_{x x}=0$

$$
\begin{array}{ll}
\text { Vector field } & (\hat{x}, \hat{t}, \hat{u}) \\
\hline \mathbf{v}_{1}=\partial_{x} & (x+\epsilon, t, u) \\
\mathbf{v}_{2}=\partial_{t} & (x, t+\epsilon, u) \\
\mathbf{v}_{3}=u \partial_{u} & \left(x, t, e^{\epsilon} u\right) \\
\mathbf{v}_{4}=x \partial_{x}+2 t \partial_{t} & \left(e^{\epsilon} x, e^{2 \epsilon} t, u\right) \\
\mathbf{v}_{5}=2 t \partial_{x}-x u \partial_{u} & \left(x+2 \epsilon t, t, u \cdot \exp \left(-\epsilon x-\epsilon^{2} t\right)\right) \\
\mathbf{v}_{6}=4 t x \partial_{x}+4 t^{2} \partial_{t}-\left(x^{2}+2 t\right) u \partial_{u} & \left(\frac{x}{1-4 \epsilon t}, \frac{t}{1-4 \epsilon t}, u \sqrt{1-4 \epsilon t} \exp \left(\frac{-\epsilon x^{2}}{1+4 \epsilon t}\right)\right) \\
\mathbf{v}_{\alpha}=\alpha(x, t) \partial_{u} & (x, t, u+\epsilon \alpha(x, t))
\end{array}
$$

Remark: There's a 2 in \mathbf{v}_{4} due to parabolicity. (Consider $\left.u=-x^{2}-2 t\right)$
Remark: \mathbf{v}_{5} is a "Galilean boost". \mathbf{v}_{6} transforms constant solutions into fundamental solutions. \mathbf{v}_{α} is the principle of superposition.

Wave Equation (Hyperbolic)

Symmetries of $u_{t t}-u_{x x}=0$

Vector field	$(\hat{x}, \hat{t}, \hat{u})$
$\mathbf{v}_{1}=\partial_{x}$	$(x+\epsilon, t, u)$
$\mathbf{v}_{2}=\partial_{t}$	$(x, t+\epsilon, u)$
$\mathbf{r}_{x t}=t \partial_{x}+x \partial_{t}$	$(x \cosh \epsilon+t \sinh \epsilon, x \sinh \epsilon+t \cosh \epsilon, u)$
$\mathbf{d}=x \partial_{x}+t \partial_{t}$	$\left(e^{\epsilon} x, e^{\epsilon} t, u\right)$
$\mathbf{i}_{x}=\left(x^{2}+t^{2}\right) \partial_{x}+2 x t \partial_{t}-x u \partial_{u}$	Omitted
$\mathbf{i}_{t}=2 x t \partial_{x}+\left(x^{2}+t^{2}\right) \partial_{t}-t u \partial_{u}$	Omitted
$\mathbf{v}_{3}=u \partial_{u}$	$\left(x, t, e^{\epsilon} u\right)$
$\mathbf{v}_{\alpha}=\alpha(x, y, t) \partial_{u}$	$(x, t, u+\epsilon \alpha(x, t))$

Remark: $\mathbf{r}_{x t}$ is a "hyperbolic rotation". $\mathbf{i}_{x}, \mathbf{i}_{t}$ are "inversions". \mathbf{v}_{α} is the principle of superposition.
Remark: Hyperbolic equations treat t and x equally.

Takeaways

- Symmetries are powerful things
- The more you use them, the more you'll spot them
- Find structural reasons why they appear
- They help us make sense of models / differential equations

End

Hydon - Symmetry methods for differential equations

- Friendlier presentation / focuses on ODEs

Olver - Symmetries of differential equations

- Covers generalised symmetries as well
blog: tobylam.xyz

Questions away!

