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Introduction

A lot of the formulae given in the HKDSE Physics formulae
sheet can be deduced from calculus
We’re going to do that for selected equations, be curious and
try to understand other equations as well!
Aiming for fuller understanding of physics
Contents

Rectilinear motion
Motion on the 2D plane (Circular / Projectile)
Waves
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Introduction

Rectilinear motion is one-dimensional motion along a straight
line
Consider a ball with constant mass m. From M2 we know

Displacement = r(t)

Velocity = v(t) =
dr

dt

Acceleration = a(t) =
d2r

dt2
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Newton’s Laws

Assuming mass is constant from now on
Newton’s first law

Momentum = p(t) = mv(t)

Newton’s second law

Force = F (t) = ma(t)
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Assumptions

In DSE physics, force is usually assumed to be constant.
(e.g. gravitational force). This is crucial.
By repeated indefinite integration we have

d2r

dt2
= a

dr

dt
= at+ C1

r(t) =
1

2
at2 + C1t+ C2

What are those constants?



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction Rectilinear motion 2D motion Waves Group theory Conclusion

Constants

We see that

v(0) = a · 0 + C1 = C1

r(0) =
1

2
a · 0 + C1 · 0 + C2 = C2

So putting it all together

v(t) = at+ v(0)

r(t) =
1

2
at2 + v(0)t+ r(0)

Does this look familiar?
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Consevation of energy

Let’s make some definitions

Kinetic energy = T (t) =
1

2
m

(
dr

dt

)2

Potential energy = V (r(t)) = −mar(t)

We would like to show that T (t) + V (r(t)) is constant
Note how potential energy is dependent on displacement only.
So if energy is conserved, you could know the kinetic energy
just by knowing the displacement.
This is clearly not true in general
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Conservation of energy

For the case of constant acceleration, we can do a direct but
unsatisifying calculation

(T (t) + V (r(t)))

=

[
1

2
m

(
dr

dt

)2

−mar

]
= m

[
1

2

(
at+ v(0)

)2

− a(
1

2
at2 + v(0)t+ r(0))

]
= m

[
1

2
a2t2 + v(0)at+

1

2
v(0)2 − 1

2
a2t2 − av(0)t− ar(0)

]
=

1

2
mv(0)2 −mar(0) = T (0) + V (r(0))

What about other systems?
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Conservation of energy

Conservative force
If there exists a potential function V (r) such that
F (r) = − d

drV (r), then energy is conserved, i.e. T (t) + V (r(t)) is
constant

A force that satisfies the above conditions is called a
conservative force
Note that a conservative force has to be dependent on the
displacement only
Potential functions vary up to a constant

Examples F (r) V (r)

Spring / Harmonic Oscillator −kr k
2 r

2

Constant −g gr
Gravitational / Coulomb force 1

r2
1
r
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Conservation of energy

Proof
Consider the derivative of T (t) + V (r(t))

d

dt

[
1

2
m

(
dr

dt

)2

+ V (r(t))

]
=

1

2
m · 2d

2r

dt2
· dr
dt

+
dV

dr

dr

dt
product and chain rule

= m
d2r

dt2
· dr
dt

−m
d2r

dt2
· dr
dt

−md2r

dt2
= −F (r) = dV

dr
= 0

The only function with zero derivative is the constant function.

An even better way of thinking about this is with Lagrangians
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Introduction

We now move on to motion on the 2D plane
We need a mathematical machinery called curves
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Curves

Curves
A parameterized curve is a differentiable function r : U → R2

where U is some interval, e.g. U = {t | a < t < b}

A function that takes in time and outputs a coordinate in 2D
space
We differentiate r by taking derivative of its components

Example
A ball moving 1 unit along the x-axis with 1 unit per second
r(t) = (t, 0), for 0 < t < 1
r′(t) = (1, 0)
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Examples

Example
A projectile under the effect of gravity, with initial velocity (3, 4)

r(t) = (3t, 4t− 9.81

2
t2), for 0 < t < 1

r′(t) = (3, 4− 9.81t)

r′′(t) = (0,−9.81)

Example
A ball uniformly rotating around the origin

r(t) = (cos t, sin t)

r′(t) = (− sin t, cos t)
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Projectile Motion

We make the crucial assumption that the only force acted on
the projectile is gravitational force
We then make use of Newton’s second law
Use repeated integration on the x and y coordinate

r′′(t) = (0, −g)
r′(t) = (C∗

1 , −gt+ C1)

r(t) = (C∗
1 t+ C∗

2 , −
1

2
gt2 + C1t+ C2)

Once again the constants correspond to initial position /
velocity

r′(0) = (C∗
1 , C1)

r(0) = (C∗
2 , C2)
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Conservation of Energy

Why is it that energy is still conserved?
In general, r(t) = (x(t), y(t)) for some functions x(t), y(t).
We have

r′(t) = (x′(t), y′(t))

r′′(t) = (x′′(t), y′′(t))

As such we have expressions for kinetic and (gravitational)
potential energy as follows

Kinetic energy = T (t) =
1

2
m(x′(t)2 + y′(t)2)

Potential energy = V (r(t)) = mgy(t)
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Proof

We now prove that the total energy is conserved for uniform
projectile motion i.e. when
r(t) = (x(t), y(t)) := (C∗

1 t+ C∗
2 , −1

2gt
2 + C1t+ C2)

T (t) + V (r(t))

=
1

2
m(x′(t)2 + y′(t)2) +mgy(t)

=
1

2
m(C∗

1
2 + (−gt+ C1)

2) +mg(−1

2
gt2 + C1t+ C2)

= m

[
1

2
C∗
1
2 +

1

2
g2t2 − gtC1 +

1

2
C2
1 − 1

2
g2t2 + gC1t+ gC2

]
=

1

2
m(C∗

1
2 + C2

1 ) +mgC2 = T (0) + V (r(0)) □
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Uniform Circular Motion

Consider a ball uniformly rotating around the origin
Two variables completely determine its behaviour: Radius and
velocity
Parametrize r(t) = (R cos(kt), R sin(kt)) so we get

r′(t) = (−Rk sin(kt), Rk cos(kt))
r′′(t) = (−Rk2 cos(kt),−Rk2 sin(kt))



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction Rectilinear motion 2D motion Waves Group theory Conclusion

Uniform Circular Motion

Vector Magnitude
r(t) = (R cos(kt), R sin(kt)) R

r′(t) = (−Rk sin(kt), Rk cos(kt)) Rk

r′′(t) = (−Rk2 cos(kt),−Rk2 sin(kt)) Rk2

r(t) ⊥ r′(t) ⊥ r′′(t)

Angular velocity = 2π ÷ time taken to go around the circle

2π
2π
k

= k
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Wave Equation

Fluids in real life are studied in fluid dynamics. The equations
that govern their kinematics is extraordinary complicated,
such as the Navier-Stokes Equations.
Under specific and idealised conditions, we can deduce the
wave equation, which gives us an approximate understanding
of waves.

∂2u

∂t2
= c2∇2u

The wave equation still involves heavy multivariable calculus
and would not be discussed here
Instead we would explore the one-dimensional sinusoidal
travelling wave

u(t, x) = A sin(kx− wt+ ψ)
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More questions

u(t, x) = A sin(kx− wt+ ψ)

Exercises
Show that the wavelength λ = 1/k

Show that the angular frequency is w
What does ψ represent?
Can you come up with a parametrization for a stationary
wave?



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction Rectilinear motion 2D motion Waves Group theory Conclusion

Why care about group theory?
Automorphisms of X are (bijective) structure preserving maps
from X to X

Aut(X)

Figure: symmetries = automorphisms of X

Aut(X) is ALWAYS a group!!
Structure of X Aut(X)
Set Bijections (Permutation group Sn)
Group Isomorphisms1

Rn (area and orientation) Special linear group
Rn (additive / scalar multiplicative) General linear group (invertible matrices)
Rn (diff. manifold) Diff. functions with inverse diff. (diffeomorphisms)
Rn (topology) Cont. functions with inverse cont.
Rn (projective space) Projective general linear group
C (complex analysis) Biholomorphic (bijective infinitely differentiable) functions
C (projective) Mobius transformations

1I mean that the isomorphisms from a group to itself forms a group. Q8 of
the first problem sheet wanted you to consider Aut((Z11,+)) which is of order
110.
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Symmetries

Let’s think about Aut(X) where X is some ideal subset of
the set of all possible physical phenomena

Example
Does a mirrored version of the world behave the same as the
mirror image of the current world?

Ans: Wu experiment says no! (1957 Nobel Prize in Physics)
You could think of it as whether the “reflection” group Z2 belongs
in Aut(X)
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Symmetries

Let’s think about Aut(X) where X is some ideal subset of
the set of all possible physical phenomena

Example
Does a mirrored version of the world behave the same as the
mirror image of the current world?
Ans: Wu experiment says no! (1957 Nobel Prize in Physics)
You could think of it as whether the “reflection” group Z2 belongs
in Aut(X)
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Example

If I have the differential equation

−g =
d2r

dt2

and I have some solution r(t), you can check that r(t) + a
and r(t+ b) are solutions as well for any real constant a, b,
without knowing what the general solution actually is.
In fact, you can generate all of the solutions from the solution
r(t) = −gt2 alone.
What does it mean physically?

This differential equation / physical law doesn’t change under
time or space translations
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Symmetries

We want to think about Aut(X) where

X := {r(t) s.t. r′′ = −g}

Solution Interpertation “Lie” Group
r(t+ ϵ) Time translation R
r(t) + ϵ Position translation R
r(t) + ϵt “Galilean Boost” R

Table: Collection of symmetries of r′′ = −g

These are called Lie symmetries as they correspond to Lie groups.
You can check out Peter E. Hydon’s book “Symmetry Methods for
Differential Equations”
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Conclusion

We’ve covered more advanced mathematics in three areas of
physics

Rectilinear motion
Projectile motion
Waves

You would see Electromagnetism in the next two lectures.

Theory Gauge symmetry group
Electromagnetism U(1)

Yang-Mills SU(2)
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