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Abstract

The distinction between proper and improper mixtures is a staple of the
discussion of foundational questions in quantum mechanics. Here we note
an analogous distinction in the context of the theory of entanglement.
The terminology of ‘proper’ versus ‘improper’ separability is proposed to
mark the distinction.

1 Proper and Improper mixtures

In many discussions of the measurement problem in quantum mechanics, it has
proved essential to distinguish between density operators which can be given
an ‘ignorance’ interpretation; and those which cannot. In the former case, the
system whose state the density operator represents is in some definite quantum
state from a specified set — say a pure state |ψi〉 — but we don’t know which.
Our ignorance of the actual state can be represented by a probability distribu-
tion {pj} over the different (not necessarily orthogonal) possibilities {|ψj〉}, and
the density operator may be written as

ρ =
∑

j

pj |ψj〉〈ψj |. (1)

An ensemble of such systems will also be described by the density operator
(1); in this case each of the elements of the ensemble will be in a definite state
|ψi〉, and the relative frequency with which elements of the ensemble are in
the j-th state will be given by the probability pj . One usually thinks of such
an ensemble as arising from a preparation procedure which, on any given run,
produces the state |ψj〉 with probability pj . Ensembles which can be given an
ignorance interpetation are called proper mixtures; the terminology is due to
d’Espagnat [1]. While the statistics that one will obtain following measurements
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on an ensemble of systems in a proper mixture will simply be governed by
the density operator ρ, which, as a mathematical object, may be expressed in
various forms [2, 3, 4], it is nevertheless the case that there is only one privileged
decomposition in the form (1) for a given proper mixture—that one expressing
the actual probabilities and definite states according to which the systems have
been mixed. It then follows, of course, that one will not be able to determine
the actual composition of a proper mixture by measurements on the systems
making up the ensemble alone, but will require some further information.

By contrast, density operators which cannot be given an ignorance interpre-
tation are said to represent improper mixtures. Here the density operator arises
from tracing out irrelevant, or unavailable, degrees of freedom. In this case,
individual systems cannot be thought to be in some definite state of which we
are ignorant; rather, the (reduced) density operator is the only description that
they can have. The well-known ambiguity of the representation of a density
operator now achieves free rein: as we have said, for a given operator ρ, there
exist many decompositions of the form (1). For improper mixtures there is no
longer any fact of the matter as to which decomposition is privileged or correct.
Indeed the very notion of correctness has no application in this case.

The significance of the distinction between proper and improper mixtures for
the measurement problem in orthodox quantum theory is, of course, just this:
Proceeding within the orthodox theory, what one wants as the end result of a
measurement procedure is to be left with a proper mixture, corresponding to
definite measurement outcomes, whereas what one actually gets (in the absence
of the problematic process of genuine collapse) is an improper mixture; even
if it is one in which decoherence has ensured that off-diagonal elements of the
density matrix in the position basis tend rapidly to zero [5]. And improper
mixtures do not correspond to definite measurement outcomes. (That is, unless
one abandons orthodoxy and relativizes the notion of definite outcome, leading
to an Everett-type theory [6, 7].)1

At first sight, the distinction between proper and improper mixtures ap-
pears to suffer from a certain restriction in its range of application. According
to interpretations in which quantum mechanics without collapse is a complete
theory, as in the Everett interpretation, a state being mixed is always the result
of tracing out unwanted degrees of freedom2. In this case, there would seem
to be no scope left for the category of proper mixtures. However, even in no-
collapse quantum mechanics, a useful distinction may be made between proper
and improper mixtures, if this characterisation is recognised as relative to the
experimental context.

To see this, consider again the example of states |ψj〉 being produced with
probabilities pj.

3 In a no-collapse framework, we may model the preparation
procedure, schematically, in the following way.

We begin with a preparation device, that is, some apparatus which, on
any given run of the procedure, will prepare an object system in one of the
states |ψj〉, depending upon the setting of some internal degree of freedom —

1For a recent exchange which betrays that there can still be some confusion over the notions
of proper and improper mixtures, see [8] and d’Espagnat’s reply [9].

2The only exception would be if the universal state were itself mixed, rather than pure, as
usually assumed.

3The following sketch can be generalized to include cases in which mixtures of mixed states
are prepared.

2



imagine a knob which may be turned to one of j = 1, . . . , n different positions.
Next, mixing probabilities are introduced. These probabilities arise because
the setting of the knob for each run of the apparatus is controlled by some
further degree of freedom, which we may think of as a quantum ‘die’ that is
thrown. This die has a set of orthogonal states {|dj〉}, j = 1, . . . , n, which
correlate to the possible knob positions and hence to the states, |ψj〉, of the
object system that are produced. If the die begins in a superposition of |dj〉
states, |D〉 =

∑n

j=1

√
pj |dj〉, then the joint state of die and object system

following the preparation procedure will be

|Ψ〉 =

n
∑

j=1

√
pj |dj〉|ψj〉. (2)

This corresponds to the states |ψj〉 of the object system being mixed with
probabilities pj ; note that the reduced state of the object system indeed takes
the form (1).

At this stage, we may not yet talk of a proper mixture. To do this, fur-
ther systems need to be introduced. In particular, let us consider adding the
environment and an observer.

As we have said, the characteristic feature of a proper mixture is that there
is some fact about the state our object system is in, that goes beyond the
density operator ascribed to it. In the no-collapse context, such a fact must be
understood as relational, that is, as a matter of correlations between the object
system, or systems, and states of the environment and observers. Thus we may
understand the preparation procedure just outlined as giving rise to a proper
mixture if it turns out that following the preparation, the relative state of the
object system with respect to the state of some particular observer is one of the
states |ψj〉. For this to happen, the interaction between the systems involved in
the preparation procedure and the environment must be such that the observer
will become correlated to the die and object system states, or, must be such
that an effectively classical record (that is, a record robust against decoherence)
of the state of the die and object system is left in the environment.

Following the preparation of state |Ψ〉 in (2), then, we can imagine two
distinct scenarios. In the first, an observer, Alice, indeed becomes correlated
to the states produced in the preparation procedure; with respect to her, the
object system is in a proper mixture. In the second scenario, another observer,
Bob, remains uncorrelated to the states |dj〉|ψj〉; with respect to him, the object
system is in an improper mixture. It is in this sense that the proper/improper
mixture distinction becomes relative to the experimental context in no-collapse
quantum mechanics.

The proper/improper distinction will be most interesting when we have an
ensemble of systems; that is, when the outlined preparation procedure has been
run a very large number of times. The total state of the ensemble of object
systems and dice will then be of the form: |Ω〉 = |Ψ〉|Ψ〉 . . . |Ψ〉 . . .. If, when an
observer is included, his state factorises from |Ω〉, then with respect to him, the
ensemble of object systems will be in an improper mixture (whose state may be
written as ρ1 ⊗ ρ2 ⊗ . . .⊗ ρm ⊗ . . ., where ρi is the density operator of the ith
object system and is given by the expression (1) ).

However, the state |Ω〉 may also be written as a superposition of terms which
would correspond to the object systems having been prepared in particular
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sequences of the states |ψj〉, that is, as a superposition of terms of the form:

|dj〉|ψj〉|dj′ 〉|ψj′ 〉 . . . |dj′′ 〉|ψj′′ 〉 . . . (3)

If an observer becomes correlated to (entangled with) these states of the dice
and object systems (if, for example, the setting of the apparatus knob for each
run of the procedure has left a record in the environment), then with respect
to him or her, the ensemble will be in a proper mixture: each of the object
systems will be in some particular state |ψi〉. Of course, the superposition of
terms of the form (3) will include very many sequences in which the relative
frequencies of occurrence of the states |ψj〉 will not match the probabilities pj .
But, in the usual way [6, 10], as the number of object systems in the ensemble
becomes very large, then the overwhelming weight (given by the standard mod
squared measure) will lie with those terms in the superposition for which the
relative frequency of the appearance of a state |ψi〉 is very close to its mixing
probability pi.

We should note a final important facet of the proper/improper mixture dis-
tinction, whether in the context-relative no-collapse quantum mechanical set-
ting, or otherwise. This is the fact that when an ensemble is described as
improperly mixed, this means that it is ‘structureless’, or ‘homogeneous’ in von
Neumann’s sense [11] (see also [12]). That is, if the ensemble is divided up
into sub-ensembles by some place selection procedure, then the resulting sub-
ensembles will have just the same predicted statistics for measurement outcomes
as the original ensemble. By contrast, an ensemble that is a proper mixture is
not structureless in this way, as we are supposing that there are further facts
about the states of each individual system making up the ensemble (even if
these facts happen to be construed relationally). In this case, a place selection
procedure does in principle exist, that would allow the ensemble to be sepa-
rated out into statistically distinct sub-ensembles: all that is required is access
to these further facts. In picturesque illustration, we might imagine that all
along there had been a technician operating the state preparation device, who
secretly took a note of the states of the emitted systems, one by one; and who
then reveals his list to us. What will be required in the no-collapse context, of
course, is access to the dice systems associated with each run of the preparation
procedure. Separation into the required sub-ensembles may then proceed via
some suitable unitary dynamics conditioned on the dice states associated with
each particular object system4.

2 Entanglement

We now turn to entanglement. The conundrums that are posed by the existence
of entangled states in quantum mechanics were first vividly emphasised by Ein-

4In the no-collapse case, there is the further complication of distinguishing place selection
from separation following a measurement interaction. If one is presented with an improper
mixture, one can take it into the form of a proper mixture by performing a measurement
interaction; this corresponds to the familiar ‘effective collapse’. One might then proceed to
separate the — now properly mixed — ensemble. The process of place selection differs from
this two-step process, as it is required that the relative states of the object systems with
respect to the observer do not change under the sub-ensemble selection procedure. This will
not be the case if one first performs a measurement-type interaction in order to change an
improper mixture to a proper one before proceeding to select sub-ensembles.
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stein, Podolsky and Rosen [13]5. In recent years, with the advent of quantum
information theory, it has come to be recognised that entanglement can function
as a communication and computational resource; and our understanding of the
phenomenon has, accordingly, considerably increased. Achievements include a
range of quantitative measures of entanglement and the recognition of quali-
tatively distinct categories of entangled states (e.g.‘bound’ versus ‘distillable’
states [15], GHZ versus EPR-type entanglement[16]).

A state is called entangled if it is not separable, that is, for bipartite systems,
if it cannot be written in the form:

ρAB =
∑

i

λiρ
A
i ⊗ ρBi , (4)

where λi ≥ 0,
∑

i λi = 1 and A, B label the two subsystems. States of the
form (4) are often also called classically correlated [17], as the outcomes of mea-
surements on these states can always be modelled by a local hidden variable
theory (consider in particular the simplest case in which the hidden variable
just specifies the quantum states ρAi and ρBi ). For the purposes of using entan-
glement, whether for computation or communication, the overriding question
when presented with a pair of systems is whether their state is or is not separa-
ble; whether the state can, or cannot be written in the form (4)6. However, if
one is also interested in the conceptual questions that entanglement raises, then
a more finely grained approach may be desirable.

The point is this: separability is a property of a density operator, and as
we know, a given density operator can arise in a variety of different ways. In
particular, it is possible that a density operator which is separable can arise from
taking a mixture of entangled states (we shall see some examples in Section 3).
Thus it appears that the special property of being entangled can be made to
disappear simply by taking a mixture of systems.

It is natural to think of the existence of entangled states, ontologically, as
corresponding to a distinct feature of holism in the quantum world; entangle-
ment seems to mark the possession by joint systems of properties that differ
profoundly from classical physical properties (for example, one might note that
the properties of entangled systems are not reducible to properties of the com-
ponent systems). But, if the entanglement associated with a group of systems
can be made to disappear by so innocuous a process as mixing them together,
it would seem that entanglement must be too ephemeral a property to be asso-
ciated with any signficant ontological distinction.

However, we can avoid this rather surprising conclusion by drawing a distinc-
tion in the context of entanglement that is analogous to the distinction between
proper and improper mixtures discussed above. Note that the problematic sce-
nario arises when one is considering taking a proper mixture of entangled states
in such a way that the density operator describing the resultant ensemble is sep-
arable. This means, for example, that one will not be able to observe violation
of any Bell inequality for measurements on the ensemble.

5For a recent discussion of the EPR argument and a discussion of aspects of the relation-
ships between entanglement, relativity and nonlocality, see [14].

6A range of operational criteria exist with which to address this question, necessary and
sufficient conditions in the 2 ⊗ 2 and 2 ⊗ 3 cases, and necessary conditions for separability
otherwise [18, 19]. Note that one might also be interested, if the state turns out to be
entangled, in whether this entanglement may be distilled and put to use.
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Figure 1: The place of the proper/improper separability distinction: If one has a
proper mixture which is separable, it is possible to ask whether the mixture actually
contains any entanglement or not. If it does then the mixture is improperly separable,
if it does not, the mixture is properly separable. If instead one has an improper
mixture, the question of the actual composition of the mixture does not arise.

Imagine, then, that our |ψj〉 in (1) form a set of entangled states mixed with
probabilities pj such that ρ is separable. As the ensemble is a proper mixture,
then each of the elements of the ensemble will in fact be, by hypothesis, in an
entangled state. Since it is a proper mixture and there is a fact about which
state each of the elements of the ensemble possesses, there exists, in principle, a
selection procedure which would allow us to separate the ensemble back out into
sub-ensembles, each of which will be described by a pure state density operator
|ψj〉〈ψj | and which will display all the properties associated with entanglement.
Thus, in this case, although the original ensemble is described by a separable
density operator, we can nonetheless make sense of there really being entangle-
ment associated with the systems: it hasn’t, after all, mysteriously vanished.

We suggest that this sort of scenario, in which a proper mixture containing
entangled states gives rise to a separable density operator, be termed an example
of improper separability. By contrast, we suggest that if a separable density
operator results from a proper mixture of separable states, then we have a
case of proper separability (Figure 1). We see that although entanglement can
be made experimentally inaccessible by mixing, this only results in improper,
rather than proper separability and there need be no mystery at the conceptual
level over the disappearance.

In the no-collapse setting, entanglement is generic: sub-systems into which
the world is divided will typically be entangled with one another. Furthermore,
we have noted that whether the ensemble resulting from a given preparation
procedure may be said to be properly or improperly mixed will depend on the
experimental setting. But, given a context in which the ensemble resulting from
the preparation procedure can indeed be said to be properly mixed, and if it
so happens that the density operator describing this ensemble is a separable
one, then the distinction between proper and improper separability may still be
applied. The question is whether the object systems making up the ensemble
are themselves in entangled states or not. If one simply considers the reduced
density operators of the individual object systems, tracing out all other degrees
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of freedom, then the answer will be in the negative. But, if the ensemble is a
proper mixture, we have another way of considering the question. We may ask
instead whether the relative states of the object systems with respect to the
experimentalist are entangled or not. If they are, then the ensemble exhibits
improper separability; if not, the ensemble exhibits proper separability. By
contrast, if we focus on a context with respect to which our ensemble is in an
improper mixture, then this question about the relative states of the systems
making up the ensemble doesn’t arise. One can then only enquire about the
reduced states of each individual system, which in this case will be separable.

3 Illustrations

The fact that mixtures of entangled states can give rise to separable states
is a commonplace in entanglement theory, but that it may be of conceptual
importance has so far been little noted, with the exception of some remarks by
Popescu and Collins [20, 21] and Seevinck and Uffink [22]. We should perhaps
not be too surprised that this phenomenon may occur. Consider the four Bell-
states,

|φ+〉 = 1/
√

2(|↑〉|↑〉 + |↓〉|↓〉),
|φ−〉 = 1/

√
2(|↑〉|↑〉 − |↓〉|↓〉),

|ψ+〉 = 1/
√

2(|↑〉|↓〉 + |↓〉|↑〉),
|ψ−〉 = 1/

√
2(|↑〉|↓〉 − |↓〉|↑〉).

These maximally entangled states form an orthonormal basis for 2 ⊗ 2 dimen-
sional quantum systems, hence projectors onto these states satisfy the complete-
ness relation, summing to the identity operator 1⊗ 1; thus an equally weighted
mixture of these states will correspond to the maximally mixed state 1/4(1⊗1),
which, of course, is separable. Less trivial examples exist. We shall consider,
in illustration, what happens when one takes general convex combinations of
projectors onto the Bell states, giving rise to the class of so-called Bell-diagonal

states7.
It is often useful to consider the set of Hermitian operators on an n-dimensional

complex Hilbert space as themselves forming a real Hilbert space of n2 di-
mensions, on which we have defined a scalar product (A,B) = Tr(AB) [23].
For n = 2m, m-fold tensor products of the Pauli operators and the identity
constitute a convenient basis set for this space. The density operator for an
n-dimensional quantum system can then be written as a vector whose (real)
components are simply the expectation values of these basis operators. In par-
ticular, the density operator for a 2 ⊗ 2 dimensional system may be written in
the general form:

ρAB =
1

4

(

1 ⊗ 1 + a.σ ⊗ 1 + 1⊗ b.σ +
∑

ij

cijσi ⊗ σj

)

, (5)

where ai, bi and cij are the expectation values of the operators σi⊗1, 1⊗σi and
σi ⊗ σj , respectively. For the projectors onto the four Bell states, a = b = 0,

7The Bell-diagonal states and their U1 ⊗ U2 equivalents are a proper subset of the set of
2 ⊗ 2 density operators, as mixtures of maximally entangled states always have maximally
mixed reduced states for subsystems, which will not be the case for general 2 ⊗ 2 density
operators, whether entangled or separable.
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Figure 2: Bell-diagonal states may be represented by the diagonal components of the
correlation matrix cij . The vertices of the tetrahedron T correspond to the four Bell
states |φ+〉, |φ−〉, |ψ+〉, |ψ−〉. A Bell-diagonal state is separable iff it corresponds to a
point belonging to the central octohedron T ∩ −T .

and cij is diagonal. So in this case, we need only consider the possible values
of the diagonal components cii, which will form a vector in a 3-dimensional real
space, allowing one to represent the states in an easily visualisable manner. As
is well known, the vectors corresponding to the Bell state projectors are:

cφ+ =





1
−1
1



 , cφ− =





−1
1
1



 , cψ+ =





1
1
−1



 , cψ− =





−1
−1
−1



 . (6)

These four vectors correspond to the vertices of a tetrahedron T centred on the
origin (see Figure 2); the Bell-diagonal states, given by convex combinations of
the Bell-state projectors, will then correspond to vectors lying on or within the
surfaces of T . It has been shown [24] that a Bell-diagonal state is separable
if and only if the end point of its corresponding vector c lies on or within the
octohedron given by the intersection of T with its reflection through the origin,
−T (Figure 2).

We now have a very clear picture of when mixing maximally entangled states
of a 2⊗2 system can give rise to (improperly) separable states (note that degree
of entanglement is invariant under U1 ⊗ U2 rotation, hence an identical picture
may be drawn for any maximally entangled basis set): it will happen whenever
the mixing probabilities take us from the vertices of the tetrahedron into the
central separable octohedron. In particular, let us consider the example of
mixing |φ+〉 and |φ−〉. In this case, we will be constrained to the plane czz = 1
and mixing the two states will move us along the line from (cxx, cyy) = (−1, 1)
to (cxx, cyy) = (1,−1). The octohedron of separable states only intersects the
plane czz = 1 at the single point above the origin, (cxx, cyy) = (0, 0), i.e. when
we have an exact 50/50 mixture of the two entangled states. The resultant
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state is the (improperly) separable state with maximal classical correlations:
ρ = 1/2(|↑↑〉〈↑↑ |+ |↓↓〉〈↓↓ |).8

As another familiar example, consider the generalized Werner states for 2⊗2
systems. These are mixtures of the singlet state |ψ−〉 and spherically symmetric
noise, and take the form

ρ(λ) = λ|ψ−〉〈ψ−|+(1−λ)1

4
1⊗1 =

1

4

(

1⊗1−λ(σx⊗σx+σy⊗σy +σz⊗σz)
)

.

These states lie on the line joining the origin to the vertex representing the
singlet state. The class is of particular interest as for certain ranges of the
value of λ, the state will be entangled, but will not violate any Bell inequality,
a possibility first noted by Werner [17]. The mixture will move from being
separable to entangled when it crosses the surface of the octohedron, a distance
of 1/

√
3 along the line from the origin, corresponding to λ = 1/3. (It follows

from a result of the Horodeckis giving necessary and sufficient conditions for
Bell inequality violation in the case of two qubits [25] that the mixture will
not violate a Bell inequality until the distance is greater than

√
3/

√
2 from

the origin, λ > 1/
√

2.) Mixing the singlet state with a fraction > 2/3 of the
maximally mixed state (which, as we have said, may itself be an equal mixture
of the four Bell states) will thus result, again, in an improperly separable state.

Reflecting on the case of Werner states raises the following possibility. One
could imagine taking a proper mixture of states which are themselves entangled
but do not violate any Bell inequality (hence are necessarily mixed [26], but per-
haps improperly), in such a way that the resulting density operator is separable.
This would be another example of improper separability. However, in this case,
although the possibility exists in principle of selecting out sub-ensembles corre-
sponding to each of the states making up the mixture, these sub-ensembles will
not make their entanglement manifest by violating a Bell inequality. Popescu
has shown [27] that for dimensions greater than five, Werner states can be made
to display ‘hidden’ non-locality, i.e., violate a Bell inequality after a sequence
of measurements, but this particular technique will not be applicable with di-
mensions 2 ⊗ 2. It would thus seem that when improper separability results
from mixing entangled states that do not themselves violate any (at least single
measurement) Bell inequality, although it remains true that the ensemble can
be said genuinely to contain some entanglement at the ontological level, it is
certainly lying very low.

4 Discussion

We began by noting that the venerable distinction between proper and improper
mixtures may be sustained in the context of no-collapse versions of quantum
mechanics, if it is recognised that the distinction becomes relative to the ex-
perimental context. We then remarked on the fact that the process of mixing

8A related example has also been given by Seevinck and Uffink [22] in the context of
distinguishing genuine N-party entanglement from M < N -party entanglement. They note
that an N-party state can be M -party entangled even though there is no M -party subsystem
whose reduced state is M -party entangled. The example they give is precisely an example of
improper separability, in which the 2-party entanglement of the pair of Bell states |ψ+〉 and
|ψ−〉 becomes hidden on mixing.
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entangled states, even maximally entangled states, can, perhaps somewhat sur-
prisingly, result in separable states. The examples given by the Bell diagonal
states illustrate how this can happen and that the phenomenon is widespread.
This would appear to make entanglement a disturbingly ephemeral property
at the ontological level. However, by introducing a distinction analogous to
that between proper and improper mixtures, a distinction between proper and
improper separability, we have seen that it remains possible to retain an onto-
logically robust notion of entanglement.
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