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The unconstrained evolution of fast and efficient 
antibiotic-resistant bacterial genomes
Carlos Reding-Roman, Mark Hewlett†, Sarah Duxbury†, Fabio Gori, Ivana Gudelj and  
Robert Beardmore*

Evolutionary trajectories are constrained by trade-offs when mutations that benefit one life history trait incur fitness costs 
in other traits. As resistance to tetracycline antibiotics by increased efflux can be associated with an increase in length of the 
Escherichia coli chromosome of 10% or more, we sought costs of resistance associated with doxycycline. However, it was dif-
ficult to identify any because the growth rate (r), carrying capacity (K) and drug efflux rate of E. coli increased during evolu-
tionary experiments where the species was exposed to doxycycline. Moreover, these improvements remained following drug 
withdrawal. We sought mechanisms for this seemingly unconstrained adaptation, particularly as these traits ought to trade-off 
according to rK selection theory. Using prokaryote and eukaryote microorganisms, including clinical pathogens, we show that 
r and K can trade-off, but need not, because of ‘rK trade-ups’. r and K trade-off only in sufficiently carbon-rich environments 
where growth is inefficient. We then used E. coli ribosomal RNA (rRNA) knockouts to determine specific mutations, namely 
changes in rRNA operon (rrn) copy number, than can simultaneously maximize r and K. The optimal genome has fewer operons, 
and therefore fewer functional ribosomes, than the ancestral strain. It is, therefore, unsurprising for r-adaptation in the pres-
ence of a ribosome-inhibiting antibiotic, doxycycline, to also increase population size. We found two costs for this improvement: 
an elongated lag phase and the loss of stress protection genes.

Trade-offs lie at the heart of a cross-kingdom research effort 
that seeks to explain how biodiversity is generated and main-
tained1–5. Two traits engage in an evolutionary trade-off when 

beneficial mutations to one trait are deleterious to the other, and 
vice versa, and many theories agree2,6–11 that genetic polymorphisms 
are maintained when trade-offs have an appropriate geometry. Less 
clear, however, are the physical, chemical and physiological forces 
that create trade-offs in the first place12, and trade-offs needed for 
the theories to work can be difficult to isolate in practice13–18.

It is essential for medicine that we understand trade-offs. The 
term ‘superbug’ refers to a pathogenic microorganism that resists 
treatment by antibiotics with no apparent cost, or trade-off, in 
terms of its pathogenicity. An evolutionary route to superbug sta-
tus is thought to occur when a pathogen first adopts costly drug 
resistance mutations, a process that sees resistance traded against 
proliferation rate in antibiotic-free environments. Thereafter, other 
mutations compensate for those costs, yielding strains that are both 
drug resistant and capable of rapid proliferation19,20.

Trade-offs have been observed in pathogens. A genomic study 
of a clinical pathogen using several antibiotic classes21 showed 
resistance costs were dynamic during treatment for a Salmonella 
infection in which drug efflux proteins exhibited between-drug 
trade-offs. During treatment, structural mutations that increased 
efflux rates for one antibiotic decreased them for others. Biophysical 
trade-offs like this are important as they can help support genetic 
diversity, as was shown in a laboratory study where the rate–
affinity trade-off maintained a trimorphic transporter gene in a  
bacterial population10.

Single-protein trade-off mechanisms, such as the above, are 
more readily identified than organism-wide trade-offs, where 
costs may be hard to discern. Indeed, a classical concept, the rK  

trade-off, where r is growth rate and K is organismal carrying capacity,  
suffers from an absence of both mechanism and data, and so,  
along with rK selection theory, fell out of favour some time ago22. 
Others argue that rK theory is relevant to understanding tumour pro-
gression and heterogeneity23,24, but details of how rK selection theory 
makes predictive statements about tumour evolution are unclear. 
Interestingly, much the same can be said of the rate–yield trade-
off (RYTO) postulated for microorganisms and cancers25 that has  
also proved elusive14,26–28. Here ‘rate’ refers to growth rate and ‘yield’ 
to a metabolic conversion efficiency, c, between carbon source 
intake and biomass production. Some have observed a RYTO10, 
whereas others have seen weak RYTOs or no trade-off at all; even 
positive rate–yield correlations have been observed13,26,27 (that is,  
a trade-up).

In this study of Escherichia coli and fungal Candida we, too, 
see both rK and rate–yield trade-offs and trade-ups. However, we 
show that this is only to be expected mechanistically because, for 
unicellular organisms, rK and rate–yield relationships derive from 
one underlying theory. By applying that theory, which is consistent  
with all our data, we resolve the geometry of the RYTO by dem-
onstrating it has a parabolic shape that contains a trade-up. As a  
direct corollary, we also resolve the geometry of rK trade-offs for 
microorganisms, including Candida, by showing that it, too, has  
a parabolic shape where growth rate is maximal at intermediate 
population size.

The presence of rK trade-ups is important for antibiotics that 
suppress r and K by design, which the antibiotic doxycycline 
achieves by slowing protein production in E. coli. Antibiotic resis-
tance mutations should restore r during chemotherapy but, here, 
the absence of rK constraints during resistance evolution allows  
the creation of a seemlying E. coli mutant ‘uberbug’ that effluxes 
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doxycycline more quickly and grows more rapidly to higher densi-
ties than its wild-type (WT) ancestor, whether or not the antibiotic 
is present. We were able to isolate one phenotypic and one genetic 
cost to this triple improvement: increased delay in the onset of 
exponential growth and the loss of stress protection genes contained 
in a prophage.

Results
We first present a mechanistic argument10 supporting a parabolic rela-
tionship between growth rate in the exponential phase of microor-
ganisms and the population size that those microorganisms achieve; 
recent extensions of flux balance analysis provide another argument29. 
As a result of the parabolic geometry of this trait pairing, rK relation-
ships can contain both trade-ups and trade-offs.

First, consider the rK trade-up: it is straightforward to see why 
r and K might be positively correlated. Assume a carbohydrate, 
such as glucose, is a limiting source of carbon, as can be the case  
for tumours and microorganisms. The size of a population of  
unicellular organisms can be predicted from the carbohydrate  

concentration if the number of cells produced per carbon molecule 
(that is, yield), c, is a constant:

� ����������� ������������
=

= ×  

= ×
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c S

number of cells

number of cells
moles of available glucose
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cyield ( )

where S is the concentration of that extracellular carbohydrate. 
Equation  (1) circumvents one problem of rK theory in which  
‘K cannot be realistically expressed as a function of life history traits’30. 
Equation (1) addresses this for microorganisms whereby the trait is  
yield, c, which is multiplied by the available nutrient to form K31. However, 
equation  (1) will not apply to multicellular organisms, in which 
different cells in tissue develop with different nutrient-to-biomass  
conversion efficiencies.
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Figure 1 | Collated rK data sets are best explained by unimodal data fits; K, r and yield data sets in fungi and bacteria are explained by equations (2)–(7).  
a, Collated growth rates (r) from different C. glabrata strains on the y axis and population size (K) on the x axis; each data point has a corresponding  
glucose supply concentration. A unimodal regression based on a scaled Poisson distribution function ( Γ= × × − − +r K p n K K n( ) exp( ln ln ( 1)) where  
p and n are shape parameters, Γ​ is the gamma function) and a robust linear regression are shown. Based on the corrected Akaike information coefficient, 
AICc, the relative likelihood of the two regressions is <​10−15: the unimodal fit is significantly more likely. b, Biomass per milligram of glucose supplied  
(that is, yield) on the z axis for C. glabrata and E. coli, with glucose supply on the x axis and strain labels on the y axis. Data points are dots whereas 
predictions from equation (5) are lines (adjusted R2 ≈​ {0.995, 0.98, 0.99, 0.95, 0.98} for the Candida strains). c,d, Analogously, r (c) and K (d) are shown 
on the z axis, indicating their dependence on the supply of glucose (x axis). Model predictions (solid lines) are obtained by fitting equations (2)–(7) to  
data using NonLinearModel.fit in Matlab.
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To relate growth rate to the carbohydrate, assume for now that r 
varies as a Monod function31:

= = ×
+

r r S c V S
k S

( ) (2)
m

max

where km is a half-saturation parameter, so-called because r(km) =​ 
½max[r(S):S ≥​ 0] and Vmax is the maximal uptake rate of carbo
hydrate into the cell. As S =​ K/c in equation (1), using equation (2), 
we derive a putative rK relationship:

= = × ×
× +

r r K c c V K
k c K

( / ) (3)
m

max

Equation  (3) is consistent with microbial data31 but, interest-
ingly, inconsistent with classical rK theory: increasing r increases K.  
Assumptions typical of rK theory32,33, for example that a linear 
regression r =​ a −​ bK can describe rK data sets, are not compatible 
with equation (3). To resolve this for microorganisms, we first turn 
to a clinical pathogen, Candida glabrata.

RYTO and rK relationships in C. glabrata. By culturing (see 
Methods) C. glabrata in media with different concentrations of glu-
cose as the carbon source, seeking to test equations (1)–(3) against 
data, we determined the dependence of r and K on glucose supply. 
Figure 1a summarizes this data set and the Methods section details 
how r and K are determined from microbial culture data. It shows 
a linear regression poorly captures the data (parameter-adjusted 
R2 ≈​ 0.13), so does equation (3) (adjusted R2 ≈​ 0.46), and a unimodal 
Poisson distribution function is a marginally better fit (adjusted 
R2 ≈​ 0.48). One might hypothesize, from Fig. 1a, that equation (3) 
and a linear regression apply to different subsets of the data: equa-
tion (3) applies at low K, whereas data are approximately linear at 
high K. Much better would be one theory capturing all the data.

For this, we summarize a calculation performed elsewhere10,34 
that removes the assumption in equation (2) that yield, c, is a con-
stant independent of environment10,34 by writing
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We now need information about two measures of efficiency: the 
adenosine tri-phosphate (ATP) produced per cell c(A), and the ATP 
per glucose in each cell A(S). To allow progress, although not ideal, 
we now assume that ATP per cell does not depend on glucose avail-
ability. This allows yield, c(S), to depend only on glucose concentra-
tion, S. This is the simplest possible extension we could make to add 
realism to equations (2) and (3).

It has been shown10, to approximation, that
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where p is a shape parameter, clo is the lowest possible yield and chi 
is the highest possible yield over a non-toxic range of carbohydrate 
concentrations; Fig. 1c validates equation (5) for Candida and E. coli.  
If we modify equations (2) and (3) to accommodate equation (5), we 
then obtain a curve in the rK-plane parameterized by S:




















� ���������� ���������� � ����� �����

= =
+

+
+

×
+

r K r S K S c
pS

pS
pS

c V S
k S

S( , ) ( ( ), ( )) 1
1 1

, (6)

c S

m
hi lo

this is ( ) in equation (5)

max

(uptake, sugar)

where K(S) =​ S ×​ c(S). Equation (6) can be written as a rate–yield 
relationship10,25–27,34. To see this, divide K(S) by S to form c(S):
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Supplementary Fig. S3 illustrates geometric trade-up and trade-
off forms described by equations  (5)–(7). Note that we cannot  
fit equations (6) and (7) directly to rK and rate–yield data. Instead, 
to obtain those data, we first determine p, clo and chi from yields 
determined at different carbohydrate concentrations. We then 
determine km and Vmax from r data measured at different carbohy-
drate concentrations.

Let us test this reasoning on C. glabrata rK data. Figure  1b–d 
shows that equation  (5) is an excellent descriptor of C. glabrata 
yield (adjusted R2  ≈​  0.995, 0.98, 0.99, 0.95, 0.98 for five strains). 
We then eliminated parameters Vmax and km in equation (6) using 
those data and the resulting data fits and—this is key—exhibit uni-
modal, parabola-like profiles (Fig.  1 and Supplementary Figs S5,  
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Figure 2 | Empirical and theoretic rK and r-yield relationships. a,b, Empirical and theoretic rK relationships (a) and r–yield relationships (b); dots are data, 
sold lines are theoretical model fits. Consistent with theory, these are skewed parabolae for all the strains of E. coli K12(MG1655) WT and rrn knockout 
strains used in this study, except for the one with fewest rrn operons. The strain with only two such operons (smallest dots shown) does not conform to 
this geometry and, unlike the other strains, has an rK trade-off with no trade-up region.
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S3 and S4) in which r exhibits its maximum at intermediate K.  
Thus, equation  (6) reconciles the competing trade-off and the 
Monod-based, trade-up theories of rK data. Furthermore, the fit 
of equation  (7)  to C. glabrata rate–yield data is unimodal in rate 
and yield (Supplementary Fig. S4). This is consistent with previous, 
untested predictions on the shape of the RYTO25 that are corrobo-
rated by recent flux balance analyses29.

Figure  1 shows the dependence of r, yield and K on S for five  
C. glabrata strains. This shows K increases nonlinearly as glucose sup-
ply increases due to a decrease in efficiency at high, non-toxic glucose 
concentrations (relative likelihood of linear and a nonlinear regres-
sion <​10−16), a property not observed by Monod31. As a result, growth 
rate can decrease as glucose supply increases (Fig. 1c), and so growth 
rate can be maximized at intermediate glucose concentrations.

Given differences in their blood sugar levels, we sought, and 
found, evidence for different rK and rate–yield profiles in the fun-
gal infections of diabetic and non-diabetic patients. Supplementary  
Fig. S5a compares rK parabolae of C. glabrata strains 2001 and 3605, 
the latter isolated from a diabetic patient, which indicate a between-
strain rK trade-off: 2001 has lower r with potential for greater K 
than does 3605 (t-test for r: t  ≈​  −​4.52, d.f.  =​  250, P  <​  10−5; for  
K: t ≈​ 7.72, d.f. =​ 250, P <​ 10−12). Supplementary Fig. S5b shows  

the mathematical rK model data fit for the C. glabrata strain taken 
from a diabetic patient has a skewed profile towards higher growth 
rates at lower population densities.

RYTO and rK relationships in E. coli. We then asked whether the 
parabolic rK shape was specific to eukaryotes. It is not, Fig. 2 shows 
E. coli has rK parabolae too. We use E. coli strains MG1655, WT,  
Δ​1 and Δ​2−​Δ​5 that have different numbers of rRNA operons (rrn) 
in their genomes; WT has 7, Δ​1 has 6, Δ​2 has 5, and so on. Figure 1 
and Supplementary Fig. S5 show that the claims made above for 
Candida apply equally to these E. coli, and Fig. 2 shows the RYTO 
and rK shapes to be robust to changes in the number of rrn oper-
ons. These E. coli answer the following question: do genetic changes 
that increase yield, and therefore K, lead to a concomitant decrease  
in r? In other words, can we produce evidence of a between-strain 
rK trade-off?

In response, rRNA is known to constitute a metabolic burden 
under carbon limitation35,36. By using these E. coli strains whereby 
this burden is under genetic control, we can mediate r and yield, 
thus K, to probe how selection for one of these traits affects the oth-
ers. To this end, we establish the following property of the six E. coli 
strains that differ in the number of rrn operons. First, strains with 
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fewer such operons have greater yields at the same carbon supply 
concentrations, and subsequently higher K (Fig. 3a; Supplementary 
Fig. S8 shows P values). According to equation  (7), the num-
ber of rrn operons, as they mediate yield, should also mediate r,  
and indeed they do (Figs  3a and 4). This operon also mediates  
lag phase (Supplementary Fig. S11). We thus have three inter-
dependent traits, r, K and yield under genetic control, as desired, 
and lag phase too.

Figure 4 shows that different copy numbers of rrn optimize r at 
different glucose availabilities, although yield (therefore K) is opti-
mized when fewest operons are present (Supplementary Fig. S8). 
Figure  3b and Supplementary Fig. S9 show there is no between-
genotype RYTO between these strains because changes in rrn copy 
number can follow a parabolic geometry exhibiting both positive 
and negative corrections with r and K, and that which occurs is con-
tingent on the glucose available. Supplementary Fig. S7 summarizes 
this information using three empirical and theoretical r, yield and  
K landscapes illustrating the dependence of these phenotypes on 
glucose and rrn operon number.

Data from the E. coli strain set indicate it may be possible to 
simultaneously improve r and K by mutational change, for exam-
ple by deleting or duplicating an rrn, but is it? To answer this, we 
sought genetic and environmental conditions where population size 
is largest and Fig. 5a provides a self-evident response: K is largest 
at greatest nutrient supply, as is obvious, and for the highest yield 
genomes, namely when rrn copy number is low. Now, Fig.  5a,b 
shows that the strain with 3 and 4 rrn operons resides within a  

two-strain cluster with maximal K but that also has the largest 
observed r (Supplementary Clustering Analysis). Finally, Fig.  5c 
shows that rate and yield, and therefore K, can be positively or 
negative correlated between genotypes, depending on the glu-
cose background in which growth takes place. We conclude that 
improvements in K are not associated with a penalty in r in this 
strain set: deleting operons from the WT can improve both r and K.

E. coli rate–yield and rK changes following adaptation to an anti-
biotic. K, r and yield phenotypes are relevant to clinical infections 
because some antibiotics, those said to be bacteriostatic, explicitly 
reduce r without lysing cells in a way that would reduce K. We there-
fore ask: do drug-resistance mutations that restore r during a bacte-
riostatic antibiotic challenge also reduce yield or K? Previous RYTO 
and rK theory would predict so. However, the potential for rK and 
rate–yield trade-ups demonstrated above indicates that some resis-
tance mutations might, instead, increase both r and K.

To study this, we propagated six replicate E. coli K12 (AG100) 
populations for 4 days of antibiotic treatment at clinical levels 
above the minimal inhibitory concentration (MIC) of doxycycline 
treating every 12 h with drug (∼​60 generations, MIC from 24 h 
data in Supplementary Fig. S12, see Methods). Figure  6 summa-
rizes the resulting r and K phenotypes. First, r in the presence of 
drug was restored to, and greater than, that of the ancestral strain 
in the absence of drug (Fig.  6b, P  <​  0.012, d.f.  =​  6, t  ≈​  −​3.5). 
However, discordant with the hypothesis of a RYTO or rK trade-off  
during adaptation, K also increased above that observed in both the 
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number using linear and quadratic regressions, and plotted the regression with the better fit to data according to adjusted R2 value (solid black line; outer 
lines are the prediction ±​ 95% CI). These data indicate that intermediate rrn operon numbers can optimize r under some environmental conditions, although 
higher numbers of operons (the wild-type E. coli strain has seven) can also optimize r under other conditions. For completeness, using the quadratic 
regression we computed 95% CI for r-optimal rrn copy numbers for {0.5, 0.75, 1, 2, 3}mg ml−1 glucose; these are, respectively, {5.26 ±​ 0.47, 4.22 ±​ 0.24, 
4.60 ±​ 0.02, 4.89 ±​ 0.11, 5.53 ±​ 1.21}. This shows that seven operons is not optimal for growth under all environmental conditions, although it is optimal for 
some (0.25 and 3 mg ml−1 glucose). Red dots in the bottom right panel indicate populations that optimize K from all glucose concentrations tested.
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ancestral strain and in the strain adapted to growth media contain-
ing no doxycycline (K nearly tripled: Fig. 6a, P ≈​ 1.3 ×​ 10−7, d.f. =​ 6, 
t ≈​ −​28.1 for the ‘Ancestral’ strain; P ≈​ 4.0 ×​ 10−7, d.f. =​ 6, t ≈​ −​23.4 
for the ‘Media Adapted’ strain). Thus, although it was an antibiotic 
molecule for initial treatments, doxycycline eventually stimulated 
biomass production. Supplementary Figs S12 and S14 show that 
doxycycline can also stimulate population growth within 48 h at 
near MIC dosages.

Simultaneous rK improvements in AG100 were observed not 
only at super-MIC dosages, they also arose when the same adapta-
tion protocol was performed at sub-MIC dosages (see Methods). 
In this case, populations that had been inhibited by 70% due to the 
antibiotic subsequently grew to higher densities than populations 
cultured without antibiotic (Supplementary Figure S13). Whole 
genome sequencing (WGS) of high K populations indicated the 
appearance, and partial sweep, of duplications of a genomic region 
containing a doxycycline efflux pump operon37, acr (at frequencies 
21, 25 and 42% in each of three replicates; Fig. 7 and Supplementary 
Fig. S15). It is on the basis of there being more cells with more efflux 
operons that we claim antibiotic resistance by efflux has increased 
in these populations, consistent with observations of increased  
r and K in the presence of doxycycline (Fig. 6 and Supplementary  
Fig. S13). WGS showed the excision of prophage dlp12 from the 
AG100 genome at high frequency in high K populations (at fre-
quencies 78, 84 and 88%). Polymorphisms common to all the 
drug-adapted populations observed at lower frequency were found 
in the insertion sequence (IS5) transposase, insH-5 and in the 
carbon starvation lipoprotein (slp) that mediates acid resistance 
(Supplementary Tables S1 and S2).

Although r, yield, K and drug resistance increased, and rK 
improvements remained following drug withdrawal (Fig.  6), we 
were able to isolate a cost for this improvement: an increased dura-
tion of lag phase (Supplementary Fig. S14). It is notable that although 
doxycycline is said to be bacteriostatic38, in fact here it stimulates 
biomass production while lengthening lag phase beyond 24 h with-
out slowing exponential growth (Supplementary Fig. S14b). Thus, 
assays testing the antibiotic effect of doxycycline for 24 h, or less, 
can conclude that it reduces growth rate when, instead, it merely 
increases the waiting time to exponential growth.

Discussion
The logistic equation (8) is extremely useful when seeking growth 
rate and populations sizes of microbial growth data, but this does 
not mean rK selection theory provides any mechanistic insight into 
our data. Indeed, simply because the logistic model is a good fit of 
a growth data set, one cannot deduce that r and K trade-off, nor 
can one exploit that data fit to understand the nature of selection 
for r or K in that population. A range of theoretical and computa-
tional tools were required here to elucidate the selective forces in 
our experimental system. We needed mathematical models that 
causally relate growth efficiency, and therefore population size, to 
the rate of population growth and WGS data highlighted the likely 
cause of that efficiency increase. Here this amounts to selection for 
the amplification of an efflux pump and the loss of a prophage from 
the genome.

rK theory is consistent with our data sets where r and K are nega-
tively correlated, for example in Fig. 1a, although any previous claim 
that r and K were correlated would have been consistent with our 

0.05 0.1 0.15 0.2 0.25 0.3 0.35

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

K 
(O

D
 a

t c
ar

ry
in

g 
ca

pa
ci

ty
)

Yield (OD mg–1 glucose)

WT (7 × rrn)

∆1 (6 × rrn)
∆2 (5 × rrn)
∆3 (4 × rrn)
∆4 (3 × rrn)
∆5 (2 × rrn)
Prediction

Glucose (mg ml–1)

0
0.12

5
0.25 0.5

0.75 1 2 3

234567

0.24

0.26

0.28

0.3

0.32

K 
(O

D
 a

t c
ar

ry
in

g 
ca

pa
ci

ty
)

Number of rrn operons

3 mg ml–1 glucose

I II

III

234567

0.25

0.3

0.35

0.4

r (
h−1

)

Number of rrn operons

3 mg ml–1 glucose

I

II III

0.07 0.08 0.09 0.1 0.11 0.12

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

r (
h−1

)
Yield (OD mg–1 glucose)

R2 = 0.41
P = 0.0041

2 mg ml–1 glucose

0.24 0.26 0.28 0.3 0.32 0.34
0.35

0.4

0.45

0.5

0.55

0.6

0.65

r (
h−1

)

Yield (OD mg–1 glucose)

R2 = 0.37
P = 0.0079

0.25 mg ml–1 glucose

a b

c

Figure 5 | E. coli K12(MG1655) rrn knockout strains Δ3 and Δ4 optimize population size, K, when glucose is high in concentration without paying a 
growth rate cost. a, Empirical data (dots) and theoretical predictions (lines using models in main text) for each rrn knockout strain show the variation 
in K (y axis) as a function of yield (x axis) and rrn operon copy number (dot size). The cluster of combinations of rrn operon number and glucose supply 
concentration that maximize K are highlighted as red dots: self-evidently, K is greatest when glucose supply is greatest and growth is efficient, meaning 
few rrn operons (see Supplementary Fig. S8). As K/yield =​ glucose concentration, when glucose concentration is fixed, the collated data for all strains lie 
on straight lines that pass through (yield,K) =​ (0,0). The highest yield outcome is marked as a large red circle: the WT strain cultured at the lowest glucose 
concentration. b, An agglomerative, one-dimensional clustering analysis (Supplementary Methods) shows that the highest population sizes found  
at the highest glucose concentration tested (K-cluster II, shown left) are also achieved at the highest observed growth rates (r-cluster I, shown right).  
As a result, operon copy numbers that simultaneously optimize r and K are highlighted with red circles (three and four copies of rrn). c, There is no 
between-strain trade-off in r and K: dot sizes indicate different rrn copy number (as Fig. 2) with each datum representing observed r and K at high (left) 
and low (left) glucose concentration. Linear regressions (black lines) indicate that r and K can be both positively and negatively correlated, depending  
on the environment (Supplementary Fig. S9 shows more glucose concentrations).
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data somewhere due to the humped, parabolic geometry we observe 
in rK and rate–yield data.

Ours is a laboratory study but there is a potential medical conse-
quence of this geometry and the subsequent presence of rK trade-ups: 
mutations that overcome chemotherapies designed to reduce growth 
rate can also increase population size. Here, such adaptations created 
drug-resistant populations of bacteria that grow more quickly, and 
to higher densities, than bacteria not treated with antibiotics. These 
beneficial adaptations bear costs that are relevant to survival outside 
the laboratory. The doubling of lag time (Supplementary Fig. S14, 
‘lag time’ is parameter L in equation (9)) means the evolved strains 

can take twice as long to profit from increased nutrient uptake if the 
environment switches from a glucose-poor to a glucose-rich state. 
The loss of dlp12 prophage removes protection from environmen-
tal stresses: dlp12 is implicated in biofilm formation, an important 
aspect of the drug-resistance phenotype39. The observed acr ampli-
fications can be strongly selected against in environments without 
antibiotic40. So, although a three-dimensional phenotype of (rate, 
yield, resistance) shows positively correlated adaptation in labora-
tory conditions, the five-dimensional phenotype (rate, yield, resis-
tance, lag time, biofilm production) indicates that those changes 
come with costs that will be exposed in other environments.
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Figure 6 | Simultaneous rK-adaptation from an antibiotic challenge where drug resistance also increased. a,b, K (a; units of OD600nm) and r (b) for three 
strains of E. coli K12(AG100) labelled ‘Ancestral’, ‘Media Adapted’ and ‘2 ×​ MIC Adapted’ (Supplementary Methods describe protocols). The last two 
strains were derived from Ancestral by ∼​60 generations of adaptation to media containing either no antibiotic (then labelled Media Adapted) or else in 
two times the MIC of doxycycline (Dox; then labelled 2 ×​ MIC Adapted); this is a clinical dose. All three strains were then cultured for 1 day (the ‘day 9’ 
data indicated) in media containing either no antibiotic (filled circle), a dose of doxycycline equivalent to the MIC (1 ×​ MIC, thin open circle) or twice the 
MIC (thick open circle). We tested whether differences in K (in a) and r (in b) were significant (green star) or not (red star) with respect to the Ancestral 
strain under identical day 9 conditions (t-test, P <​ 0.05 in each case). Unexpectedly, as shown in a, the greatest K was observed when ‘2 ×​ MIC Adapted’ 
was cultured either in the absence of doxycycline or with doxycycline present at 1 ×​ MIC. Unsurprisingly, as shown in b, the greatest r was observed 
when Media Adapted was cultured in media with no doxycycline; ‘2 ×​ MIC Adapted’ had an r phenotype in the presence of doxycycline at a 2 ×​ MIC 
concentration that could not be distinguished from Ancestral cultured in the absence of doxycycline; when doxycline was withdrawn, the r of strain 
‘2 ×​ MIC Adapted’ was larger than Ancestral. Thus, drug-resistance adaptation has restored r above ancestral values while also increasing K.
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Finally, it is possible that the humped rK geometry we observe 
applies to tumours and metazoa because equations  (6) and (7)  
were derived from a theoretical model of a branched, glucose- 
processing pathway10 common to all living cells. However, those 
equations are not applicable when different cells express those  
pathways differently or do not have pathways in common. 

Therefore, to generalize our findings to such heterogenous  
populations, one could extend equations (6) and (7) to a situation 
where one microbial strain uses an extracellular, secondary metab-
olite of another microorganism to grow. We hypothesize, in such  
a microbial community, that r, yield and K will also exhibit  
positive correlations.
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Figure 7 | A DNA coverage plot for E. coli K12(AG100) following ∼60 generations (96 h) of growth in the presence and absence of doxycycline. Data 
in the presence (three inner annuli, ‘Dox’) and absence (three outer annuli, ‘No-Dox’) indicate potential genetic mechanisms supporting positive r, K and 
resistance adaptation. A change in DNA detected in the sequencing protocol is shown in red (reduction) and blue (increase; and white is complete loss), 
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sequenced (indicated in Supplementary Fig. S13). The white region marked dlp12 shows the deletion of prophage dlp12 only during doxycycline treatment. 
The outer text labels summarize the estimated frequencies of mutations common to all three replicate populations, indicating positive selection for the 
doxycycline efflux operon, acr, with the prophage deletion at even higher frequency.
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Methods
The Supplementary Information contains additional details on the methods used 
to analyse data.

Throughout, estimates of r and K are obtained from microbial growth data 
using the logistic equation

= − ≥N
t

rN N K xd
d

(1 / ), (0) 0 (8)

whose solutions are modified to account for lag phase, where dN/dt is the microbial 
per capita growth rate. This means r, K and L are determined from the best fit of the 
following four-parameter model to microbial density time series:

β= +
+ × − −N t K

q e
( )

1 (9)r t L( )

where N(t) is density at time t. In this model, β is the estimated experimental  
blank, needed because microtitre plates used for culture absorb light, q is a 
composite parameter that contains the initial population size, N(0), and L is 
lag, a proxy for the time taken for growth to enter exponential phase. Yield is 
calculated as the ratio between K and the glucose supplied to the growth medium 
(Supplementary Figs S1 and S2).

Please note that the biological parameter L is used throughout the text  
and Supplementary Information, and is always referred to by the term ‘lag’.  
The parameter β is not a biological phenotype. It is an electromechanical  
parameter associated with the microtitre plates and plate-reading devices in  
which microbial population densities are measured. It refers to a constant measure 
of the light absorbance of the material from which those plates are constructed  
and the value of β derives from that material, in addition to the light absorbed 
by the liquid media placed in each well of the plate that allows microbial cultures 
to grow. This value must be properly subtracted from optical density readings to 
determine microbial population densities and the definition of N(t) above allows 
us to do this in a reliable manner that accounts for potential errors in estimates  
of β. The parameter β might be termed the ‘blank’ but this term is used nowhere  
in the paper.

The parameters associated with equation (8) are estimated by fitting 
equation (8) to microbial growth data using NonLinearModel.fit in Matlab.  
This is a powerful nonlinear regression facility that produces a range of statistics  
on the robustness and suitability of that fit to the data set in question.  
Once estimates of r and K have been obtained, with associate uncertainties,  
because glucose has been supplied to the cells at a controlled concentration,  
S0, the efficiency of biomass production is the value K/S0.

Microbial biomass measure. Throughout our empirical work, we use  
optical density (OD) as a proxy for biomass. Our reasons for doing so  
are (1) OD is known to correlate well with live cell counts at the densities  
we are using, see the supplementary information in these references10,37;  
(2) OD accounts for mass contained in non-viable cells that have previously 
sequestered carbon from the environment and therefore count as biomass,  
even if they no longer grow; and (3) OD need not always correlate with  
live cell counts because cell size changes are accounted for within OD  
(larger cells produce a larger OD for equivalent population sizes), but  
this is consistent with the use of OD as a proxy for biomass; indeed, larger  
cells will have sequestered more carbon from the extracellular environment  
than smaller cells.

Other measures could be used as a proxy for biomass, and therefore yield  
(that is, efficiency: biomass produced per carbon supplied), for example (1) colony 
forming units (that is, live cells counts); (2) total cell count performed by  
flow cytometry; (3) total DNA; and (4) dry mass. We chose OD as it can be 
measured on a minute-by-minute basis for large numbers of replicates and  
culture conditions, allowing us to measure dynamics in the chosen biomass 
measure without disrupting or sampling the culture vessel, something  
that is not readily feasible for the other measures mentioned here.

C. glabrata rK data using 24 h cultures. Overnight cultures were prepared in 
yeast peptone dextrose medium with 20 mg ml−1 glucose (2% w/v) in 4 ml volumes 
in universal tubes, via inoculation of a single colony per tube. Following 18–24 h 
incubation at 30 °C and 180 r.p.m., overnights were centrifuged and washed once 
in PBS solution prior to resuspension in synthetic complete (SC) minimal medium 
at the appropriate glucose concentration. SC medium was prepared at 14 different 
glucose concentrations (0.25–32 mg ml−1) via autoclaving of media components 
(excluding glucose and 10% of the final media volume) prior to the addition of 
filter-sterilized glucose solution. D-glucose was dissolved in distilled, de-ionized 
water to reach a final concentration of 320 mg ml−1 (32% w/v) and sterilized 
through a 0.22 μ​m filter unit. Glucose was diluted appropriately in autoclaved 
SC media water used to produce a final volume as required to prepare SC media 
with 4, 12, 20, 24 and 32 mg ml−1 glucose concentrations. All other SC media were 
prepared from a 200 mg ml−1 (20% w/v) glucose stock solution. These experiments 
were repeated in triplicate.

E. coli rK data from 24 h/48 h cultures. A volume of 150 μ​l of M9 minimal media 
was prepared using dilute K2HPO4 (350 g), KH2HPO4 (100 g) in 1 L of de-ionized 
water, and dilute trisodium citrate (29.4 g), (NH4)2SO4 (50 g) and MgSO4 (10.45 g) 
in 1 l of de-ionized water, autoclaved and diluted accordingly. Filtered, sterilized 
glucose and casamino acids were added from a 20% w/v stock. All strains were 
grown in M9 minimal media supplemented with 0.1% casamino acids and  
glucose ranging from 0 to 3 mg ml−1, incubated at 30 °C and shaken in a  
Tecan Infinite Pro for 24 h with reads taken every 20 min. Inoculating 
strains (AG100, MG1655 and rrn operon knockouts derived from MG1655) 
were prepared from overnight cultures in liquid LB medium, grown in M9 
supplemented with 0.125 mg ml−1 of glucose and centrifuged prior to inoculation. 
These experiments were replicated six times.

E. coli K12(AG100, MG1655 and rrn operon knockouts) antibiotic adaptation 
protocols. For extended doxycycline and no-doxycycline control treatments  
at 30° C, a microtitre plate reader measured OD600nm of cultured bacteria every 
20 min in 96-well microtitre plates containing 150 μ​l of liquid M9 medium 
supplemented with glucose (0.2%) and casamino acids (0.1%), both with and 
without antibiotics. All cultures were shaken in a linear manner before each  
OD measurement. Inoculating E. coli were taken from a colony and cultured 
overnight in M9 (0.2% glucose, 0.1% casamino acids). At the end of either 12 h or 
24 h, called the length of a ‘season’, a 96-pin replicator was used to transfer a 1% 
of volume sample (the volume transferred is approximately 1.5 μ​l) to a new plate 
containing fresh growth medium and antibiotics, thus creating a new season of 
growth. The same environment was maintained for each subsequent transfer  
(eight seasons of treatment in total) and each replicate population (repeated in 
triplicate). The resulting OD time series were imported into Matlab R2013b to 
subtract the background (blank wells containing only medium) and generate  
all other statistics described here.

Based on the 24 h data in Supplementary Fig. S12, the MIC of E. coli AG100 
when exposed to doxycycline was taken as 0.6 μ​g ml−1 for the purposes of this 
study. This is also called 1 ×​ MIC in the main text and 2 ×​ MIC is twice this 
concentration. When treatments of AG100 are said to be ‘sub-MIC’ in the main 
text, the doxycycline concentration was 0.2 μ​g ml−1 (see Supplementary Fig. S12) 
and this achieves a reduction in population size over a 24 h period of AG100 
growth that approximately equates to a 70% inhibition relative to the same E. coli 
strain cultured in the absence of doxycycline.

Sequencing and bioinformatics protocols. Genetic mechanisms of adaptation  
in antibiotic-evolved populations of E. coli (AG100). To determine genetic 
mechanisms that might account for the K-stimulatory effect of the antibiotic 
doxycycline on AG100 reported in the main text, we sequenced the genomes of 
three evolved populations from the treatment that resulted in the highest cell 
density (measured by OD). These are indicated in Supplementary Fig. S13.  
To ensure the genetic changes were the result of antibiotic challenge, we also 
sequenced three control populations from that figure that evolved under 
experimental conditions but were not exposed to any antibiotics. We further 
sequenced three replicates of the ancestral population to ensure conformity 
between our starting strain and the published AG100 reference.

DNA extraction. DNA was extracted from frozen samples (150 μ​l culture +​ 75 μ​l 
80% glycerol); a small quantity (<​1 μ​l) was removed from the frozen population  
in a microtitre plate well using a sterile tip and inoculated into M9 media 
containing the same concentration of nutrients and antibiotic as the adaptive 
condition in that microtitre well, therefore recapitulating the conditions of  
season 8 in Supplementary Fig. S13. DNA was extracted using an Ambion  
geneJET DNA extraction kit following the manufacturer’s instructions, with an 
additional ethanol wash step, and additional elution step to maximize DNA purity 
and yield. Samples were extracted from populations taken from season 8. DNA 
was also processed on a 1% agarose gel to ensure that DNA size was in excess 
of 10,000 bp and to ensure that there was no protein contamination. DNA was 
accurately quantitated using the Qubit system, ensuring yields of more than  
25 ng μ​l−1 in 50 μ​l. Paired-end DNA libraries were prepared by Exeter Sequencing 
Service, using the Nextera (Illumina) library preparation protocol.

DNA quality control and mapping. Reads were trimmed using FASTQC to  
ensure a mean phred score of at least 25 at all positions of the read. Adapter 
sequence trimming was performed by ESS. All sample reads were mapped to  
a previously published E. coli K12(AG100) reference genome available for 
download at the website mentioned in the ‘Annotation’ section below.

Each sequence was indexed to the reference in fasta format using the  
Burrows–Wheeler alignment (BWA) index subroutine (BWA 0.7.4). Alignment 
was also performed using BWA and aligned files were subsequently sorted 
into genomic position and indexed using Samtools, and filtered to remove any 
non-paired end matches. Coverage was analysed using genomeCoverageBed in 
BEDTools41 and data were further analysed in Matlab.

Variant calling. Single nucleotide polymorphisms (SNPs) were called using 
VarScan 2.3.8. VarScan uses a heuristic method based on read depth, base quality 
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and variant frequency to call SNPs. Filters were added to SNP calling to ensure 
that high-quality calls were made. These quality filters were a minimum read 
depth of 60, with at least 10 reads supporting the alternative variant, a P value 
of 0.05 or less and a minimum average quality of 30. Additionally, VarScan calls 
SNPs as homologous if more than 90% of the reads support one or the other 
variant. VarScan also detected short indels in the same manner. Pindel was 
used to detect structural variations, including inversions, rearrangements and 
indels. Pindel works by detecting breakpoints using a pattern-growth algorithm. 
This identifies paired reads whereby only one of the reads is able to map to the 
reference. By breaking the unmapped read into shorter fragments, and re-mapping, 
the breakpoint of insertions or deletions can be detected. Duplication events 
were determined using CNVnator v0.3, with a bin size of 100, and Matlab, using 
coverage data from BEDTools.

Annotation. Annotation files from the previously published AG100 genome were 
used in annotation of WT populations of AG100. These files were accessed from 
EBI (http://www.ebi.ac.uk/ena/data/view/PRJEB7832).

Annotation of the evolved genomes was also performed using RAST for initial 
web-based viewing, and PROKKA to annotate the consensus fasta files of all 
experimental replicates.

Clustering analysis. Given r and K data taken from replicated culture experiments 
using several genetically distinct strains of E. coli, we require a rationale to decide 
which strain optimizes r and K. Rather than use multiple pairwise comparisons, 
instead we used an agglomerative clustering approach to categorize the whole 
phenotypic data set, r and K, into some number of clusters that represent subsets 
of the entire data set with similar phenotype. A natural prior expectation is that the 
data from a single genotype are found within one phenotypic cluster, although one 
such cluster may contain the data of two, or more, genotypes. With this in mind, 
we used the following algorithm to determine the genotype that maximizes the 
phenotypes r and K.

First, choose a clustering algorithm that takes a data set D and returns a 
categorization of this data set as i distinct clusters, call it C(i,D). Now, given  
n genotypes and a phenotypic r data set, R, to categorize, for all i =​ 2, ..., n from 
the output Ci: =​ C(i,R). Let R(⋅​) be the function that returns the set of phenotypic 
values for a given cluster.

We call a cluster viable, with parameter p, if a one-way ANOVA is unable to 
detect significant differences, at level p, between all phenotypes in that cluster, this 
is, the set R(C(i,R)). The entire clustering is said to be admissible if each cluster is 
itself viable and, moreover, the phenotypes from any two distinct clusters can be 
detected by testing with a one-way ANOVA at significance level p, thus R(C(i,R)) 
and R(C(j,R)) represent significantly different sets of phenotypic values for i ≠​ j.

Then, for each admissible clustering, i*, choose the cluster label, m(i*)∈​{1, ..., i*}, 
which contains the maximal phenotype R C∈ .⁎Rmax ( )m i( )  The optimal genotypes 
are said to be all those found within C ⁎m i( ).

The clustering method, C, used for Fig. 5b is an agglomerative, one-
dimensional clustering analysis that was performed on the rrn operon mutants 
for both growth rate (r) and carrying capacity (K) data sets. To implement this, 
we used the routines clusterdata and anova1, as implemented in Matlab 2013a, 
whereby i* =​ 3 was determined to be the number of admissible clusters in each  
case when P =​ 0.05.

For the K data set, the cluster of optimal genomes corresponding to {3, 4, 5} 
(and these values are the numbers of rrn operons present in the genome) were 
deemed to be optimal according to the above algorithm, whereas {3, 4, 7} was the 
analogous set determined for the r data set. The intersection of these two sets is 
{3, 4}, which we therefore deem to be the optimal pair of strains (that is, rrn strains 
Δ​3 and Δ​4) in the sense that these may both be said to maximize r and K across 
the entire data set studied here.

Data availability. Data for figures that do not use genome sequence data are 
available in Excel spreadsheet format at http://people.exeter.ac.uk/reb217/
rebHomePage/data.html (this link also contains coarse-grained DNA coverage  
data used in Fig. 7). A complete whole genome sequencing data set can be accessed 
at http://www.ebi.ac.uk/ena using ENA project accession number PRJEB15352. 
Please email the corresponding author to request any of the Matlab scripts used  
in this work.
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