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A Spatially Constrained Probabilistic Model for

Robust Image Segmentation
Abhirup Banerjee and Pradipta Maji

Abstract—In general, the hidden Markov random field
(HMRF) represents the class label distribution of an image in
probabilistic model based segmentation. The class label dis-
tributions provided by existing HMRF models consider either
the number of neighboring pixels with similar class labels
or the spatial distance of neighboring pixels with dissimilar
class labels. Also, this spatial information is only considered
for estimation of class labels of the image pixels, while its
contribution in parameter estimation is completely ignored. This,
in turn, deteriorates the parameter estimation, resulting in sub-
optimal segmentation performance. Moreover, the existing models
assign equal weightage to the spatial information for class label
estimation of all pixels throughout the image, which, create
significant misclassification for the pixels in boundary region
of image classes. In this regard, the paper develops a new
clique potential function and a new class label distribution,
incorporating the information of image class parameters. Un-
like existing HMRF model based segmentation techniques, the
proposed framework introduces a new scaling parameter that
adaptively measures the contribution of spatial information for
class label estimation of image pixels. The importance of the
proposed framework is depicted by modifying the HMRF based
segmentation methods. The advantage of proposed class label
distribution is also demonstrated irrespective of the underlying
intensity distributions. The comparative performance of the
proposed and existing class label distributions in HMRF model
is demonstrated both qualitatively and quantitatively for brain
MR image segmentation, HEp-2 cell delineation, natural image
and object segmentation.

Index Terms—Segmentation, expectation-maximization, clique
potential, hidden Markov random field, class label distribution.

I. INTRODUCTION

THE process of segmentation partitions an image into

finite number of non-overlapping meaningful homoge-

neous regions. It is an invaluable step in many medical imaging

applications. Brain image segmentation into cerebro-spinal

fluid (CSF), gray matter (GM), and white matter (WM) tissues

is a prerequisite step in several clinical investigations. For

example, multiple sclerosis requires accurate measurement of
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WM lesions for determining the optimum dose of medicine,

while schizophrenia and epilepsy require volumetric classifi-

cation of CSF, GM, and WM for identifying morphological

distinctions between patients.

One major problem in image segmentation is uncertainty,

caused by imprecision in computations and vagueness in

class definitions. One popular technique in modeling this

uncertainty is the probabilistic model, which generally applies

the expectation-maximization (EM) algorithm for pixel classi-

fication according to the probability values, calculated from the

image intensity distribution. Assuming a suitable probability

distribution for image intensities, the segmentation methods

aim to estimate the associated class label, based on pixel in-

tensities. This estimation problem is usually formulated using

maximum likelihood (ML) or maximum a posteriori (MAP)

principles. In this regard, the finite mixture (FM), specifically,

the finite Gaussian mixture (FGM) model, has become one of

the most popular models for parametric model based image

segmentation [1]–[5]. Wells et al. [1] used the EM algorithm

in FGM model for optimal brain MR image segmentation,

minimizing simultaneously the bias field artifacts. Alterna-

tively, Greenspan et al. [3] used large number of Gaussian

components to model each image class in FGM framework.

Nguyen et al. [4] improved the FGM by varying the prior

distribution of each image class for each pixel, depending

on its neighbors. Liu and Zhang [5] integrated the level set

approach into the FGM to achieve robust segmentation for

noisy and bias field affected images.

Since none of the aforementioned works takes into consid-

eration the spatial information for segmentation, the Markov

random field (MRF) model has been introduced into the FM

model based probabilistic frameworks [6]–[9]. Integrating the

spatial information from neighboring pixels with their intensity

distribution, Zhang et al. [6] introduced the HMRF model

and proposed a joint EM-HMRF framework for robust image

segmentation. Held et al. [7] proposed an MRF segmentation

algorithm, using the adaptive segmentation approach of Wells

et al. [1] over three important image features, namely, nonpara-

metric image intensity distributions, neighborhood correla-

tions, and signal inhomogeneities. Diplaros et al. [8] developed

a generative framework, assuming the hidden class labels

are generated using prior distributions of similar parameters

from neighboring pixels. Nguyen and Wu [9] developed a

novel technique using a simple metric to introduce spatial

dependency among neighbors in joint FGM-MRF framework.

Roche et al. [10] developed a new clique potential function

using the distance weighting measure for HMRF model based

segmentation in anisotropic images. Recently, Banerjee and
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Maji [11] have introduced the stomped normal (StN) distri-

bution for modelling brain tissues in MR images in rough-

probabilistic framework. In another work [12], the image

intensity distribution has been modelled using finite Student’s-

t mixture model for brain MR image segmentation.

The MRF, more specifically the HMRF framework [6]–

[12], generally models the class label distribution of an image

by considering the spatial information from the neighboring

pixels. In general, this spatial information consists of either

number of neighboring pixels with similar class labels or the

spatial distance of the neighboring pixels with dissimilar class

labels. Also, this spatial information is only considered for

class label estimation of image pixels, while its contribution in

parameter estimation is completely ignored. This, in turn, may

limit the class parameters from converging to their optimal

estimates, thus resulting in sub-optimal segmentation. Another

crucial drawback of the existing HMRF model based image

segmentation techniques is that the models assume the spatial

information is equally important to estimate the class labels

of all pixels throughout the image. However, in general,

only the pixels that lie completely inside an image class are

properly classified by using this spatial information, while it

creates ambiguity for classification of the pixels that lie at the

boundary regions of image classes.

In this regard, the objective of the current research work is

to present a new way to introduce the information of image

class parameters for modeling the class label distribution of

an image. By introducing a new clique potential function, the

proposed framework presents a new class label distribution in

HMRF based image segmentation. It enables the segmentation

algorithm to optimally achieve the pixel labeling, as well as the

estimates of the image class parameters. Also, introduction of a

new adaptive scaling parameter, for estimating the importance

of spatial information in class label estimation, facilitates the

probabilistic framework to obtain improved classification accu-

racy, even for boundary pixels of image classes. The efficacy of

the proposed approach is demonstrated by modifying HMRF

based image segmentation algorithms, where the image is rep-

resented as finite mixture of Gaussian, Student’s-t, or StN [11]

distributions. The comparative performance of the proposed

and existing class label distributions in HMRF framework is

demonstrated quantitatively as well as qualitatively for real

and simulated brain MR image segmentation, HEp-2 cell

delineation, natural image and object segmentation.

II. BASICS OF HMRF MODEL BASED SEGMENTATION

This section describes the basics of HMRF model and

HMRF based segmentation, where the image is represented as

finite mixture of Gaussian, Student’s t, or StN distributions.

A. Basics of Hidden Markov Random Field

Let X
˜

and Y
˜

be two random fields with state spaces

L = {1, 2, · · · , L} and D = {1, 2, · · · , D}, respectively. Let

x
˜

and y
˜

be observations of X
˜

and Y
˜

, respectively, and X and

Y denote their respective sample spaces. Given Xi = l, Yi
follows a conditional probability distribution

p(yi|l) = f(yi; θl) ∀l ∈ L (1)

where θl denotes the parameter set of class with label l. We

also assume that (X
˜
, Y
˜
) is pairwise independent. Now, in FM

model, it is assumed that

ωl = p(Xi = l) ∀l ∈ L, i ∈ S (2)

is independent of the individual sites i ∈ S = {1, 2, · · · , N}.

So, the marginal distribution of Yi = y, depending on

parameter set θ = {θl = (ωl, θl) : l ∈ L}, reduces to

p(y|θ) =
∑

l∈L

p(Xi = l, Yi = y|θl) =
∑

l∈L

ωlf(y; θl). (3)

This model is defined as the FM model. Now, in an MRF, the

elements in S are connected with each other by a neighbor-

hood system, defined as N = {Ni : i ∈ S}, where Ni denotes

the set of elements neighboring i. A random field X
˜

is called

an MRF over a neighborhood system N iff

(i) p(x
˜
) > 0 ∀x

˜
∈ X ; and (ii) p(xi|xS−{i}) = p(xi|xNi

).

In addition to the MRF assumptions, if

1) the state of X
˜

is unobservable,

2) given any x
˜
∈ X , every Yi follows a known conditional

distribution p(yi|xi) = f(yi; θxi
), and

3) for any x
˜
∈ X , Yi’s are conditionally independent,

the model is called the hidden MRF (HMRF). Using these

assumptions, the marginal distribution of Yi = yi, given the

parameter set θ and Xi’s neighborhood XNi
, is modified as

p(yi|xNi
, θ) =

∑

l∈L

p(l|xNi
)f(yi; θl). (4)

According to Hammersley-Clifford theorem [13] for modeling

an MRF, the random field X
˜

can be described using the Gibbs

distribution, as follows:

p(x
˜
) =

1

Z
exp(−E(x

˜
)), (5)

Z being a normalizing constant, called the partition function.

Here, E(x
˜
) is an energy function of the form

E(x
˜
) =

∑

c∈C

Ec(x˜
), (6)

which is a sum of clique potentials Ec(x˜
) over all possible

cliques C. In HMRF, a clique c is defined as a subset

of elements in S, where each pair of distinct elements is

neighbors. Accordingly, p(l|xNi
) is derived as

p(l|xNi
) =

1

Z
exp

(
−

∑

j∈Ni

Ec(l, xj)

)
. (7)

In [6], Zhang et al. defined the clique potential function as

Ec(xi, xj) = −δ(xi − xj), (8)

δ(.) being the Kronecker’s delta function. In later works [11],

[12], [14], [15], the clique potential function is modified as

Ec(xi, xj) = −aδ(xi − xj), (9)

where a is a scaling parameter. In [10], Roche et al. defined

the clique potential function for anisotropic images, using the

distance weighting measure, as follows:

Ec(xi, xj) =
0.1

dij

[
1− δ(xi − xj)

]
, (10)

where dij is the Euclidean distance between pixels i and j.
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B. GHMRF: Gaussian Distribution for HMRF Model Based

Segmentation

In [6], Zhang et al. introduced the HMRF into a finite

mixture of Gaussian distributions to develop the GHMRF

algorithm for image segmentation. The algorithm follows the

same model of (4), where Yi|Xi = l ∼ N(µl, σ
2
l ), that is,

fG(yi; θl) =
1√
2πσl

exp

(
− (yi − µl)

2

2σ2
l

)
. (11)

Here yi and xi, respectively, denote the intensity and class

label of ith pixel in the image, i ∈ S, xi ∈ L. The estimation

of parameters θl, l ∈ L, is performed using the iterative EM

algorithm. The optimal labeling of the pixels is estimated using

the MAP criterion and the iterated conditional modes (ICM)

algorithm [16], as follows:

x̂i = argmin
xi

[
(yi − µxi

)2

2σ2
xi

+ log σxi
+

∑

j∈Ni

Ec(xi, xj)

]
. (12)

In case, clique potential function (9) is used, (12) reduces to

x̂i = argmin
xi

[
(yi − µxi

)2

2σ2
xi

+ log σxi
− an̂i(xi)

]
, (13)

where n̂i(xi) represents the number of neighbors of ith pixel

with class label xi. In case, clique potential function (10) is

used, (12) is modified as

x̂i = argmin
xi

[
(yi − µxi

)2

2σ2
xi

+ log σxi
+ 0.1

∑

j∈Ni

xj 6=xi

1

dij

]
. (14)

C. tHMRF: Student’s t-Distribution for HMRF Model Based

Segmentation

In [12], the intensity distribution in each class is modeled

using Student’s t-distribution for HMRF based segmentation.

The image is represented as a finite t-mixture as in (4), where

ft(y; θl) =
Γ
(
νl+1
2

)

σl
√
πνl Γ(

νl
2 )

(
1 + d(yi;µl,σl)

νl

) (νl+1)

2

, (15)

νl being the number of degrees of freedom, and d(y;µ, σ) =
(y−µ)2

σ2 is the squared Mahalanobis distance between scalers

y and µ with variance σ2. Optimal labeling of the pixels is

estimated similarly, using the MAP criterion, ICM algorithm,

and clique potential function of (9), as follows:

x̂i = argmin
xi

[− log ft(y; θxi
)− an̂i(xi)] . (16)

The optimal labeling using clique potential of (10) is similarly

estimated as

x̂i = argmin
xi

[
− log ft(y; θxi

) + 0.1
∑

j∈Ni

xj 6=xi

1

dij

]
. (17)

D. StNHMRF: Stomped Normal Distribution for HMRF

Model Based Segmentation

Incorporating the concepts of rough sets in probabilistic

model, the StN distribution [11] models an image class Ω as

the union of two disjoint sets, namely, lower approximation

region A(Ω) and boundary region B(Ω). The same model of

(4) can be used to represent the intensity distribution, where

fStN(y; θl) =
1

Dlσl
φ(zil), zil =

{
kl, if i ∈ A(Ωl)
yi−µl

σl
, if i ∈ B(Ωl)

(18)

Dl = 2(1−Φ(kl)+klφ(kl)), kl denotes the width parameter of

StN distribution, and φ() and Φ() denote the probability den-

sity and distribution functions of standard normal distribution,

respectively. The lower approximation A(Ωl) and boundary

region B(Ωl) of Ωl are defined as follows:

A(Ωl) =

{
i ∈ S :

∣∣∣∣
yi − µl

σl

∣∣∣∣ < kl

}
; (19)

B(Ωl) = {i ∈ S : i /∈ A(Ωp) ∀p ∈ L} . (20)

The optimal labeling of each pixel is estimated similarly

using the MAP criterion, ICM algorithm, and clique potential

function of (9), as follows:

x̂i = argmin
xi

[
1

2
z2ixi

+ log σxi
− an̂i(xi)

]
. (21)

In a similar way, the labels are optimally estimated using

clique potential function of (10) as

x̂i = argmin
xi

[
1

2
z2ixi

+ log σxi
+ 0.1

∑

j∈Ni

xj 6=xi

1

dij

]
. (22)

III. PROPOSED MODEL

This section introduces a novel class label distribution,

which incorporates the information of class parameters for

robust image segmentation. A new scaling parameter is also

introduced to determine the contribution of spatial information

in labeling a pixel.

A. Proposed Class Label Distribution

According to the HMRF model, the class labels of the pixels

in an image are assumed to follow Gibbs distribution, as in

(5). As only neighboring pairs are being considered as cliques,

(6) can be rewritten as

E(x
˜
) =

∑

i∈S

∑

j∈Ni

Ec(xi, xj). (23)

Both clique potential functions in (9) and (10) consider only

class label information of its neighboring pixels. The function

of (10) additionally incorporates the spatial distance of the

neighboring pixels from the center pixel and, in turn, acts as

a simple high-pass filter. Using the clique potential function

of (9), the prior probability p(l|xNi
) from (7) is derived as

p(l|xNi
) =

exp (an̂i(l))∑

m∈L

exp (an̂i(m))
. (24)



4 IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020

Similarly, using (10), p(l|xNi
) is reduced to

p(l|xNi
) =

exp

(
0.1

∑

j∈Ni;xj 6=l

d−1
ij

)

∑

m∈L

exp

(
0.1

∑

j∈Ni;xj 6=m

d−1
ij

) . (25)

From both (24) and (25), it is clearly visible that the

use of existing clique potential functions in HMRF model

incorporates either the number of pixels with same class label

or the spatial distance of pixels with different class labels. The

existing models completely ignore the contribution of image

class parameters for modeling the class label distribution,

which, in turn, can deviate the segmentation algorithms from

attaining the optimal estimates of parameters, thus leading to

sub-optimal segmentation results. Also, the scaling parameter

a in the existing clique potential function remains constant

for all pixels throughout the image. It indicates that the use of

spatial information for estimating prior probabilities or class

labels is important equally for all pixels throughout the image.

However, this assumption clearly does not satisfy for the pixels

that reside at the boundary of image classes, because this

information actually creates ambiguity in classifying the pixel

into one of the neighboring image classes. As a result, the

overall segmentation performance may be degraded.

To solve the aforementioned problems of existing clique

potential functions in HMRF model, in the proposed work,

the clique potential function is defined as

Ec(xi, xj) =
ai

2|Ni|

[
(µxi

− µxj
)2
(

1

σ2
xi

+
1

σ2
xj

)
− 1

]
, (26)

where ai ≥ 0. Unlike the existing clique potential functions of

(9) and (10), the proposed clique potential function integrates

the information of image class parameters with the class label

information of neighboring pixels. The scaling parameter ai, in

proposed model, varies for each pixel i and hence, can regulate

the contribution of spatial information for each pixel during

the estimation of class labels and image class parameters.

The expression (µxi
− µxj

)2 in (26) incorporates the as-

sumption of similarity between class labels of neighboring

image pixels into the prior probability distribution and hence,

aims to produce piecewise constant image classes. The term(
1

σ2
xi

+
1

σ2
xj

)
in (26) normalizes the variability of both image

classes from the clique potential function. The final expression

is reduced by a constant term 1, so that the clique potential

function can regulate the contribution of spatial information,

even when the neighboring pixels are equally labelled. Without

reduction by 1, the clique potential function would attain its

minimum value of 0 at xi = xj , that is, when the ith and jth
pixels are equally labelled. In this specific case, the function

would nullify the effect of scaling parameter ai. This, in

turn, would interrupt the control of the contribution of spatial

information, although, in this specific case, the contribution

of spatial information should be very high. Hence, in the

proposed clique potential function, the final expression is

reduced by a constant term 1.

B. Estimating the Scaling Parameter

The scaling parameter ai controls the contribution of spatial

information for estimating the class label of ith pixel, i ∈ S.

The higher value of ai indicates higher contribution of spatial

information, while its lower value indicates lower importance

of the same for estimating the class label. In case ai becomes

0, it indicates that the ith pixel is spatially independent, that

is, its class label does not depend on its neighboring pixels.

Hence, in that case, the class label of ith pixel should only

be determined based on its intensity. In general, the pixels,

lying inside the image classes, are mostly influenced by use of

spatial information, while this information creates ambiguity

in class label estimation of pixels that reside at the boundary

of image classes. Hence, from this perspective, the problem

of estimating scaling parameter ai boils down to determining

whether a pixel lies inside or at the boundary of a class.

In general, the pixels in an image with similar intensities are

spatially connected to each other by a neighborhood system.

So, if most of the neighboring pixels of a specific pixel belong

to the same class, it is extremely likely that the pixel is an

inlier pixel (lies inside) of that class. Hence, the contribution

of spatial information in estimating the class label of that pixel

should be very high. The aforementioned criterion is easily

evaluated by measuring the number of neighboring pixels that

belong to each of the L image classes. Let us assume that

among the neighboring pixels of ith pixel, nip number of pix-

els belong to the pth class Ωp, where p ∈ L = {1, 2, · · · , L}.

The corresponding relative frequency for each class is denoted

by rip, where rip =
nip

|Ni|
, ∀p ∈ L. The relative frequency

values are then sorted into ri(p); p ∈ L, where ri(p) represents

the pth highest relative frequency of the occurrence of an

image class in the neighborhood of pixel i. Let us denote

this class by Ω(p). In this regard, it should be noted that

((1), (2), · · · , (L)) is a permutation of L = {1, 2, · · · , L}.

Now, if the highest relative frequency corresponding to pixel

i exceeds the second highest relative frequency by a threshold

T , that is, if (ri(1) − ri(2)) > T , it implies that at least

100T% neighboring pixels of pixel i belong to one image

class, denoted by Ω(1). For relatively higher value of T , the

aforementioned criterion ensures that most of the neighboring

pixels belong to a single image class, which, in turn, provides

significant evidence that the pixel of interest lies inside that

class. In the proposed model, the value of T is fixed to 0.50.

So, to satisfy the aforementioned condition in 8-neighborhood

system of an image, at least 6 pixels among 8 neighboring

pixels must belong to one image class, while the other image

classes can contain at most one of the remaining pixels. Now,

in case pixel i lies at the boundary of an image class, there

should exist at least two classes Ωl and Ωm, l,m ∈ L, where

2 ≤ nil, nim ≤ 6 (Fig. 1). Hence, if the proposed criterion

is satisfied for pixel i, the pixel of interest can never be a

boundary pixel and should definitely be an inlier pixel. So,

in this case, spatial information should play key role in class

label estimation of the pixel and hence, the value of scaling

parameter ai should be high for that pixel. In the proposed

model, the value of ai is estimated as a > 0 in this case.

If the proposed condition does not hold, that is, (ri(1) −
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Fig. 1. (Left) Minimum number of boundary pixels in 8-neighborhood.
(Right) Different levels of neighborhood system in distinct colors.

ri(2)) ≤ T , then there does not exist sufficient evidence that

most of the neighboring pixels belong to one image class and

there is high possibility that the ith pixel lies at the boundary

between two classes. So, inclusion of spatial information may

lead to misclassification of the pixel in this case. Hence, the

proposed model estimates the scaling parameter ai to be 0 in

this case, to nullify the effects of spatial information.

The aforementioned criterion can be extended to include

different levels of neighboring pixels (Fig. 1). The kth order

neighborhood system of pixel i is defined as

N (k)
i =

{
j = (jx, jy) : |jx − ix| ≤ k, |jy − iy| ≤ k, j /∈ N (k−1)

i

}
,

(27)

where i = (ix, iy) ∈ S and k ≥ 1. Clearly, N (1)
i = Ni ∀i ∈

S. Different levels of neighboring pixels are assigned different

weights according to their distance from center pixel. The

weights for the kth order neighboring pixels are defined as

w
(k)
i =

1

2k
. (28)

In case, the spatial information is considered till the P th order

neighboring pixels, the weights for the neighboring pixels in

P th level will be doubled, that is,

w
(k)
i =

{
1
2k
, if k < P
1

2k−1 , if k = P.
(29)

The composite relative frequencies corresponding to ith pixel,

in the kth order neighborhood system, are defined as follows:

r
(k)
il =

k∑

j=1

w
(j)
i

n
(j)
il

|N (j)
i |

; ∀l ∈ L. (30)

Clearly, r
(1)
il = ril; ∀l ∈ L. In the proposed method, up

to second order neighboring pixels are only considered, that

is, P = 2. So, in addition to (r
(1)
i(1) − r

(1)
i(2)) > T , if

(r
(2)
i(1) − r

(2)
i(2)) > T , then most of both first and second

order neighboring pixels of pixel i belong to Ω(1), and hence

the possibility of the pixel’s residing inside the image class

becomes very high. So, in this case, the contribution of spatial

information in estimating the class label of the ith pixel

should be very high. Hence, the proposed model estimates

the scaling parameter ai to be 2a in this case. In case the

criterion (r
(2)
i(1)−r

(2)
i(2)) > T is not satisfied, then also the pixel

should be an inlier pixel, since (r
(1)
i(1) − r

(1)
i(2)) > T . However,

since the pixel lies very near to the boundary region, the

scaling parameter is assigned less weight and is estimated as

a. Moreover, in case (r
(1)
i(1)−r

(1)
i(2)) ≤ T and (r

(2)
i(1)−r

(2)
i(2)) > T ,

then also the pixel has high possibility to be an inlier pixel

due to the possible presence of high number of noise and

outliers in first-order neighborhood. So, incorporating all the

aforementioned results, the scaling parameter ai for the ith
pixel is estimated as

ai =






2a, if (r
(2)
i(1) − r

(2)
i(2)) > T and (r

(1)
i(1) − r

(1)
i(2)) > T

a, if (r
(2)
i(1) − r

(2)
i(2)) > T and (r

(1)
i(1) − r

(1)
i(2)) ≤ T

a, if (r
(2)
i(1) − r

(2)
i(2)) ≤ T and (r

(1)
i(1) − r

(1)
i(2)) > T

0, otherwise.

For any P th order neighborhood system, the estimation of

scaling parameters can be extended as follows:

ai =





Pa, if (r
(j)
i(1) − r

(j)
i(2)) > T ∀j = 1, 2, · · · , P

pa, if for any p ∈ {1, 2, · · · , P − 1},
∃ t1, t2, · · · , tp ∈ {1, 2, · · · , P}
∋ (r

(tj)

i(1) − r
(tj)

i(2)) > T ∀j = 1, 2, · · · , p
0, otherwise.

C. GHMRF S: GHMRF with New Class Label Distribution

This section incorporates the concept of proposed class label

distribution into the GHMRF algorithm [6]. Let yi and xi,
respectively, denote the intensity and class label of ith pixel,

i ∈ S and xi ∈ L = {1, 2, · · · , L}. The image is represented

as a finite Gaussian mixture, as in (4), where f(yi; θl) follows

from (11) and the prior function p(l|xNi
) is derived using the

proposed clique potential function defined in (26), as follows:

p(l|xNi
) =

exp

(
− ai

2|Ni|
∑

j∈Ni

(µl − µxj
)2
(

1

σ2
l

+
1

σ2
xj

))

∑

m∈L

exp

(
− ai

2|Ni|
∑

j∈Ni

(µm − µxj
)2
(

1

σ2
m

+
1

σ2
xj

)) . (31)

Assumption of statistical independence between pixel inten-

sities given their class labels reduces the probability density

of overall image to

p(y
˜
|x
˜N

, θ) =
∏

i∈S

p(yi|xNi
, θ) =

∏

i∈S

∑

l∈L

p(l|xNi
)p(yi|l). (32)

To estimate parameters θ = {µl, σl : l ∈ L} from above

expression, the iterative EM algorithm is applied. In the

proposed GHMRF S algorithm, the latent membership values

τil are estimated in the E-step, as follows:

τ
(t)
il =

p(l|xNi
) fG(yi; θ

(t)
l )∑

m∈L

p(m|xNi
) fG(yi|θ(t)m )

, (33)

where the prior probability p(l|xNi
) follows the proposed class

label distribution of (31). For parameter estimation in M-step,

the Q-function or expected complete data log-likelihood is

generated, as follows:

Q(θ|θ(t)) =
∑

i∈S

∑

l∈L

τ
(t)
il [log p(l|xNi

) + log p(yi|l)]

=
∑

i∈S

∑

l∈L

τ
(t)
il

[
− ai

2|Ni|
∑

j∈Ni

(µl − µxj
)2
( 1

σ2
l

+
1

σ2
xj

)
+
ai
2

−1

2
log 2π − log σl −

(yi − µl)
2

2σ2
l

]
.
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Optimizing the Q-function, the optimal estimates of the pa-

rameters µl and σ2
l are obtained as

µ̂l
(t+1) =

∑

i∈S

τ
(t)
il

(
yi +

ai
|Ni|

∑

j∈Ni

(
1 +

σ2
l

(t)

σ2
xj

(t)

)
µ(t)
xj

)

∑

i∈S

τ
(t)
il

(
1 +

ai
|Ni|

∑

j∈Ni

(
1 +

σ2
l

(t)

σ2
xj

(t)

)) ; (34)

σ̂2
l

(t+1)
=

∑

i∈S

τ
(t)
il

(
(yi − µ

(t+1)
l )2 +

ai
|Ni|

∑

j∈Ni

(µ
(t)
l − µ(t)

xj
)2
)

∑

i∈S

τ
(t)
il

. (35)

It is evident from the estimate of latent variables τil and the

parameters µl and σ2
l that the use of proposed clique potential

function significantly modifies the existing GHMRF frame-

work. Since the latent variables now take into consideration

the effects of class parameters of neighboring pixels and,

more importantly, the importance of spatial information via

the prior probability p(l|xNi
), it improves the estimation of

memberships of each pixel to each of the image classes and,

in turn, improves the parameter estimation. In addition, the

estimates (34) and (35) of µl and σ2
l in the proposed model

are influenced by additional spatial information, which was not

considered in the estimates of the same parameters in GHMRF

algorithm. The additional spatial information considers the

information of neighboring pixels based on the estimates of

parameters from previous iteration and, in turn, regulates the

parameters to converge to their most accurate and robust

estimates, even in presence of outliers and heavy noise.

The optimal pixel labeling is estimated according to MAP

criterion and ICM algorithm, as follows:

x̂i = argmin
xi

[
(yi − µxi

)2

2σ2
xi

+ log σxi

+
ai

2|Ni|
∑

j∈Ni

(µxi
− µxj

)2(
1

σ2
xi

+
1

σ2
xj

)

]

= argmin
xi

[
1

2
d2ixi

+ log σxi
+

ai
2|Ni|

∑

j∈Ni

A′
xi,xj

Σ−1
xi,xj

Axi,xj

]
,(36)

where d2ij =
(yi−µj)

2

σ2
j

, Aij = (µi − µj µj − µi)
′, and

Σij = diag(σ2
i , σ

2
j ). The variable dixi

denotes normalized

Euclidean distance and the term
[
1
2d

2
ixi

+ log σxi

]
represents

the intensity information of the pixels, which is common

in all three evaluation functions (36), (13), and (14). The

three evaluation functions mainly differ in their definitions of

class label distributions. The spatial information in both (13)

and (14) relies, respectively, on the number of pixels with

same class labels and the spatial distance from pixels with

different class labels. Hence, this spatial information is not

comparable with the pixel intensity information, measured in

terms of a normalized distance between pixel intensities. In

comparison, (36) represents the spatial information in terms

of an average Mahalanobis distance between mean intensities

of neighboring pixels and hence, is comparable with the

pixel intensity information. Also, the new spatial information

nullifies the effect of overall variation in each image class,

using a normalized measure, and hence, can produce robust

estimates of class labels, compared to the GHMRF model.

The incorporation of new adaptive scaling parameter ai in the

proposed model improves the labeling of pixels in boundary

region of image classes. Similar modifications are observed in

both tHMRF S and StNHMRF S algorithms.

D. tHMRF S: tHMRF with New Class Label Distribution

Similar to the previous model, in this case, the image is

represented as a finite Student’s t-mixture, as in (4), where

f(yi; θl) follows from (15) and the prior p(l|xNi
) is derived

using the proposed clique potential function, as follows:

p(l|xNi
) =

exp

(
− ai

2|Ni|
∑

j∈Ni

(µl − µxj
)2
(
uil
σ2
l

+
ujxj

σ2
xj

))

∑

m∈L

exp

(
− ai

2|Ni|
∑

j∈Ni

(µm − µxj
)2
(
uim
σ2
m

+
ujxj

σ2
xj

)) . (37)

The latent variables uil are estimated in the E-step as:

u
(t)
il =

v
(t)
l + 1

v
(t)
l + d(yi;µ

(t)
l , σ

(t)
l )

, (38)

and the τil are estimated using (33), where the prior proba-

bility p(l|xNi
) follows the proposed definition of (37). The

parameters µl and σ2
l are estimated in the M-step, as follows:

µ̂l
(t+1) =

∑

i∈S

τ
(t)
il

(
u
(t)
il yi +

ai
|Ni|

∑

j∈Ni

(
u
(t)
il + u

(t)
jxj

σ2
l

(t)

σ2
xj

(t)

)
µ(t)
xj

)

∑

i∈S

τ
(t)
il

(
u
(t)
il +

ai
|Ni|

∑

j∈Ni

(
u
(t)
il + u

(t)
jxj

σ2
l

(t)

σ2
xj

(t)

)) ; (39)

σ̂2
l

(t+1)
=

∑

i∈S

τ
(t)
il u

(t)
il

(
(yi − µ

(t+1)
l )2 +

ai
|Ni|

∑

j∈Ni

(µ
(t)
l − µ(t)

xj
)2
)

∑

i∈S

τ
(t)
il u

(t)
il

. (40)

ν
(t+1)
l is estimated numerically from

1 +

∑

i∈S

τ
(t)
il

(
log u

(t)
il − u

(t)
il

)

∑

i∈S

τ
(t)
il

+ ψ

(
vl + 1

2

)
− log

(
vl + 1

2

)

+ log
(νl
2

)
− ψ

(νl
2

)
= 0, (41)

where ψ(s) = 1
Γ(s)

∂
∂s
Γ(s) represents the digamma function.

Similar to the arguments presented in Section III-C, here also,

the incorporation of new spatial information via prior probabil-

ity p(l|xNi
) improves the estimation of the latent variable τil

and in turn, improves the parameter estimation. Additionally,

the incorporation of spatial information for parameter estima-

tion, which was not considered in existing tHMRF model,

regulates the parameters for accurate and robust estimation,

even in heavy noisy environment. Although the estimation

of νl follows the same approach of tHMRF, the modified

estimates of τil in (41) improves its optimal estimation. The

pixel labels are similarly measured using the MAP criterion

and ICM algorithm, as follows:

x̂i = argmin
xi

[
− log ft(y; θxi

) +
ai

2|Ni|
∑

j∈Ni

A′
xi,xj

Σ−1
xi,xj

Axi,xj

]
.(42)
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E. StNHMRF S: StNHMRF with New Class Label Model

In this model, the image is represented as a finite StN
mixture, as in (4), where f(yi; θl) follows the definition of

(18) and the prior probability p(l|xNi
) follows the definition

of (31). The latent variables are estimated as

τ
(t)
il =





1, if i ∈ A(Ωl)

p(l|xNi
) fStN (y; θ

(t)
l )∑

m∈L

p(m|xNi
) fStN (y; θ(t)m )

, else if i ∈ B(Ωl)

0, otherwise.

(43)

The parameters µl and σ2
l are estimated in M-step, as follows:

µ̂l
(t+1) = α A(t)

l + (1− α) B(t)
l ; (44)

where A(t)
l =

∑

i∈A(Ωl)

(
yi +

αi

|Ni|
∑

j∈Ni

(
1 +

σ2
l

(t)

σ2
xj

(t)

)
µ(t)
xj

)

∑

i∈A(Ωl)

(
1 +

αi

|Ni|
∑

j∈Ni

(
1 +

σ2
l

(t)

σ2
xj

(t)

))
,

B(t)
l =

∑

i∈B(Ωl)

τ
(t)
il

(
yi +

αi

|Ni|
∑

j∈Ni

(
1 +

σ2
l

(t)

σ2
xj

(t)

)
µ(t)
xj

)

∑

i∈B(Ωl)

τ
(t)
il

(
1 +

αi

|Ni|
∑

j∈Ni

(
1 +

σ2
l

(t)

σ2
xj

(t)

))
,

α being the relative importance of lower approximation region;

σ̂2
l

(t+1)
=

∑

i∈S

τ
(t)
il

(
(yi − µ

(t+1)
l )2 +

αi

|Ni|
∑

j∈Ni

(µ
(t)
l − µ(t)

xj
)2
)

∑

i∈S

τ
(t)
il

.(45)

Here also, the estimates of parameters differ from the existing

StNHMRF algorithm in terms of the inclusion of spatial

information of neighboring pixels. The estimates of the class

labels using MAP criterion and ICM algorithm is given below:

x̂i = argmin
xi

[
1

2
z2ixi

+ log σxi
+

ai
2|Ni|

∑

j∈Ni

A′
xi,xj

Σ−1
xi,xj

Axi,xj

]
.(46)

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the comparative performance of the

modified algorithms, termed as Algorithm S, over their two

existing counter-parts, termed as Algorithm-1 and Algorithm-

2, using clique potential functions (9) and (10), respectively.

The performance of proposed StNHMRF S has been com-

pared with state-of-the-art image segmentation algorithms:

deviation-sparse FCM with neighbor information constraint

(DSFCM N) [17], intuitionistic center-free FCM (ICFFCM)

[18], improved FCM based on morphological reconstruc-

tion and membership filtering (FRFCM) [19], kernel met-

ric and trade-off weighted fuzzy factor based fuzzy local

information c-means (KWFLICM) [20], bias-corrected FCM

(BCFCM) [21], multiplicative intrinsic component optimiza-

tion (MICO) [22], adaptive segmentation (ASeg) [1], modified

EM (mEM) [23], rough-fuzzy c-means (RFCM) [24], robust

RFCM (rRFCM) [25]; and several analysis tools for MRI,

namely, statistical parameter mapping software (SPM) version

8 [26] and FMRIB Software Library (FSL) version 5.0 [27].

All the algorithms and measures are executed in Ubuntu

16.04 LTS 64-bit OS having machine configuration Intel(R)

Core(TM) i7-2600 CPU @3.40GHz×8 and 16 GB RAM.

For analyzing the performance of different algorithms, the

experiments are performed on some benchmark simulated

MR images from “BrainWeb: Simulated Brain Database”

(http://www.bic.mni.mcgill.ca/brainweb/) [28], [29], real MR

images from “IBSR: Internet Brain Segmentation Repository”

(http://www.cma.mgh.harvard.edu/ibsr/), indirect immunoflu-

orescence (IIF) images obtained from “MIVIA HEp-2 Im-

ages Dataset” [30], “Berkeley Image Segmentation Dataset”

[31], and “PASCAL Visual Object Classes (VOC) Dataset”

[32]. The segmentation performance is evaluated using three

quantitative indices, namely, Dice coefficient, sensitivity, and

specificity. A good segmentation algorithm should make the

values of these three indices as high as possible, and ideally,

the values should be 1. The evaluation indices computed over

different images are graphically presented using box plot. The

significance analysis of the results are performed with the help

of parametric paired t-test (one-tailed) and represented using

the star (’*’) symbol. The ’*’, ’**’, ’***’, and ’****’ symbols

are used to indicate p-values of less than 0.05, less than 0.01,

less than 0.001, and less than 0.0001, respectively; while the

not significant (≥ 0.05) p-values are marked as ’n.s.’. Before

applying the brain MR image segmentation algorithms, the

brain extraction tool [33] is applied to remove the non-brain

tissues like skull, scalp, dura, etc., from the images; while the

RC2 bias field correction algorithm [34] is used to remove

the bias field artifact present in MR images. The thresholding

method due to Otsu [35] is incorporated for initial estimation

of image class parameters. Detailed experimental results, along

with brief description of the image databases, are provided in

the Supplementary material.

A. Importance of New Scaling Parameter

To establish the importance of new scaling parameter, the

proposed parameter has been incorporated into both clique po-

tential functions of (9) [6], [11], [14] and (10) [10], irrespective

of the image intensity distributions (StN, t, and Gaussian). The

efficacy of the scaling parameter has been tested on simulated

and real brain MR images of BrainWeb and IBSR databases,

HEp-2 cell IIF images of MIVIA database, and natural images

of Berkeley and PASCAL VOC datasets. The quantitative

results, in terms of box-plots, is presented in Fig. 2.

1) StNHMRF Model: From Fig. 2, it is observed that the

use of new scaling parameter in clique potential function of

(9) in StNHMRF model provides significant improvement in

segmentation accuracy for brain MR image segmentation in

BrainWeb and IBSR databases, natural image segmentation

in Berkeley Dataset, and object segmentation in the PASCAL

VOC dataset, irrespective of the evaluation indices. For HEp-

2 cell segmentation in MIVIA database, the proposed scaling

parameter also generates significant performance improvement

for sensitivity and specificity indices; while for Dice coef-

ficient, the results are better, but not statistically significant.

http://www.bic.mni.mcgill.ca/brainweb/
http://www.cma.mgh.harvard.edu/ibsr/
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Fig. 2. Box plot depicting the importance of novel scaling parameter over two existing class label distributions (‘ws’ indicates ‘with scaling parameter’):
BrainWeb and IBSR databases (top); MIVIA database (second); Berkeley Segmentation Dataset (third); and PASCAL VOC dataset (last).

The use of new scaling parameter in clique potential function

of (10) also provides significant improvement in segmentation

accuracy for brain MR image segmentation in BrainWeb and

IBSR databases and object segmentation in the PASCAL VOC

dataset, irrespective of the segmentation evaluation indices.

For HEp-2 cell segmentation, the proposed scaling parameter

generates significant improvement for sensitivity and speci-

ficity indices, and better but not significant for Dice coeffi-

cient. For natural image segmentation in Berkeley Dataset,

the proposed scaling parameter in (10) provides significantly

better segmentation with respect to both Dice coefficient and

specificity. However, with respect to sensitivity values, the

existing approach provides better segmentation accuracy.

2) tHMRF Model: The use of new scaling parameter in

clique potential function of (9) in tHMRF model provides

significant improvement in segmentation accuracy for HEp-

2 cell segmentation in MIVIA database, natural image seg-

mentation in Berkeley Dataset, and object segmentation in the

PASCAL VOC dataset. For brain MR image segmentation in

BrainWeb and IBSR databases, the proposed scaling parameter

also generates significant improvement for Dice coefficient and

specificity indices; while for sensitivity, its results are better,

but not statistically significant. For clique potential function of

(10), the new scaling parameter also provides significant seg-

mentation accuracy for brain MR image segmentation, HEp-2

cell segmentation, and object segmentation, irrespective of the

evaluation indices. For natural image segmentation of Berkeley

Dataset, the proposed scaling parameter generates significant

improvement for both Dice coefficient and specificity, and

better but not significant for sensitivity index.

3) GHMRF Model: The use of new scaling parameter in

clique potential function of (9) in GHMRF model provides

significant improvement in segmentation accuracy for all seg-

mentation datasets, irrespective of the segmentation evaluation

indices. For clique potential function of (10), the new scaling

parameter also provides significant segmentation accuracy for

brain MR image segmentation, HEp-2 cell segmentation, and

object segmentation. For natural image segmentation in Berke-

ley Dataset, the proposed scaling parameter also generates

significant performance improvement with respect to Dice co-

efficient and better but not statistically significant performance

improvement with respect to sensitivity and specificity values.

B. Importance of New Scaling Parameter in Novel Class Label

Distribution

To establish the importance of new scaling parameter in

proposed class label distribution, the experiments have been

performed on all image databases, irrespective of the un-

derlying image intensity models (StNHMRF, tHMRF, and
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Fig. 3. Box plot depicting the importance of novel class label distribution: BrainWeb and IBSR databases (top); MIVIA database (second); Berkeley
Segmentation Dataset (third); and PASCAL VOC dataset (last).

(a) Input (b) Input-zoomed (c) Ground-truth (d) StNHMRF S (e) StNHMRF-1 (f) StNHMRF-2 (g) tHMRF S (h) tHMRF-1 (i) tHMRF-2 (j) GHMRF S (k) GHMRF-1 (l) GHMRF-2

(m) DSFCM N (n) ICFFCM (o) FRFCM (p) KWFLICM (q) BCFCM (r) MICO (s) ASeg (t) mEM (u) RFCM (v) rRFCM (w) SPM8 (x) FSL

(a) Input (b) Input-zoomed (c) Ground-truth (d) StNHMRF S (e) StNHMRF-1 (f) StNHMRF-2 (g) tHMRF S (h) tHMRF-1 (i) tHMRF-2 (j) GHMRF S (k) GHMRF-1 (l) GHMRF-2

(m) DSFCM N (n) ICFFCM (o) FRFCM (p) KWFLICM (q) BCFCM (r) MICO (s) ASeg (t) mEM (u) RFCM (v) rRFCM (w) SPM8 (x) FSL

Fig. 4. Zoomed-in regions of segmented images obtained by different segmentation algorithms on BrainWeb database with 1% noise and 40% bias field
(top two rows) and IBSR database volume number 3 (bottom two rows).

GHMRF). The quantitative results, in terms of box-plots, have

been presented in Fig. 3. In StNHMRF model, the application

of new scaling parameter in proposed class label distribution

has improved the segmentation accuracy significantly for brain
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(a) Input (b) Input-zoomed (c) Ground-truth (d) StHMRF S (e) StHMRF-1 (f) StHMRF-2 (g) tHMRF S (h) tHMRF-1

(i) tHMRF-2 (j) GHMRF S (k) GHMRF-1 (l) DSFCM N (m) FRFCM (n) KWFLICM (o) RFCM (p) rRFCM

Fig. 5. Zoomed-in regions of segmented images obtained by different segmentation algorithms on MIVIA dataset image number 01.

(a) Input (b) Input-zoomed (c) Ground-truth (d) StHMRF S (e) StHMRF-1 (f) StHMRF-2 (g) tHMRF S (h) tHMRF-1

(i) tHMRF-2 (j) GHMRF S (k) GHMRF-1 (l) DSFCM N (m) FRFCM (n) KWFLICM (o) RFCM (p) rRFCM

Fig. 6. Zoomed-in regions of segmented images obtained by different segmentation algorithms on Berkeley Segmentation Dataset image number 135069.

(a) Input (b) Input-zoomed (c) Ground-truth (d) StHMRF S (e) StHMRF-1 (f) StHMRF-2 (g) tHMRF S (h) tHMRF-1

(i) tHMRF-2 (j) GHMRF S (k) GHMRF-1 (l) DSFCM N (m) FRFCM (n) KWFLICM (o) RFCM (p) rRFCM

Fig. 7. Zoomed-in regions of segmented images obtained by different segmentation algorithms on PASCAL VOC dataset image number 2008 005443.

MR image segmentation, natural image segmentation, and

object segmentation. For HEp-2 cell segmentation, the pro-

posed scaling parameter also generates significant performance

improvement with respect to sensitivity and specificity values

and better but not statistically significant improvement with

respect to Dice coefficient. In tHMRF model, the application

of new scaling parameter in proposed class label distribution

has improved the segmentation accuracy significantly for HEp-

2 cell segmentation, natural image segmentation, and object

segmentation. For brain MR image segmentation, the proposed

scaling parameter has also provided significant performance

improvement with respect to Dice coefficient and specificity;

while better but not statistically significant performance im-

provement is observed with respect to sensitivity values. In

GHMRF model, the application of new scaling parameter has

improved the segmentation accuracy significantly for proposed

class label distribution, in all image segmentation databases.

C. Importance of Novel Class Label Distribution

To establish the importance of novel class label distribution,

the proposed class label distribution has been incorporated into

several existing HMRF based image segmentation algorithms

and the results are depicted in Fig. 3 using box-plot.

1) StNHMRF Model: From the box-plots, it is observed

that the use of new class label distribution in StNHMRF

algorithm produces significantly better segmentation results

for brain MR image segmentation, natural image segmenta-

tion, and object segmentation, than that obtained using both

clique potential functions of (9) and (10) with new scaling

parameter. For HEp-2 cell segmentation, the proposed class

label distribution provides significant performance improve-

ment with respect to sensitivity and specificity, and better

but not statistically significant improvement with respect to

Dice coefficient. Since the clique potential function of (9)

considers only class label information of its neighboring

pixels, its application in the HMRF model incorporates only

the number of pixels with similar class label. This, in turn,

puts higher weight to the spatial information compared to the

pixel intensity information and hence, causes misclassification

for pixels at the edge of tissue classes. The clique potential

function of (10) additionally incorporates the spatial distance

of the neighboring pixels from the center pixel and acts as a

simple high-pass filter. Hence, the use of (10) in HMRF model
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Fig. 8. Box plot depicting the importance of StNHMRF S algorithm for brain MR image segmentation in BrainWeb and IBSR databases over state-of-the-art
segmentation methods. (a) StNHMRF S, (b) DSFCM N, (c) ICFFCM, (d) FRFCM, (e) KWFLICM, (f) BCFCM, (g) MICO, (h) ASeg, (i) mEM, (j) RFCM,
(k) rRFCM, (l) SPM8, and (m) FSL.

Fig. 9. Box plot depicting the importance of StNHMRF S algorithm over state-of-the-art segmentation methods: MIVIA database (top); Berkeley Segmentation
Dataset (middle); and PASCAL VOC dataset (last).

only focuses on spatial distance of pixels with dissimilar class

labels. In comparison, the proposed clique potential function

integrates the information of image class parameters with

the class label information of neighboring pixels and makes

the contribution of spatial information compatible with that

of pixel intensity information. Additionally, the new scaling

parameter regulates the contribution of spatial information for

each pixel based on its spatial location during the estimation

of class labels and image class parameters.

2) tHMRF Model: The modification of tHMRF using

proposed class label distribution attains significantly better

segmented images compared to that obtained using the clique

potential function of (9) for HEp-2 cell segmentation, natural

image segmentation, and object segmentation. For brain MR

image segmentation, the proposed class label distribution

provides significant performance improvement with respect to

Dice coefficient and specificity, and while better but not signif-

icant improvement with respect to sensitivity. Compared to the

clique potential function of (10), the proposed function of (26)

achieves statistically significant improvement in segmentation

performance for tHMRF algorithm, irrespective of quantitative

indices and image databases used.

3) GHMRF Model: The modification of GHMRF using

proposed class label distribution attains significantly better

segmented images compared to that obtained using both clique

potential functions of (9) and (10), irrespective of the image

databases and segmentation evaluation indices used. Hence,

all results reported in Fig. 3 establish the importance of using
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new class label distribution, in terms of optimal segmentation

performance. The segmented images using new class label

distribution, along with the input image and corresponding

ground-truth segmentation, are depicted in Figs. 4-7. The

segmentation performance of algorithms using existing class

label distributions of (9) and (10) are also presented in same

figures. From all the quantitative and qualitative results, it is

clear that the proposed class label distribution improves the

segmentation performance of all HMRF based approaches,

namely, GHMRF, tHMRF, and StNHMRF.

D. Importance of StN Distribution

The incorporation of new class label distribution into exist-

ing HMRF model based algorithms improve the performance

of the algorithms in terms of segmentation accuracy. In this

subsection, a comparative analysis is presented among all

the modified algorithms. As the StN distribution provides

better modeling of brain MR image intensity distribution than

the Student’s-t and Gaussian distributions, the StNHMRF S

algorithm has achieved the optimal segmentation performance

among other probabilistic model based algorithms.

From Fig. 3, it is observed that, for natural image seg-

mentation, the StNHMRF S algorithm achieves significantly

better segmentation results, compared to both tHMRF S and

GHMRF S, irrespective of the segmentation evaluation in-

dices. For brain MR image segmentation, HEp-2 cell segmen-

tation, and object segmentation, the StNHMRF S algorithm

achieves significantly better segmentation results, compared to

both tHMRF S and GHMRF S, with respect to sensitivity and

specificity; while better but not significant results are observed

with respect to Dice coefficient. Hence, all results reported in

Fig. 3 demonstrate the advantage of using StN distribution, in

terms of optimal segmentation performance.

E. Performance of Different Algorithms

This section compares the segmentation performance of the

StNHMRF S with that of several state-of-the-art segmentation

methods. From all the results reported in Fig. 8 for brain

MR image segmentation, it is observed that the StNHMRF S

provides significantly better segmentation results compared to

DSFCM N, ICFFCM, FRFCM, KWFLICM, BCFCM, MICO,

ASeg, mEM, RFCM, rRFCM, and FSL, irrespective of quanti-

tative evaluation indices. Compared to SPM8, the performance

of StNHMRF S is significantly better with respect to Dice

coefficient, while better but not significant with respect to

both sensitivity and specificity. From all the results reported

in Fig. 9 for HEp-2 cell segmentation, it is observed that

the StNHMRF S provides significantly better segmentation

results compared to DSFCM N, KWFLICM, and RFCM. The

performance of StNHMRF S over FRFCM is significantly

better with respect to both Dice coefficient and sensitivity

and better but not significant with respect to specificity.

Compared to rRFCM, the performance of StNHMRF S is also

significantly better in terms of both sensitivity and specificity

values; while better but not significant performance is observed

with respect to Dice coefficient.

For both natural image segmentation and object segmen-

tation, the proposed StNHMRF S algorithm achieves signif-

icantly better segmentation results compared to all state-of-

the-art methods, namely, DSFCM N, FRFCM, KWFLICM,

RFCM, and rRFCM, irrespective of quantitative evaluation

indices. The segmented images by the proposed StNHMRF S

algorithm and state-of-the-art methods, reported in Figs. 4-7,

infer that the proposed StNHMRF S algorithm generates more

promising results than do the state-of-the-art methods.

V. CONCLUSION

The problem of image segmentation requires special at-

tention due to the presence of noise and several degrading

artifacts, since they deteriorate the performance of segmen-

tation methods. In this regard, the contribution of the paper

is four-fold, namely, introducing a novel class label distri-

bution, using the information of tissue class parameters, to

achieve optimal labeling of image pixels as well as optimal

estimate of tissue class parameters; introducing a novel scaling

parameter, which facilitates HMRF model based segmentation

algorithms to adaptively determine the contribution of spatial

information during class label estimation of a specific pixel;

modifying the probabilistic model based image segmentation

algorithms, incorporating the novel class label distribution and

scaling parameter; and illustrating the efficacy of the proposed

algorithms, along with a comparison with related algorithms,

qualitatively as well as quantitatively, on a set of synthetic

and real brain MR images, HEp-2 cell IIF images, and natural

images for class and object segmentation.

The proposed model has been shown to attain better image

segmentation results, as it incorporates the information of class

parameters into the class label distribution. Also, introduction

of the new scaling parameter eradicates the ambiguity in

classifying the edge pixels of the image classes. As StN
distribution provides better modeling of the intensity distribu-

tion in an image compared to both Gaussian and Student’s-t
distributions, incorporation of the novel class label distribution

into StNHMRF framework has been able to outperform other

probabilistic model based algorithms. Although the introduc-

tion of novel class label distribution and new scaling parameter

has been illustrated for unsupervised image segmentation

tasks, the concept can potentially be integrated with machine

learning architecture in near future.
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