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Abstract

Deutsch and Hayden have proposed an alternative formulation of quantum mechanics which is

completely local. We argue that their proposal must be understood as having a form of ‘gauge

freedom’ according to which mathematically distinct states are physically equivalent. Once this

gauge freedom is taken into account, their formulation is no longer local.
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I. INTRODUCTION

Unitary quantum mechanics (that is, quantum mechanics without collapse of the wave

function) has local interactions: the quantum state of a system (e.g. a qubit, or a space-

time region in quantum field theory) is affected only by influences which propagate via the

quantum states of its immediate past light cone.5

As conventionally presented, though, QM does not have local states : if S1 and S2 are

systems with quantum states ρ1 and ρ2, then because of entanglement the state of the

composite system S1 × S2 is not necessarily ρ1 ⊗ ρ2.

Deutsch and Hayden1 argue that this ‘state nonlocality’ is an artifact of the normal way

in which we represent quantum states, and that it disappears in an alternative formalism

which they propose. Their formalism is derived from the Heisenberg picture of quantum

mechanics, in which the unitary time evolution is applied to the observables rather than to

the state vector. In the normal understanding of that formalism, though, the state vector is

still taken to express the physical state of the system (via its role in calculating expectation

values) and the algebra of observable quantities is regarded as mathematical ‘superstructure’,

used to help us to calculate those observables.

Deutsch and Hayden reverse this ‘normal understanding’. They regard the state vector

|0〉 as fixed, once and for all and independent of the physical state of the system, and they

regard the state of a quantum system as literally given by the associated observables (so

that the state of a qubit, for instance, is given by a triple of Heisenberg picture operators

Sx, Sy, Sz pertaining to the spin observables of that qubit). The dynamics of this theory are

given by
d

dt
X̂ i =

−i

h̄

[
Ĥ(X̂1, . . . X̂n), X̂ i

]
(1)

(where X̂1, . . . X̂n are the observables of the theory). It is easy to see that the theory is local

in both the interaction and the state senses, apparently vindicating Deutsch and Hayden’s

claims. (For further detail on the formalism and interpretation of Deutsch and Hayden’s

approach, see4.)
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II. QUANTUM GAUGE TRANSFORMATIONS

Suppose V̂ (t) is a function from times to unitary operators, and suppose that for each

t, V̂ (t) |0〉 = exp(−iθ) |0〉 (for arbitrary phase factor θ). Then if the state is represented,

according to Deutsch and Hayden, by observables X̂1, . . . X̂n, suppose that we make the

transformation

X̂ i(t) −→ X̂
′

i(t) = V̂
†
(t)X̂ i(t)V̂ (t). (2)

If V̂ (t) is not a constant then this changes the dynamics to

d

dt
X̂

′

i =
−i

h̄

[
Ĥ(X̂

′

1
, . . . X̂

′

n), X̂
′

i

]
+

−i

h̄

[
V̂

†
(t)

d

dt
V̂ (t), X̂

′

i

]
. (3)

It does not, however, change anything observable, since everything observable is given by

the expectation values of observables with respect to |0〉, and clearly

〈0| X̂
′

i |0〉 = 〈0| X̂ i |0〉 . (4)

To understand the significance of these ‘quantum gauge transformations’, it is useful to

consider an analogous example: electromagnetism in the context of the Aharonov-Bohm

(A-B) effect.2 Recall: the electromagnetic potential A couples to electron wavefunctions via

the rule

P̂ −→ P̂ + eA. (5)

If an electron beam is split, passed on either side of a solenoid, and recombined, there will

be interference between the beams, and as the field in the solenoid is varied the interference

fringes will shift by an amount proportional to the line integral of A around the electron’s

path. This occurs despite the fact that the magnetic field outside the solenoid is zero, or

nearly so.

The A-B effect makes clear that the electromagnetic potential A, and not just the fields

E and B, must be regarded as physically significant; however, all observable quantities

(including the A-B effect itself) are invariant under gauge transformations

A −→ A′ = A + ∇f (6)
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for arbitrary smooth functions f (along with an associated transformation of the wavefunc-

tion).

It is generally accepted that the correct response to this observation is to regard gauge-

equivalent As as describing the same physical situation, so as not to burden our theory

with massive indeterminism (caused by the possibility of arbitrary time-dependent gauge

transformations) and with an excess of unobservable properties (caused by the fact that the

observable data right now only fixes the state up to a gauge transformation).

However, this does come with a price: if we identify gauge-equivalent vector potentials

then our theory has non-local states in the sense described above. For while the Aharonov-

Bohm vector potential cannot be gauge-transformed to zero everywhere, it can be in any

region which does not completely enclose the solenoid. Since a region which does enclose

the solenoid can be decomposed into regions which do not, it follows that whether the

solenoid-enclosing region induces an A-B effect is not determined by the properties of its

parts.

The loop representation of A makes this state non-locality manifest. We replace A with

the loop phases

Cγ =
∫

γ
A · dx (7)

where γ is any closed loop. A is fixed up to gauge transformations by the Cγ, and Bi is

given at a point x by the loop phase for an infinitesimal loop in a plane perpendicular to ei.

A loop which encloses the solenoid cannot be expressed as the sum of loops which do not

enclose the solenoid, so the loop representation has nonlocal states.

III. LESSONS FOR QUANTUM MECHANICS

The same arguments which lead us to identify gauge-equivalent vector potentials should

lead us to identify gauge-equivalent quantum states. Specifically:

1. The possibility of time-dependent quantum gauge transformations makes it undeter-

mined which dynamical equations give the true dynamics for the quantum state: is it
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(1) or some (3)? (1) is somewhat simpler, but it is unclear whether this is sufficient:

after all, in electromagnetism

2Aµ = 0 (8)

is a somewhat simpler choice of dynamics than those given by many other gauges, but

this does not lead us to regard it as the ‘true’ dynamics.

2. Even time-independent gauge transformations make the state grossly underdetermined

by observable data. Provided that V̂ |0〉 = exp(−iθ) |0〉, nothing whatever—no observ-

able data, no theoretical considerations—can tell us that the physical state is given

by X̂1, . . . X̂n rather than V̂
†
X̂1V̂ , . . . V̂

†
X̂nV̂ .

(There is also a more ‘philosophical’ concern: in a physical theory we would normally prefer

that what is ‘observable’ (i. e. , the expectation values derived from |0〉) would emerge from

a physical analysis of measurement, rather than by fiat.)

This suggests that we should identify Deutsch-Hayden states which differ only by a gauge

transformation. But if we do so, we return to the usual representation of quantum states!

For two Deutsch-Hayden states are gauge-equivalent if and only if they have the same

expectation values—and of course the expectation values of all possible measurements on a

given quantum system are encoded in that system’s density operator. So if we do identify

gauge-equivalent states, we are again left with a theory whose states are non-local.

IV. CONCLUSION

Deutsch and Hayden’s proposal secures locality of states only at the cost of a gauge

freedom closely analogous to the gauge freedom of electromagnetism. However, in quantum

mechanics as in electromagnetism, to avoid problems of indeterminism and state underde-

termination it is necessary to identify gauge-equivalent states. In quantum mechanics as in

electromagnetism, if we do make this identification then it leads to nonlocality of states.

Deutsch and Hayden argue1 (p. 1772) that if a theory is local according to any formulation,

then it is local period. But their version of quantum mechanics is only a new formulation
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if we do indeed identify gauge-equivalent states. If not, it is not a ‘new formulation’: it is

a new theory—with novel properties such as associating many distinct states to the same

in-principle-observable data— albeit one which has the same observational consequences as

the old theory. (Deutsch has himself insisted on this distinction in his more foundational

work, for instance in discussing the de Broglie-Bohm interpretation3). It is a new theory

which is genuinely local, but which pays an unacceptably high price for that locality.

We conclude that Deutsch and Hayden’s proposal is best understood as a gauge theory

whose gauge-independent physical properties are given by the normal quantum formalism.

As such, although it may well give important insights into quantum-information issues such

as information flow (for a detailed analysis of this point see4), it does not achieve the goal of

showing that quantum mechanics is completely local. Rather, quantum mechanics has only

local interactions, but has nonlocal states.
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