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Abstract

We use the approximation method of Razborov to analyze the locality barrier
which arose from the investigation of the hardness magnification approach to com-
plexity lower bounds. Adapting a limitation of the approximation method obtained
by Razborov, we show that in many cases it is not possible to combine the ap-
proximation method with typical (localizable) hardness magnification theorems to
derive strong circuit lower bounds. In particular, one cannot use the approximation
method to derive an extremely strong constant-depth circuit lower bound and then
magnify it to an NC1 lower bound for an explicit function.

To prove this we show that lower bounds obtained by the approximation method
are in many cases localizable in the sense that they imply lower bounds for circuits
which are allowed to use arbitrarily powerful oracles with small fan-in.

1 Introduction

Approximation method. In the 1980s Razborov [15, 16] initiated an approach to prov-
ing lower bounds on the size of Boolean circuits known as the approximation method. The
idea of the method was to approximate each small circuit by an ‘approximating’ circuit,
by replacing each connective of the original circuit by an ‘approximating’ connective, and
then show that the approximating circuits are too weak to compute a given Boolean
function f . Consequently, each small circuit had to make an error in computing f as
well. This strategy was successfully implemented in lower bounds for restricted classes of
circuits such as monotone circuits [15, 16] or circuits of constant depth [17, 21].

The formal framework of the approximation method was suitable also for a system-
atic analysis of potential ways of proving circuit lower bounds. In [18] Razborov gave
a remarkable example of such meta-analysis of circuit complexity by showing that the
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approximation method cannot prove better than O(nn0)-size lower bounds for general
circuits, for any Boolean function f , where n0 is the number of essential variables of f .
The essential variables are the variables on which the function depends. Moreover, if we
consider a particular form of the approximation method which was used to derive lower
bounds for monotone and constant-depth circuits, the best lower bound we can hope for
is 24(n0 + 1). Despite these limitations, Razborov [18] showed that the approximation
method is in certain sense complete: If a Boolean function f is not computable by any
circuit of size s3, one can use the approximation method to prove an Ω(s)-size circuit
lower bound for f . This requires introducing many inessential variables and proving
the lower bound for the new function with extra variables. The complete version of the
approximation method became known as the fusion method [22].

Natural proofs. Unfortunately, the promise of the fusion method has not been fulfilled
as strong complexity lower bounds for explicit Boolean functions remain elusive. A signif-
icant part of the reason for this situation can be attributed to the natural proofs barrier
of Razborov and Rudich discovered in the 1990s [20]. Intuitively, natural proofs say that
the existing circuit lower bounds do not prove just that a particular function requires big
circuits but they yield even efficient algorithms rejecting all easy functions while accept-
ing many hard functions. The existence of such an algorithm for general Boolean circuits
(formally, a P/poly-natural property against P/poly) would, however, break cryptographic
pseudorandom generators.

Hardness magnification. A generic approach to lower bounds which seems to avoid
the natural proofs barrier was investigated in more recent years in the area of hardness
magnification. Hardness magnification is an approach to strong complexity lower bounds
by reducing them to lower bounds against weak computational models. While some forms
of magnification can be traced back to early 2000s, the term was coined by Oliveira and
Santhanam [13] in 2018 to refer to its newer instantiations, see [6] for a more comprehensive
exposition. In particular, some subsequent papers established so called HM frontiers,
which refer to theorems including three statements of the following kind.

HM frontier for AC0-XOR:

1. If MCSP[nc, 2nc] /∈ AC0-XOR[N1.01] for some c, then EXP * NC1 [6, §3.2.2].

2. MAJ /∈ AC0-XOR[2n
o(1)

], cf. [17, 21].
3. MCSP[nc, 2nc] /∈ AC0, if c is sufficiently large [6, Theorem 52].

Here, MCSP[s, t] is the promise problem of determining if an N := 2n-bit input has circuit
complexity at most s versus at least t. AC0-XOR[s] denotes the class of s-size constant-
depth circuits with XOR gates at the bottom layer, where the XOR gates compute parity
functions with arbitrary fan-in.

2



Items 2 and 3 thus indicate that proving the lower bound required in Item 1 could
be within reach as both the corresponding circuit class and computational problem are
prone to a nontrivial analysis. HM frontiers can be established for many computational
models instead of AC0-XOR and for various conclusions in Item 1, e.g. NP 6⊆ NC1 [6].

The reason why magnification theorems seem to overcome the natural proofs barrier is
that Item 1 relies on specific properties of the function in question (in our case, MCSP), it
is not clear how to generalize it to a substantial fraction of functions. In fact, this intuition
was formally supported in [6] by showing that hardness magnification is in certain cases
inherently nonnaturalizable in the sense that the conclusion in Item 1 is the non-existence
of natural proofs against P/poly.

Locality barrier. Unsurprisingly, hardness magnification suffers from its own barrier,
the locality barrier.1 As it turns out, Items 1 in HM frontiers are always obtained by
constructing an oracle upper bound. For example, in our case, Item 1 follows from
showing that MCSP[nc, 2nc] can be computed by an AC0-XOR[O(N)]-circuit using oracles
with fan-in N ε, for some ε < 1. On the other hand, Items 2 and 3 can be generalized so
that they work against circuits with such oracles. We refer to oracles with small fan-in as
local oracles and to magnification theorems obtained by constructing oracle upper bounds
as localizable magnifications.

The fact that many known circuit lower bounds can be extended to models allowing
arbitrary local oracles is interesting independently of hardness magnification. Proving
the non-existence of subexponential-size learning algorithms for P/poly would imply the
non-existence of P/poly-natural properties against P/poly [5], but it is not hard to see
that natural properties against P/poly are computable by a single local oracle applied on
a prefix of the input. Overcoming the locality barrier is thus essential for proving strong
complexity lower bounds of our interest.

There are examples of non-localizable lower bounds but they suffer from drawbacks
such as that they do not achieve an HM-frontier or they yield at best uniform lower bounds
or ‘non-explicit’ lower bounds of the form QP 6⊆ P/poly, where QP stands for quasipolyno-
mial time. We refer to [14, §5] for a more detailed discussion of these exceptions including
non-localizable magnification theorems.

The motivating question of the present paper is to understand the extent of localiz-
ability of circuit lower bounds. Do ‘concrete’ sufficiently strong complexity lower bounds
always localize? We address the question by using the approximation method as a con-
venient substitute for the informal notion of a concrete lower bound.

1Lower bounds from Item 3 of HM frontiers are affected also by the black-box natural proofs barrier
[7].
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1.1 Our contribution

Unlike Razborov [18, 19], who investigated general properties of the approximation method
for unrestricted circuits, we focus primarily on analyzing the approximation method for
weak circuit classes such as AC0. This is motivated by hardness magnification. Never-
theless, we start by observing a couple of properties of the approximation method for
unrestricted circuits.

1.1.1 Limitations: Localizability

Lower bounds based on the approximation method are proved by showing lower bounds
for a measure ρ(f,M) which expresses a distance of the target function f for which we
want to prove a lower bound and a suitable approximation model M. In fact, ρ(f,M)
is a lower bound on the circuit complexity of f . The above-mentioned barrier result
of Razborov [18] says that for each legitimate model M and each Boolean function f ,
ρ(f,M) ≤ O(nn0). This leaves open the possibility of proving a superpolynomial circuit
lower bound for f by proving a superlinear lower bound for ρ(h,M), for another Boolean
function h, and then magnifying it.

Localizability of general circuit lower bounds. We observe that such attacks are
ruled out for localizable magnification theorems under additional assumptions such as
that the number of oracles in the oracle circuit implying the magnification theorem is
sublinear. In other words, we observe that superlinear lower bounds for general circuits
based on the approximation method yield lower bounds for general circuits with a limited
number of local oracles, cf. Theorem 3.

Limitations of the approximation method for constant-depth circuits. Next,
we consider the question of deriving NC1 lower bounds via subexponential-size constant-
depth circuit lower bounds based on the approximation method. We do not rule out
such possibility but we show that Razborov’s barrier result can be adapted to the case
of constant-depth circuits with nontrivial conclusions. Informally, we show that for each
legitimate model M and each Boolean function f , ρd(f,M) ≤ O(28n/d), cf. Theorem 4.
Here, ρd(f,M) denotes a version of ρ for circuits of depth d. In particular, ρd(f,M) is a
lower bound on the size of d-depth circuits computing f .

Localizability of constant-depth circuit lower bounds. Our main theorem shows
that localizability is an inherent property of all sufficiently strong lower bounds for circuits
of constant depth obtained via the approximation method.

Theorem 1 (Localizability of the approximation method for constant-depth circuits -
Informal, cf. Theorem 5). Let M be any legitimate model of constant-depth circuits and
f any Boolean function with n inputs. Suppose that ρO(d2)(f,M) ≥ s. Then f is not
computable by depth d circuits of size s− poly(kdn(2m/d + 1)) using k arbitrarily powerful
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oracles of arity m. The constants in the poly(·)-notation are absolute.2

Note that showing that f is not computable by poly(n2m)-size circuits of depth d implies
that f is not computable by p-size circuits of depth d/3 with oracles of arity m because we
can replace such oracles by DNFs of size 2O(m). Theorem 1 shows that even poly(n2m/d)-
size lower bounds localize, if they are obtained by the approximation method.

1.1.2 Completeness: Extent of Fusion

In order to prove an s(n)-size circuit lower bound for a Boolean function f with n inputs
using the approximation method, it is necessary to introduce inessential variables, i.e. to
consider function f ′(x1, . . . , xN) := f(x1, . . . , xn), for N ≥ s(n), and prove ρ(f ′,M) ≥
s(n). Razborov [18] showed that this strategy can be adapted (using the asymmetric
definition of ρ) so that it becomes complete. Wigderson [22], following Karchmer’s [9]
interpretation of Razborov’s construction, coined the term fusion method for the resulting
approach to circuit lower bounds.

Feasibility of fusion. The construction from [18] uses N = O(s2n). We observe that
the fusion method can be adapted to the case of partial Boolean functions so that the
corresponding approximation models use N = poly(s), cf. Theorem 7. The adaptation
relies on the notion of anticheckers of Lipton and Young [10]. The resulting fusion method
inherits completeness from the standard fusion method. If anticheckers can be generated
efficiently (which can be done in the case of SAT under standard hardness assumptions),
the corresponding approximation models are constructive, see §4.1.

Fusion for constant-depth circuits. Finally, we define a version of the fusion method
for constant-depth circuits and show that it is complete for constant-depth circuit lower
bounds, cf. Theorem 8.

1.1.3 Proof methods

Informally, the measure ρ(f,M) is defined as the minimal number of ‘error sets’ needed
to cover all inputs on which f differs from its ‘approximator’. To get a good lower bound,
one wants to define a model M with small error sets but with approximators making a
lot of errors. If f is computable by an s-size circuit W , the approximator of W and error
sets corresponding to the gates of W can be used to witness that ρ(f,M) ≤ s.

Razborov’s proof of ρ(f,M) ≤ O(nn0) proceeds by constructing suitable distributions
on error sets and approximators, which allow us to derive the desired conclusion by a case
analysis: For each input x, either I. the probability that a random approximator fails to
compute f on x is small or II. the probability that a random error set covers x is high.
Then, we can take a majority of random approximators and obtain an approximator

2We work with a ‘symmetric’ definition of ρd, cf. Definitions 4 and 6, but Theorem 1 holds for
‘asymmetric’ ρd as well, if we adjust the parameters appropriately.
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coinciding with f on all inputs from case I. The remaining inputs from case II are covered
by a small number of error sets. The construction of the distribution of error sets and
approximators is based on an exponentially-big ‘universal’ circuit which plays the role of
circuit W from the previous paragraph.

Theorem 1 is proved by the contrapositive. We assume that there is a small constant-
depth oracle circuit computing f and we want to bound ρO(d2)(f,M). If the constant-
depth circuit did not contain any oracles, its approximator would yield a small set of error
sets covering all inputs on which the approximator fails to compute f . The problem is to
deal with local oracles.

The first step of the proof is to adapt Razborov’s barrier to ρd, i.e. to show ρd(h,M) ≤
O(28n/d) for every Boolean function h with n inputs. To make this work we need to
use suitable constant-depth circuits as an alternative to the exponential-size circuits in
Razborov’s construction.

Having ρd(h,M) ≤ O(28n/d) and the assumption that there is a small oracle circuit
C for f , we want to obtain an upper bound on ρO(d2)(f,M). Intuitively, we want to
replace each oracle in C computing a function h with m inputs by ρd(h,M) ≤ O(28m/d).
Unfortunately, we do not have a generic way to derive such upper bound just from an
upper bound on ρd(h,M). To make the proof work we need to exploit the inner structure
of Razborov’s proof. More specifically, we need to observe that Razborov’s construction
can be applied ‘inside’ the oracle circuit so that we can replace each oracle by the majority
of its random approximators and still make the case analysis work. This requires one more
modification: we need to use Ajtai’s p-size constant-depth circuits for the approximate
majority instead of general circuits [1].

1.2 Related work

Our results are motivated primarily by the development of hardness magnification and
the approximation method, but the notion of locality was considered already by Yao [23],
who observed that some concrete monotone circuit lower bounds such as the lower bound
of Razborov [15] localize. Yao’s observations are incomparable to our results: Our results
are not restricted to specific instantiations of the approximation method, but they work
only for non-monotone circuits. Hrubeš and Rao [8] considered the model of circuits
with oracle gates of restricted fan-in and showed that some known lower bounds such as
Nechiporuk’s lower bound for formulas localize. Again, these results differ from ours in
that they derive localizability only for specific examples of lower bounds.

1.3 Open problems

Optimal localizability. Do superlinear lower bounds for general circuits based on the
approximation method localize even with a linear number of oracles (cf. Problem 1)?
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Regarding constant-depth circuits, Theorem 1 localizes lower bounds for depth d circuits
of size poly(n28m/d). In the HM frontier in the introduction, Item 1 uses m = poly(log n)
while the lower bound in Item 3 is just polynomial. Is it possible to localize lower bounds
for depth d circuits of size poly(n2m

O(1/d)
)? A stronger localizability of this kind could

follow from a positive answer to Problem 2, which asks for a barrier for deriving NC1

lower bounds via the approximation method. It would be interesting to obtain such local-
izations even under additional assumptions of a constructivity of approximation models,
e.g. assuming that the lower bounds based on these models are provable in S1

2, a theory
of bounded arithmetic formalizing p-time reasoning [4].

Random restrictions as the approximation method. Is it possible to show that
the approximation method is complete for constant-depth circuit lower bounds? Can
we show that the method of random restrictions is formalizable in the framework of the
approximation method? In both cases, we allow using inessential variables. Theorem 8
suggests that such models should exist, but we have not managed to construct them. If
we obtained such models with O(log s) inessential variables, they would be subject to the
localizability from Theorem 1 (with the asymmetric version of ρd). This would extend
the generality of the approximation method and the impact of the localizability from
Theorem 1. In particular, it would provide a unifying explanation for the localizability of
both Razborov-Smolensky lower bound method and the method of random restrictions.

Feasible and structured models. Razborov [19] introduced a generalization of the
approximation method which can prove s-size lower bounds for almost all functions f
with error sets of size poly(s). This required detaching errors sets from the inputs of f
so that the earlier barrier result would not apply. A drawback of the generalized approx-
imation method is that it is not known to be complete and the models from [19] were
obtained nonconstructively. Nevertheless, the elegance and restrictiveness of Razborov’s
generalized approximation models could be instrumental when searching for concrete ex-
amples of approximation models. It could thus be useful to find a constructive version
of Razborov’s models. Here, constructivity means the existence of a p-time algorithm
which given truth-tables of functions f1, f2 of the model, outputs the truth-table of the
‘approximated’ conjuction/disjunction of f1 and f2. This question was posed already in
[19]. In order for the approximation models obtained from the fusion method for partial
functions to be constructive, we need efficient algorithms generating anticheckers. Can
we obtain such models unconditionally?

Nonlocalizable lower bounds. I believe that Barrington-Straubing [3] lower bound for
Ω(n log log n)-size formulas of constant-depth with parity gates can be used to show the
hardness of MCSP[nc, 2nc] for Ω(n log log n)-size formulas of constant-depth with parity
gates at the bottom. Since MCSP[nc, 2nc] is computable by AC0-XOR[O(N)] with local
oracles, if we could make the lower bound work for circuits instead of formulas, it would
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give us an example of a concrete nonlocalizable lower bound. There are several other lower
bounds which work only for computational models of nearly linear size. Is it possible that
the weakness of these lower bounds is a result of their sensitivity to the presence of local
oracles? If so, their ‘weakness’ would turn out to be their strength.

2 Preliminaries

[n] denotes {1, . . . , n}. Let Fn be the set of all Boolean functions on n inputs. We identify
a Boolean function f ∈ Fn with the set of its ones {x | f(x) = 1}.

A Boolean circuit with inputs x1, . . . , xn is a directed acyclic graph (without multi-
edges) with vertices labeled by inputs x1, . . . , xn, constants 0,1 or symmetric3 connectives
◦(y1, . . . , ym) : {0, 1}m 7→ {0, 1} so that there are exactly m edges directed to the vertex
labeled by ◦(y1, . . . , ym). Non-input vertices are called gates. One of the gates of the
circuit is designed as the output gate. A Boolean circuit thus computes a Boolean function.
We consider only Boolean circuits with a single output gate. The depth of a circuit is the
number of edges on the longest path from the output to an input or to a constant. The
size of a circuit is the number of its gates.

A Boolean formula is a Boolean circuit with a tree as the underlying graph and with
logical connectives ¬, binary ∧, binary ∨. We make an exception and measure the size of
a Boolean formula by the number of leafs of its underlying tree.

A circuit class C is just a set of circuits - we do not impose any ‘composition’ properties
on it. ◦(C) denotes the set of connectives of circuits from C. For example, for a class C
of constant-depth circuits, ◦(C) can be the set of logical connectives of unbounded arity
which is, formally, defined as the set of connectives ¬,∨m,∧m, for each possible arity
m ≥ 2. We say that circuits from C are ‘Boolean circuits over ◦(C)’ and ‘C-circuits’.

Circuit[s] denotes the class of Boolean circuits over {¬,∧2,∨2} of size at most s. Given
f ∈ Fn, SizeC(f) denotes the size of the smallest C-circuit computing f , if one exists. If
there is no such circuit, we let SizeC(f) :=∞.

2.1 Approximation models

Intuitively, the approximation method formalizes the following strategy for proving circuit
lower bounds: First, show that each s-size circuit C can be approximated by an s-size
circuit C so that Prx[C(x) 6= C(x)] is small. The approximating circuit C is obtained
from C by replacing each gate of C by an approximating gate. Then show that each
s-size approximating circuit C is far from f in the sense that Prx[C(x) = f(x)] is small.
Consequently, no s-size circuit C computes f either. We proceed with formal definitions.

3As the underlying acyclic graph of a circuit does not specify the order of inputs to a gate, for
the computation of the circuit to be well-defined, we need the connectives to be symmetric. That is,
◦(y1, . . . , ym) = ◦(yπ(1), . . . , yπ(m)) for each permutation π on [m].
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Definition 1 (Legitimate model). A legitimate model (of order n) of a circuit class C is
a pair 〈M, ◦(M)〉, where {0, 1, xi | i ≥ 1} ⊆ M ⊆ Fn and ◦(M) is a set of symmetric
operations

◦ :M× · · · ×M︸ ︷︷ ︸
m times

7→ M,

for each ◦ ∈ ◦(C) of arity m. We abuse the notation and denote 〈M, ◦(M)〉 by M.

Note that the ‘approximator’ ◦ of ◦ ∈ ◦(C) depends on the input functions. This
means that a single connective of a circuit can be approximated by different functions in
different positions in the circuit.

Definition 2 (Approximating circuit). Given a legitimate model (of order n) of a circuit
class C and a C-circuit C with inputs from {x1, . . . , xn}, we define an approximating circuit
C inductively by replacing each gate ◦(C1, . . . , Cm) in C by ◦([[C1]], . . . , [[Cm]]) and setting
1 := 1, 0 := 0, xi := xi. Here, [[B]] ∈ Fn denotes the function computed by circuit (or
approximating circuit) B. In order to simplify the notation, we will assume that B is
[[B]], if it is used in a context which asks for a function.

Definition 3 (Error sets). Given a legitimate modelM of a circuit class C, we define the
error sets of M by

δ+
◦ (f1, . . . , fm) := ◦ (f1, . . . , fm)\◦(f1, . . . , fm),

δ−◦ (f1, . . . , fm) := ◦(f1, . . . , fm)\ ◦ (f1, . . . , fm),

δ◦(f1, . . . , fm) := δ+
◦ (f1, . . . , fm) ∪ δ−◦ (f1, . . . , fm),

where ◦ ∈ ◦(C) has arity m and f1, . . . , fm ∈M. Further, we let

∆ := {δ◦(f1, . . . , fm) | f1, . . . , fm ∈M, ◦ ∈ ◦(C) of arity m}.

Definition 4 (Distance). The distance ρ(f,M) of a legitimate model M of a circuit
class C from a Boolean function f ∈ Fn is the minimal t such that there are tuples〈
◦i, f i1, . . . , f imi

〉
, where mi is the arity of ◦i ∈ ◦(C), i = 1, . . . , t and f ij ∈ M, such that

for some g ∈M,

f ⊕ g ⊆
⋃

i=1,...,t

δ◦i(f
i
1, . . . , f

i
mi

).

If there is no such t, we set ρ(f,M) :=∞.4

4Razborov [18] defined the distance ρ(f,M) as the minimal t such that

f\g ⊆
⋃

i=1,...,t

δ+◦i
(f i1, . . . , f

i
mi

) and g\f ⊆
⋃

i=1,...,t

δ−◦i
(f i1, . . . , f

i
mi

).

We use a ‘symmetric’ definition of ρ, which simplifies proofs, but our results work for Razborov’s ‘asym-
metric’ ρ as well (with an appropriate adjustment of parameters). The asymmetry in Razborov’s definition
of ρ is used when defining the fusion method, see §4.
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Proposition 1. For each f ∈ Fn and each legitimate model M of a circuit class C,

ρ(f,M) ≤ SizeC(f).

Proof. Let C be a C-circuit computing f and g := C ∈ Fn. Consider the set of tuples〈
◦i, B1, . . . , Bmi

〉
for all gates ◦i of C together with the subcircuits B1, . . . , Bmi

which act

as inputs of ◦i. If f(x) 6= g(x), we can compare computations of C and C on x. We start
at the output gate of C and proceed to some input of the output gate which preserves the
error, if such an input exists. We proceed in this way until we reach a gate ◦ of C such that
◦(D1(x), . . . , Dm(x)) 6= ◦(D1(x), . . . , Dm(x)) but Dj(x) = Dj(x), for all j ∈ [m], where
D1, . . . , Dm are subcircuits acting as inputs of ◦. Therefore, x ∈ δ◦(D1, . . . , Dm).

Probabilistic approach. A particularly useful instantiation of the approximation method
can be described as the following probabilistic approach. For a random variable x on
{0, 1}n, let

d := max
{

Pr[x ∈ δ◦(f1, . . . , fm)] | f1, . . . , fm ∈M, ◦ ∈ ◦(C) of arity m
}
.

If d 6= 0, define

ρ(f,M,x) := min
g∈M

{
Pr[f(x) 6= g(x)]

d

}
.

Assuming ρ(f,M) ≤ t is witnessed by g and a set T of error sets with |T | = t, we have
Pr[f(x) 6= g(x)] ≤

∑
δ∈T Pr[x ∈ δ] ≤ dt. Therefore, ρ(f,M,x) ≤ ρ(f,M).

Examples. Lower bounds of Razborov-Smolensky for AC0[p] and monotone circuit lower
bounds of Razborov can be naturally formulated in the framework of the approximation
method. In fact, they use the probabilistic approach described above.

Monotone circuit lower bounds: We refer to the presentation in Arora-Barak [2, Chapter
14.3]. The approximation modelM consists of functions computed by small disjunctions
of indicator functions. The operations ∨,∧ are defined so that probabilities Pr[x ∈ δ◦]
are small, for a suitable x. Nevertheless, for each g ∈M, Pr[f(x) 6= g(x)] is high, if f is
a suitable function, so ρ(f,M,x) yields the desired lower bound.

AC0[p] lower bounds: We refer to the presentation in [11] or [2, Chapter 14.2]. The
lower bound for AC0[p] circuits of depth d is obtained by a lower bound for a version of
ρ(f,M,x), where we consider the minimum only over functions g ∈ M such that for
some circuit C of depth d, g = C. The approximation model M consists of functions
computed by polynomials over a finite field. The operations ¬,MODp are approximated
by polynomials which make no errors and the operations ∧m,∨m (of unbounded arity) are
approximated by polynomials which err only on a small number of inputs (The approx-
imating polynomials actually depend on the position of the gate in the given circuit.).
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On the other hand, functions g such that g = C, for a circuit of depth d, are low-degree
polynomials and the probability that a low-degree polynomial errs to compute MODq,
for q 6= p, is high.

3 Limitations

3.1 General circuits

Razborov [18] showed inherent limitations of the approximation method, see also [12]. We
present Razborov’s proof and then adapt it to derive localizations of lower bounds based
on the approximation method.

Theorem 2 (Razborov [18]). For each legitimate model M of Boolean circuits over
{¬,∨2,∧2} such that ¬ := ¬, and for each f ∈ Fn,

ρ(f,M) ≤ O(n0n),

where n0 is the number of essential inputs of f , i.e. inputs of f such that switching the
value of the input affects the output of f on some assignment of the remaining inputs.
Moreover, for every random variable x on {0, 1}n,

ρ(f,M,x) ≤ 12(n0 + 1).

Proof. We start with the ‘moreover’ part. For each legitimate model M, a Boolean
function f and a random variable x on {0, 1}n, we want to find a function g ∈ M such
that Pr[g(x) 6= f(x)] ≤ 12(n0 + 1)d. We use bold font to denote random variables. The
existence of such g follows from the following inequality,

Pr[h(x) 6= f(x)] ≤ 12(n0 + 1) Pr[x ∈ δ] ≤ 12(n0 + 1)d.

Here, the second inequality holds by the definition of d. The first inequality is a direct
corollary of Lemma 1, which also specifies the random variables h and δ.

Lemma 1. For each legitimate model M of Boolean circuits over {∨2,∧2,¬} such that
¬ := ¬, and for each f ∈ Fn, there is a random variable δ on ∆ and a random variable
h on M such that for each x,

Pr[h(x) 6= f(x)] ≤ 12(n0 + 1) Pr[x ∈ δ].

Before proving Lemma 1 we show how it implies the rest of the theorem. Given a
legitimate model M and a Boolean function f , we want to find a function g ∈ M and
O(nn0) tuples 〈◦i, f i1, . . . , f imi

〉 which cover f ⊕ g. Observe that there are two ways of
‘upper-bounding’ ρ(f,M).
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Case I (random approximators). Consider inputs x such that Pr[h(x) 6= f(x)] < 1/3.
By (the multiplicative) Chernoff’s bound,

Pr[MAJ(h1, . . . ,hk)(x) 6= f(x)] ≤ 1/ek/48,

where each hi is an independent copy of h. Consequently, we can fix h1, . . . , hO(n)

such that MAJ(h1, . . . , hO(n)) coincides with f on all such inputs x. As the majority
function MAJ on m inputs is computable by an O(m logm)-size circuit5 M , we set
g := M(h1, . . . , hO(n)) and conclude that all inputs x ∈ g ⊕ f considered in Case I
are covered by O(n log n) ≤ O(nn0) tuples. Here, w.l.o.g. n0 ≥ log n since otherwise
ρ(f,M) ≤ 2n0 ≤ n.

Case II (random error sets). For inputs x such that Pr[h(x) 6= f(x)] ≥ 1/3, we use
the fact that random δ covers such x with high probability. That is, by Lemma 1,

Pr[x ∈ δ1 ∨ · · · ∨ x ∈ δk′ ] ≥ 1− 1/ek
′/36(n0+1),

where each δi is an independent copy of δ. Therefore, there are δ1, . . . , δO(nn0) covering
all x’s considered in Case II.

Cases I and II together imply the inequality ρ(f,M) ≤ O(nn0).

It remains to prove Lemma 1.
Given h ∈ Fm, let ha := h(x1, . . . , xm−1, a) ∈ Fm−1, for a ∈ {0, 1}. Further, let Ch be

a trivial exponential-size circuit computing h defined inductively as

Ch := (Ch1 ∧ xm) ∨ (Ch0 ∧ ¬xm),

with Ch(b) := h(b), for b ∈ {0, 1}m. Define the random variable h := Dg, where

Dg := (Cf⊕g ∧ C¬g) ∨ (C¬(f⊕g) ∧ Cg),

for uniformly random g on Fn. Note that for each g ∈ Fn, Dg(x) = (f⊕g⊕g)(x) = f(x).
The random variable δ is defined as a random error set of h as follows. Let m ∈

[n]∪{⊕}, t ∈ {0, 1,∨} and gm ∈ Fm, with g⊕ := gn ∈ F⊕ := Fn, be chosen independently
and uniformly at random.

δ :=



δ∨(Cf⊕gm ∧ C¬gm , C¬(f⊕gm) ∧ Cgm) if m = ⊕, t = ∨,
δ∧(Ct⊕f⊕gm , Ct⊕¬gm) if m = ⊕, t ∈ {0, 1},
δ∨(Cgm1 ∧ xm, Cgm0 ∧ ¬xm) if m ∈ [n], t = ∨,
δ∧(Cgm1−t , ¬︸︷︷︸

t times

xm) if m ∈ [n], t = {0, 1}.

The crucial observation is provided by Claim 3.1.

5Razborov uses monotone O(m logm)-size circuits for MAJ, which is needed to make the proof work
for his definition of ρ.
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Claim 3.1. For each x, there are 3 + 12n positions of gates in Dg (the underlying graph
of Dg is independent of g) such that for each g ∈ Fn satisfying Dg(x) 6= f(x), we have
x ∈ δ◦(e1, e2), where ◦ is the gate of Dg corresponding to one of these 3 + 12n positions
and e1, e2 are its inputs.

To prove Claim 3.1, note that the error can occur either in one of the top 3 gates
of Dg or in one of the remaining 4 subcircuits. Consider Cg, other circuits are treated
analogously. Suppose x is a ‘+error’ in the sense that Cg(x) > Cg(x). Then, there are
gates e1, e2, e3 in Cg such that e3 = e1 ◦ e2 and e3 makes a +error on x, but e1, e2 do not,
i.e. e3(x) > e3(x), e1(x) ≤ e1(x), e2(x) ≤ e2(x).6 Moreover, as one of the conjunctions
Cg0(x) ∧ xm, Cg0(x) ∧ ¬xm is false, a +error occurs in some of 2n gates on the path
through Cg which is consistent with x. If a +error occurs in e3, but not in e1, e2, then
x ∈ δ+

◦ (e1, e2) because

e1(x) ◦ e2(x) ≥ e1(x) ◦ e2(x) = e3(x) > e3(x) = e1(x)◦ e2(x).

If x is a ‘–error’ satisfying Cg(x) < Cg(x), we can again find gates e1, e2, e3 in Cg such
that e3 = e1 ◦ e2 and e3 makes a –error on x but e1, e2 do not. Analogously as before, this
implies x ∈ δ−◦ (e1, e2). If there is a -error on Ch(x) ∧ ¬xm which is inconsistent with x,
then ¬xm(x) = ¬xm = 0 and we conclude x ∈ δ−◦ (e1, e2), for e1 = Ch and e2 = ¬xm, as

e1(x)∧e2(x) = e3(x) > e3(x) ≥ e1(x) ∧ e2(x).

Therefore, a –error is covered by an error set corresponding to one of 3n positions in Cg:
2n positions on the path consistent with x and n positions deviating from the path. (The
extra n results from the fact that both disjuncts of Ch can make a -error, but whenever
a –error deviates from the path consistent with x it is covered immediately on the first
gate on which it deviates.) This proves the claim.

Having Claim 3.1, we can finish the proof of Lemma 1. For each δ in the range
of δ, let T (δ) := 〈m, t〉, for m ∈ [n] ∪ {⊕}, t ∈ {0, 1,∨} given by δ, be the ‘type’
of δ. That is, there are 3(n + 1) possible types. Similarly, for fixed x, g ∈ Fn, and
h = Dg such that h(x) 6= f(x), let T (h) := T (δ◦(e1, e2)) for δ◦(e1, e2) corresponding to
the first of 3 + 12n positions from Claim 3.1 covering x - note that δ◦(e1, e2) determines
m ∈ [n]∪{⊕}, t ∈ {0, 1,∨}, gm ∈ Fm and the corresponding δ in the range of δ such that
δ◦(e1, e2) = δ. We want to show that

Pr[x ∈ δ] ≥
∑

k=〈m,t〉

Pr[x ∈ δ | T (δ) = k]

3(n+ 1)

≥
∑

k=〈m,t〉

Pr[h(x) 6= f(x) ∧ T (h) = k]

12(n+ 1)
=

Pr[h(x) 6= f(x)]

12(n+ 1)
.

6Gate ei computes the function defined by the corresponding subcircuit of Cg.
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It thus remains to prove that Pr[x ∈ δ | T (δ) = k] ≥ Pr[h(x) 6= f(x) ∧ T (h) = k]/4.
For m given by type k, we have Pr[x ∈ δ | T (δ) = k] = Prgm∈Fm [x ∈ δ1], where
δ1 is the error set from the range of δ determined by k and gm. Further, Pr[h(x) 6=
f(x) ∧ T (h) = k] = Prgn∈Fn [Dgn(x) 6= f(x) ∧ T (Dgn) = k] ≤ Prgn∈Fn [

∨
i x ∈ δ2

i ] where
δ2
i corresponds to the ith position of type k from 3 + 12n positions given by Claim 3.1

(i.e. 1 ≤ i ≤ 4). Finally, since all functions f ⊕ g,¬g,¬(f ⊕ g), g are uniformly random,
Prgn∈Fn [

∨
i x ∈ δ2

i ] ≤ 4 Prgm∈Fm [x ∈ δ1].

‘Approximation barrier’ trick. A way to interpret the proof of Theorem 2 is that it is
obtained by simulating the proof of Proposition 1, where instead of a small circuit for f ,
we want to use a trivial exponential-size circuit Cf . First, we observe that for each x such
that Cf (x) 6= f(x) there are 3n error sets on the path described in the proof of Claim
3.1 such that one of these 3n error sets covers x. We could switch the quantification and
obtain O(n2) error sets covering all errors x, if we constructed a distribution on error sets
such that for each x, Pr[x ∈ δ] ≥ 1/n. The problem is that for each x there are different
3n error sets covering x. To fix this, we ‘xor’ f with a random g and introduce circuit
Dg (which we use instead of Cf ). Now, for each x, the 3n error sets look the same on
average. This leads to Pr[x ∈ δ] ≥ Pr[h(x) 6= f(x)]/O(n) and to the final case analysis.

The barrier from Theorem 2 can be strengthened if we assume that approximating
circuits C depend only on the essential variables of C. We refer to approximation models
with this property as 0-projective models. (In Theorem 3 we generalize 0-projectivity to
‘full’ projectivity.)

Definition 5 (0-projective model). Let M be a legitimate model of a circuit class C. We
say that M is 0-projective if the condition ∗ holds:

∗ If C is a C-circuit with inputs xj, for j ∈ J ⊆ [n], then for each z, y ∈ {0, 1}n,

z|J = y|J ⇒ C(z) = C(y).

Here, z|J ∈ {0, 1}|J | is a projection of z to bits zj with j ∈ J .

Lower bounds of Razborov-Smolensky for AC0[p] and monotone circuit lower bounds
of Razborov are obtained by constructing 0-projective approximation models.

Corollary 1 (A limitation of the 0-projective approximation method). Let M be any
0-projective legitimate model of Boolean circuits over {¬,∧2,∨2} such that ¬ := ¬. Then,
for each f ∈ Fn with n0 essential variables,

ρ(f,M) ≤ O(n2
0).
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Proof. We proceed as in the proof of Theorem 2 but note that for 0-projective approxi-
mation models, for each x, y ∈ {0, 1}n and error set δ◦(C1, C2), where C1, C2 have inputs
from {xj | j ∈ J ⊆ {0, 1}n}, we have that

x ∈ δ◦(C1, C2) ∧ x|J = y|J ⇒ y ∈ δ◦(C1, C2). (3.1)

Further, by 0-projectivity of M, each h in the range of h from Lemma 1 depends just
on the essential variables of f . Hence, in Case I it suffices to cover projections of x on
the essential variables, which can be done by O(n0 log n0) tuples. Similarly, each δ from
the range of δ in Lemma 1 is of the form δ◦(C1, C2), where C1, C2 depend only on the
essential variables of f . By (3.1), in Case II it thus again suffices to cover projections of
x on the essential variables, which can be done by O(n2

0) tuples.

Theorem 2 and Corollary 1 leave open the possibility of proving a superpolynomial
circuit lower bound by proving a superlinear lower bound using standard or 0-projective
approximation method and combining it with hardness magnification. We rule out such
attacks for localizable magnification theorems under additional assumptions: 1. There
is only a sublinear number of oracles (in the oracle circuit implying the magnification
theorem); 2. Assuming 0-projectivity, we allow a superlinear number of oracles, but
they have to appear only at the bottom of the circuit; 3. Assuming a strengthening of
0-projectivity, we obtain the ideal localizabilty.

Theorem 3 (Localizability of the approximation method for general circuits). Let M be
any legitimate model of Boolean circuits over {¬,∧2,∨2} such that ¬ := ¬, and f ∈ Fn.

1. [Localizability with few oracles] Suppose that ρ(f,M) ≥ s. Then, f is not com-
putable by circuits of size s−O(knm) using connectives ¬,∧2,∨2 and k arbitrarily
powerful, possibly different and asymmetric7, oracles of arity m.8

2. [Localizability of 0-projective models] Suppose that ρ(f,M) ≥ s and that M is 0-
projective. Then, f is not computable by circuits of size s−O(km2) using connectives
¬,∧2,∨2 and k arbitrarily powerful, possibly different and asymmetric, oracles of
arity m whose inputs are among {x1,¬x1, . . . , xn,¬xn}.

7Allowing asymmetric oracle requires generalizing the notion of circuit so that its underlying graphs
specifies the order of inputs.

8It is possible to prove Item 1 with Razborov’s asymmetric definition of ρ(f,M), if we adjust the
resulting lower bound for the oracle circuits to s−O(kn ·max{m, log n}) and conclude that it holds only
for circuits with monotone oracles and negations at the bottom. The term max{m, log n} comes from
not using DNFs in the proof, which is done in order to keep negations at the bottom. Further, it is
possible to avoid the requirement on the monotonicity of oracles and negations at the bottom by using
slice functions (and adjusting the parameters appropriately).
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3. [Localizability of projective models] Suppose that ρ(f,M) ≥ s and that M is pro-
jective. Here, M is projective if for each Boolean circuit C over {¬,∧2,∨2} with m
inputs x1, . . . , xm, for all f1, . . . , fm ∈M and each z, y ∈ {0, 1}n,∧

i=1,...,m

fi(z) = fi(y) ⇒ C(f1(z), . . . , fm(z)) = C(f1(y), . . . , fm(y)).

Then, f is not computable by circuits of size s−O(km2) using connectives ¬,∧2,∨2

and k arbitrarily powerful, possibly different and asymmetric, oracles of arity m.

While Theorem 3 is stated for general parameters, it is interesting only for s < Kn2,
where K is the constant implicit in Theorem 2. Typical parameters of our interest are:
s = n1.99, k = n1.88,m = poly(log n). Item 1 of Theorem 3 is thus not satisfactory because
it requires k < Kn/m for a nontrivial conclusion. Item 2 works for the parameters of
our interest but it requires oracles at the bottom (which is not the case for the HM
frontier in the introduction and many other magnification theorems). By strengthening
0-projectivity to projective models, in Item 3 we can allow oracles to appear anywhere in
the circuit. Razborov-Smolensky lower bound method is projective, but Razborov’s lower
bound for monotone circuits is not. However, for monotone circuit lower bounds already
Theorem 2 does not apply.

Proof. We start with the proof of Item 1 and then adapt it to obtain Items 2 and 3.

Item 1: We prove the contrapositive. Assume f is computable by an s-size oracle circuit
CO and that the gates of CO are ordered so that inputs of the ith gate ei precede ei.
Following our earlier convention, ei computes the function defined by the corresponding
subcircuit of CO. We will inductively associate each ei with a function f i ∈ M so that
each x satisfying ej(x) 6= f j(x), for some j ≤ i, is covered by one of i + Koimn error
sets δ ∈ ∆, where oi is the number of oracles among the first i gates of CO and K is an
absolute constant. In particular, we will have ρ(ei,M) ≤ i+Koimn, es = f and os = k.

Inputs xj and constants 0,1 are associated with functions xj, 0, 1 ∈ M. Suppose we
already associated the first i gates. If the (i+1)’st gate ◦(ei1 , ei2), with i1, i2 ≤ i, computes
¬,∧2 or ∨2, we set f i+1 := ◦(f i1 , f i2). In this case we use one error set δ◦(f

i1 , f i2) to cover
all x’s such that ◦(f i1 , f i2)(x) 6= ◦(f i1 , f i2)(x). By the inductive hypothesis, all x’s such
that f j(x) 6= ej(x), for some j ≤ i, are covered by i+Koimn error sets, where oi = oi+1.
Hence, all x’s such that f j(x) 6= ej(x), for some j ≤ i+ 1, are covered by i+ 1 +Koi+1mn
error sets.

Assume that the (i+1)st gate ◦(ei1 , . . . , eim) computes an oracle of arity m. Following
the proof of Lemma 1 (with f ij ’s instead of xj’s, with f ij := f ij and f = ◦), we obtain a
random variable δ on ∆ and a random variable h on M such that for each x,

Pr[h(x) 6= ◦(f i1 , . . . , f im)(x)] ≤ 12(m+ 1) Pr[x ∈ δ].
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Next, we simulate the case analysis from the proof of Theorem 2.
Case I: Consider x’s satisfying Pr[h(x) 6= ◦(f i1 , . . . , f im)(x)] < 1/3. Let M be a

K1n log n-size circuit computing MAJ and h1, . . . , hK2n be such that on all x’s from Case
I, M(h1(x), . . . , hK2n(x)) = ◦(f i1 , . . . , f im)(x). Here, K1, K2 are absolute constants. That
is, setting f i+1 := M(h1, . . . , hK2n), there are K1n log n error sets in ∆ covering all x’s
from Case I such that f i+1(x) 6= ◦(f i1 , . . . , f im)(x). W.l.o.g. log n ≤ m, otherwise we can
compute an oracle of arity m by a circuit of size O(n) and use its approximator to define
f i+1 such that all errors of f i+1 are covered by O(n) error sets.

Case II: As in the proof of Theorem 2, the remaining x’s not considered in Case I are
covered by K3mn error sets, for an absolute constant K3.

Cases I and II together with the inductive hypothesis imply that all x’s such that
f j(x) 6= ej(x), for some j ≤ i + 1, are covered by Koi+1mn + (i + 1) error sets. This
finishes the proof of Item 1.

Item 2: We proceed as in the proof of Item 1 but assume additionally that oracles of CO

are at the bottom. In fact, w.l.o.g. each oracle has the form ◦(xi1 , . . . , xim) as otherwise (if
some xj is ¬xj) we can redefine ◦. When considering the (i+1)st oracle gate ◦(ei1 , . . . , eim),
by ∗-purity ofM, we conclude additionally that each h in the range of h depends only on
xi1 , . . . , xim . This allows us to use just K2m functions h as inputs of M and K1m logm
covering error sets in Case I. In Case II, just like in the proof of Corollary 1, we need only
O(m2) error sets as well.

Item 3: Again, we follow the proof of Item 1 observing that for projective models, for
each h in the range of h, and each x, y ∈ {0, 1}n,∧

j=1,...,m

f ij(x) = f ij(y) ⇒ h(x) = h(y).

Therefore, in Cases I and II it suffices to cover projections of x on f i1(x), . . . , f im(x),
which can be done with O(m2) error sets.

Problem 1 (Full localizability of the approximation method for general circuits). Does
Item 3 of Theorem 3 hold without the assumption of projectivity?

Models preserving the structure of circuits. Proposition 1 holds even for a ‘struc-
tured’ ρ(f,M) defined so that the tuples

〈
◦i, f i1, . . . , f imi

〉
are required to form a circuit.

That is, the structured ρ(f,M), denoted ρ′(f,M), is the minimal number of tuples cov-
ering f ⊕ g, for some g, such that we can assign the tuples to nodes of a directed acyclic
graph satisfying:

1. If nodes
〈
◦i1 , f i11 , . . . , f

i1
mi1

〉
, . . . ,

〈
◦ik , f

ik
1 , . . . , f

ik
mik

〉
are inputs of node 〈◦i, f i1, . . . , f ik〉,

then f ij = ◦ij(f
ij
1 , . . . , f

ij
mij

), for j = 1, . . . , k;
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2. For nodes
〈
◦i, f i1, . . . , f imi

〉
at the bottom, each f ij is xk ∈M for some k.

For ρ′(f,M), the barrier from Theorem 2 fails. Is it exactly the insensitivity to the
structure of circuits what prevents the approximation method from proving strong circuit
lower bounds? That is, is there a legitimate model M such that ρ′(f,M) ≤ s implies
f ∈ Circuit[sO(1)]?

If we required that g in the definition of ρ(f,M) is C for a circuit C of size s, the
resulting method would become complete for s-size circuit lower bounds. This follows
trivially by considering a model with empty error sets.

Formula lower bounds via approximation models. By imposing an additional struc-
ture of covering error sets in the definition of ρ(f,M), it is possible to formulate versions
of the approximation method which are, in principle, more suitable for proving formula
lower bounds. One possibility is to require that the tuples from the definition of the
structured ρ(f,M) form not only a circuit but a formula. Is it possible to adapt Theorem
2 to such formula-versions of ρ(f,M)? Note that the upper bounds from Theorem 2 are
witnessed by g ∈ M such that g = C for a formula C. In particular, circuits Dg from
the proof of Lemma 1, which are used to define the covering error sets, are formulas. Ob-
taining such versions of Theorem 2 for formulas would imply that known superquadratic
formula lower bounds based on the method of random restrictions are not formalizable
by the corresponding versions of the approximation method.

3.2 Constant-depth circuits

NC1 lower bounds can be approached also via the approximation method for constant-
depth circuits. This is because p-size formulas are computable by depth d+ 2 circuits of
size 2n

O(1/d)
. We use Theorem 2 to impose a limitation of this approach.

Definition 6 (ρd(f,M)). The d-depth distance ρd(f,M) of a legitimate model M of a
circuit class C from a Boolean function f ∈ Fn is the minimal t such that there are tuples〈
◦i, f i1, . . . , f imi

〉
, where mi is the arity of ◦i ∈ ◦(C), i = 1, . . . , t and f ij ∈ M, such that

for some g ∈M,

f ⊕ g ⊆
⋃

i=1,...,t

δ◦i(f
i
1, . . . , f

i
mi

).

Moreover, for each f ij above there is a C-circuit C of depth at most d−1 such that f ij = C

and g = D for a C-circuit D of depth at most d. If there is no such t, set ρd(f,M) :=∞.

Proposition 1 can be adapted to the case of ρd(f,M) showing that lower bounds for C-
circuits of depth d can be obtained via lower bounds for ρd(f,M). Razborov-Smolensky
lower bound for AC0[p] can be formulated as a lower bound for ρd(f,M). (Originally,
Razborov [17] proved a lower bound for constant-depth circuits by measuring the distance
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of the target function from a ‘stratified’ model. In this paper we keep the notion of model
intact.)

Theorem 4. For each legitimate modelM of Boolean circuits over
⋃
a≥2{¬,∨a,∧a} such

that ¬ := ¬, for each f ∈ Fn and each d ≥ 8,

ρd(f,M) ≤ Knd(2dn/bd/8ce + 1) + 2Kn
k/d

+KnK ,

where K, k are absolute constants (independent of d).

Proof. We follow the proof of Theorem 2 and start by adapting Lemma 1.

Lemma 2. For each legitimate model M of Boolean circuits over
⋃
a≥2{∨a,∧a,¬} such

that ¬ := ¬, for each f ∈ Fn and each d ≥ 1, there is a random variable δ on ∆ and a
random variable h on M such that for each x,

Pr[h(x) 6= f(x)] ≤ 4(d+ 1)(2dn/de + 1) Pr[x ∈ δ].

Moreover, for each h in the range of h there is a circuit D of depth 2d+3 such that h = D
and for each δ◦(f1, . . . , fm) in the range of δ there are circuits Di of depth at most 2d+ 2
such that fi = Di.

Lemma 2 implies Theorem 4 by the following case analysis.

Case I: Consider inputs x such that Pr[h(x) 6= f(x)] < 1/3. Since MAJ on m inputs
is computable by a poly(m)-size formula, it is also computable by a depth d + 2 circuit

M of size max{2O(mk/d), poly(m)}, for an absolute constant k. Hence, we can set g :=
M(h1, . . . , hO(n)) for suitable h1, . . . , hO(n) ∈ M, so that each x ∈ g ⊕ f considered in

Case I is covered by one of 2O(nk/d) + poly(n) error sets. Note that g is computed by
an approximator of a circuit of depth 3d + 5. The error sets thus satisfy the ‘moreover’
requirement from the definition of ρ3d+5.

Case II: Similarly as in the proof of Theorem 2, the remaining inputs x can be covered
by O((d+ 1)(2dn/de + 1)n) error sets.

Cases I and II imply that ρ8d(f,M) ≤ ρ3d+5(f,M) ≤ O(d(2dn/de + 1)n) + poly(n) +

2O(nk/d).

It remains to prove Lemma 2. The core change of the construction is the definition of
circuits Ch, for h ∈ Fm, which is given inductively by

Ch :=
∨

z∈{0,1}u

(
Chz ∧

∧
i=1,...,u

1−zi times︷︸︸︷¬ xm−u+i

)
,

where hz := h(x1, . . . , xm−u, z1, . . . , zu) ∈ Fm−u, Ch(b) = h(b) for b ∈ {0, 1}m and u :=
min{dn/de,m}.
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Consequently, Dg := (Cf⊕g ∧C¬g)∨ (C¬(f⊕g) ∧Cg) is a circuit of depth 2d+ 3. Recall
that h = Dg.

The definition of δ is modified analogously, following the structure of Dg. Set v :=
dn/de and w := n mod dn/de if n 6= 0 mod dn/de, w := dn/de otherwise. Let m ∈
[d] ∪ {⊕}, t ∈ {0, 1}r ∪ {∨}, with r := 1 if m = ⊕, r := v if 1 < m ≤ d, r := w if m = 1,
and gw+(m−1)v ∈ Fw+(m−1)v, with gw+(⊕−1)v := gn ∈ Fw+(⊕−1)v := Fn, be chosen uniformly
at random and independently up to the dependence which is described explicitly. Then,

δ :=



δ∨(Cf⊕gn ∧ C¬gn , C¬(f⊕gn) ∧ Cgn) if m = ⊕; t = ∨;

δ∧(Ct⊕f⊕gn , Ct⊕¬gn) if m = ⊕; t ∈ {0, 1};
δ∨(Cgw+(m−1)v

1...1 ∧
∧
i=1,...,v xw+(m−2)v+i, . . .

. . . , Cgw+(m−1)v
0...0 ∧

∧
i=1,...,v ¬xw+(m−2)v+i) if 1 < m ≤ d; t = ∨;

δ∧(Cgw+(m−1)v
t , ¬︸︷︷︸

1− t1 times

xw+(m−2)v+1, . . .

. . . , ¬︸︷︷︸
1− tv times

xw+(m−1)v) if 1 < m ≤ d; t = {0, 1}v;

δ∨(Cgw1...1 ∧
∧
i=1,...,w xi, . . .

. . . , Cgw0...0 ∧
∧
i=1,...,w ¬xi) if m = 1; t = ∨;

δ∧(Cgwt , ¬︸︷︷︸
1− t1 times

x1, . . . , ¬︸︷︷︸
1− tw times

xw) if m = 1; t = {0, 1}w.

Now, for each x, there are 3 + 4(2v + 1)d positions of gates in Dg such that for each
g ∈ Fn satisfying Dg(x) 6= f(x) an error set corresponding to one of these positions covers
x. This is because each x is consistent with exactly one disjunct on the path from the
output of Dg to its inputs. The final analysis thus differs only in that instead of 3(n+ 1)
we have ≤ (2v + 1)(d+ 1) types.

Theorem 4 does not rule out the possibility of obtaining NC1 lower bounds via the
approximation method.

Problem 2 (NC1 lower bounds via the approximation method). Let M be a legitimate

model as in Theorem 4 and f ∈ Fn. Is ρd(f,M) ≤ 2n
O(1/d)

, for each sufficiently big d?
Does the upper bound hold for all f computable by nondeterministic circuits of p-size?

Note that a straightforward application of approximation models from the Razborov-
Smolensky lower bound does not show that ρd(f,M) ≤ 2n

O(1/d)
fails for some f : Since

n-degree polynomials compute all functions f ∈ Fn, to prove the existence of a hard
function for ld-degree polynomials (approximating depth d circuits), we need l < n1/d.
As individual error sets in the model consisting of ld-degree polynomials might cover up
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to 1/2l of inputs, the existence of a function f such that ρd(f,M) > 2l does not follow
directly.

Even though Theorem 4 might not be optimal it can be used to derive a nontrivial
localization of the approximation method for constant-depth circuits.

Theorem 5 (Localizability of the approximation method for constant-depth circuits).
Let M be any legitimate model M of Boolean circuits over

⋃
a≥2{¬,∧a,∨a} such that

¬ := ¬, and f ∈ Fn. Suppose that ρd(2d+6)(f,M) ≥ s, for d ≥ 1.
Then, f is not computable by depth d circuits of size s − poly(kdn(2m/d + 1)) using

connectives ¬,∧a,∨a, for a ≥ 2, and k arbitrarily powerful, possibly different and asym-
metric, oracles of arity m.9 The constants in the poly(·)-notation are universal and, in
particular, independent of d.

Theorem 5 does not need any projectivity assumption, but just like in Theorem 4
its conclusion might not be optimal. Note that showing that f is not computable by
poly(n2m)-size circuits of depth d implies that f is not computable by p-size circuits of
depth d/3 with oracles of arity m because we can replace such oracles by DNFs of size
2O(m). Theorem 5 shows that even poly(n2m/d)-size lower bounds localize. Is it possible

to localize lower bounds of size poly(n2m
O(1/d)

)? A positive answer to Problem 2 could
resolve the question.

Proof. We proceed as in the proof of Item 1 in Theorem 3 with some modifications.
We will inductively associate each ei with a function f i ∈M so that each x satisfying

ej(x) 6= f j(x), for some j ≤ i, is covered by one of i + Koid(2Km/d + 1)nK error sets
δ ∈ ∆, for an absolute constant K. Additionally, we will ensure that for each f i there is
a circuit Di of depth di(2d+ 6) such that f i = Di and each x such that ej(x) 6= f j(x), for
some j ≤ i, is covered by an error set whose input functions are approximators of circuits
of depth ≤ dj(2d+ 6)− 1. Here, di is the depth of the subcircuit corresponding to ei. In
particular, we will have ρdi(2d+6)(e

i,M) ≤ i+Koid(2Km/d + 1)nK .
The base case and the inductive step when the (i + 1)st gate is not an oracle are

straightforward.
Suppose that the (i+1)st gate ◦(ei1 , . . . , eim) computes an oracle of arity m. Following

the proof of Lemma 2 (with f ij ’s instead of xj’s, with f ij := f ij and f = ◦), we obtain a
random variable δ on ∆ and a random variable h on M such that for each x,

Pr[h(x) 6= ◦(f i1 , . . . , f im)(x)] ≤ 4(d+ 1)(2dm/de + 1) Pr[x ∈ δ].

9Theorem 5 holds also for Razborov’s asymmetric definition of ρ(f,M), if we conclude that the
resulting lower bound holds only for circuits with monotone oracles and negations at the bottom. Further,
the requirement on the monotonicity of oracles and negations at the bottom can be avoided by using slice
functions and adjusting the parameters appropriately.
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Moreover, for each h in the range of h there is a circuit D of depth ≤ 2d + 3 + (di+1 −
1)(2d+ 6) such that h = D and for each δ◦(f1, . . . , ft) in the range of δ there are circuits
D` of depth at most 2d+ 2 + (di+1 − 1)(2d+ 6) such that f` = D`.

Next, we simulate the case analysis from the proof of Theorem 3.
In Case I we consider x’s such that Pr[h(x) 6= ◦(f i1 , . . . , f im)(x)] < 1/6 and use

approximate majority instead of MAJ. Ajtai [1] constructed (monotone) p-size circuits of
depth 3 accepting each input which contains > 3/4 1s and rejecting each input which
contains < 1/4 1s. This yields di+1(2d+ 6) depth circuits and K1n

K1 corresponding error
sets covering all x’s considered in Case I such that f i+1(x) 6= ◦(f i1 , . . . , f im)(x). Here, K1

is an absolute constant.
In Case II we cover the remaining x’s by K2d(2dm/de + 1)n error sets, for an absolute

constant K2.
Cases I and II together with the inductive hypothesis imply that all x’s such that

f j(x) 6= ej(x), for some j ≤ i+1, are covered by Koi+1d(2dm/de+1)nK +(i+1) error sets.
Moreover, for each gate ej, j ≤ (i+ 1), f j is computed by an approximator of a circuit of
depth dj(2d+ 6) and each x such that ej(x) 6= f j(x), for some j ≤ i+ 1, is covered by an
error set whose inputs are approximators of circuits of depth ≤ dj(2d+ 6)− 1.

4 Completeness: Fusion

4.1 General circuits

Theorem 2 does not rule out the possibility of deriving superquadratic lower bounds via
the approximation method by introducing inessential variables: We might be able to show
that f /∈ Circuit[s] by proving s ≤ ρ(f ′,M) for f ′(x1, . . . , xN) := f(x1, . . . , xn) ∈ FN and
N = s.

Razborov [18] showed that this strategy can be adapted so that it becomes complete.
We present Karchmer’s [9] interpretation of Razborov’s construction for which Wigderson
[22] coined the term fusion method. (The reader might find Wigderson’s survey [22] a
helpful source of additional intuition.) In the second part of this section we discuss the
feasibility of the fusion method.

Let f ∈ Fn, V := f−1(1), U := f−1(0). We aim to prove f /∈ Circuit[s] by showing that
each s-size circuit C computing f yields a rejecting computation of C on an input from
V .

The rejecting computions will be ‘filtered’ from more abstract computations as follows.
Given g ∈ Fn, define [[g]] := g−1(1) ∩ U . The sets [[g]] can be seen as generalizations of
values 0 and 1 with ∅ standing for 0 and U for 1. Note that [[f ]] = ∅ and for all g, h ∈ Fn,

[[g]] ∩ [[h]] = [[g ∧ h]] and [[g]] ∪ [[h]] = [[g ∨ h]].
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We say that F ⊆ P(U) := {U ′ | U ′ ⊆ U} is a semi-filter10, if

1. (nontriviality) F (∅) = 0, F (U) = 1;

2. (monotonicity) A ⊆ B ⇒ F (A) ≤ F (B).

A semi-filter F ‘preserves’ a pair of sets (A,B), A,B ⊆ U , if

F (A) = 1 ∧ F (B) = 1⇒ F (A ∩B) = 1.

Otherwise, we say that (A,B) covers F . Suppose that all negation gates in a circuit C
computing f are at the bottom layer and that F is a semi-filter with a string v(F ) ∈ {0, 1}n
such that

v(F )i = F ([[xi]]) 6= F ([[¬xi]]), for i ∈ [n].

If F preserves pairs ([[g]], [[h]]), for all gates g, h of C, then F implicitly defines a rejecting
computation of C on input v(F ).

Let F0 be an arbitrary set of semi-filters F ⊆ P(U) with v(F ) ∈ V . Define ρF0(f)
as the minimal number of pairs (A,B), A,B ⊆ U which cover all semi-filters F ∈ F0. It
follows directly from the definition that

ρF0(f) ≤ 2 · SizeC(f),

where C is the set of all Boolean circuits over {¬,∧2,∨2}. The factor of 2 results from
pushing negations to the bottom.

The term ‘fusion’ refers to the process of ‘fusing’ rejecting computations of C on U
into a rejecting computation of C on an input from V .

Fusion as the approximation method. The fusion method is an instantiation of the
approximation method, if we relax the definition of a legitimate model. To see that, we
use Razborov’s definition of the distance ρ(f ′,M) where f ′ ⊕ g ⊆

⋃
i δ◦i(f

i
1, . . . , f

i
mi

) is
replaced by

f ′\g ⊆
⋃
i

δ+
◦i(f

i
1, . . . , f

i
mi

) and g\f ′ ⊆
⋃
i

δ−◦i(f
i
1, . . . , f

i
mi

).

Assume that |V | ≥ 2 and let F0 be a set of semi-filters F ⊆ P(U) with v(F ) ∈ V such
that there are F1, F2 ∈ F0 with v(F1) 6= v(F2). We want to define a legitimate model M
of order N := n+ dlog |F0|e. M will consist of functions g ∈ FN , for all g ∈ Fn, given by

g(x, y) :=

{
g(x) if v(y) 6= x,

y([[g]]) if v(y) = x;

10In order theory, a filter on P(U) would satisfy also that F (A) = 1 ∧ F (B) = 1 implies F (C) = 1 for
some C ⊆ A ∩B.
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where x ∈ {0, 1}n and y ∈ {0, 1}N−n is identified with the yth semi-filter from F0. In
particular, {0, 1, xi,¬xi | i ∈ [n]} ⊆ M. We relax on the requirement that xi ∈ M, for
i > n. The connectives of M are

◦(g, h) := g ◦ h,

for ◦ ∈ {∨2,∧2}. As F0 contains F1, F2 with v(F1) 6= v(F2), we have g = h⇒ g = h and
◦ is well-defined. Note that M depends on f .

We want to show that ρ(f ′,M) = ρF0(f). The function g ∈M from the definition of
ρ(f ′,M) has to be f because error sets δ◦ do not contain any input (x, y) with v(y) 6= x.
Further, by definition, f(x, y) 6= f ′(x, y) ⇔ v(y) = x and v(y) = x ⇒ f(x, y) = 0.
Therefore, ρ(f ′,M) is the minimal number of pairs g, h such that pairs ([[g]], [[h]]) cover
all semi-filters in F0, i.e. ρ(f ′,M) = ρF0(f).

Genesis of fusion. The fusion method arises from the approximation method by a
sequence of natural choices. We want to approximate each g ∈ Fn by a function g ∈ FN .
Given the correspondence we look for a model with simple approximating connectives
◦(g, h) = g ◦ h. For this to be well-defined we want g = h ⇒ g = h, which we guarantee
by setting

g(x, y) := g(x) if P (x, y)

for some predicate P . If ¬P (x, y), we set g(x, y) := Fy(g) for a functional Fy : 22n 7→
{0, 1}. Fy should guarantee that xi = xi and ¬xi = ¬xi so ¬P (x, y) is “Fy(xi)’s define
x”. By imposing the monotonicity of Fy we make δ+

∨ empty. Similarly, setting Fy(f) := 0
simplifies the situation as it implies that f\f ′ = ∅ and restricts our attention to U .

Theorem 6 (Completeness of the fusion method [18]). Let f ∈ Fn and assume that
f /∈ Circuit[Ks3], for s ≥ n. Then ρF∀(f) ≥ s, where F∀ is the set of all semi-filters
F ⊆ P(U) with v(F ) ∈ V . Moreover, there is F0 ⊆ F∀ of size |F0| = 2O(s|U |) such that
ρF0(f) ≥ s. Here, K is an absolute constant.

Proof. Assuming ρF∀(f) ≤ s, we want to construct an O(s3)-size circuit computing f .
We have s pairs (Ai, Bi), Ai, Bi ⊆ U, i ∈ [s] covering all semi-filters in F∀. Let Fz, for
z ∈ {0, 1}n, be the minimal subset of P(U) closed on the supersets, preserving all pairs
(Ai, Bi), for i ∈ [s], pairs ([[xi]], [[¬xi]]), for i ∈ [n], and such that for all i ∈ [n],

[[ ¬︸︷︷︸
1−zi times

xi]] ∈ Fz.

We claim that
f(z) = 1 ⇔ ∅ ∈ Fz.

If f(z) = 0, then Z := {U ′ | z ∈ U ′ ⊆ U} witnesses that ∅ 6∈ Fz. If f(z) = 1, then ∅ ∈ Fz
as otherwise v(Fz) ∈ V and Fz would be a semi-filter preserving all pairs (Ai, Bi), i ∈ [s].
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It remains to construct an O(s3)-size circuit deciding ∅ ∈? Fz.
Let

A :=
⋃
i∈[s]

{Ai, Bi, Ai ∩Bi} ∪
⋃
i∈[n]

{[[xi]], [[¬xi]]} ∪ {∅}.

For each B ∈ A and k ≥ 0, define a function wkB inductively by

w0
B :=

{
1 if for some i ∈ [n], B = [[xi]] ∧ zi = 1 or B = [[¬xi]] ∧ zi = 0,

0 otherwise

wk+1
B :=

∨
C⊆B,C∈A

wkC ∨
∨

j∈{j|Aj∩Bj=B}

(wkAj
∧ wkBj

) ∨
∨
i∈[n]

(wk[[xi]] ∧ w
k
[[¬xi]]).

Then, ∅ ∈ Fz ⇔ w
|A|
∅ = 1 and the definition of w

|A|
∅ yields a circuit of size O(s3) computing

f .

The ‘moreover’ part follows by noting that it suffices to consider 2n semi-filters F ∈ F∀
for each possible set of s pairs (Ai, Bi), i ∈ [s].

Feasibility of fusion. In the approximation method, error sets δ◦ consist of inputs of the
target function. In the fusion method, the error sets δ◦ consist of semi-filters. By Theorem
2, the number of semi-filters cannot be reduced below 2Ω(s), if the fusion method is to
prove an s-size lower bound.

Razborov [19] came up with an elegant generalization of the approximation method
where the error sets are subsets of a set S which is unrelated to the inputs of the target
function and has size just |S| = O(s3 log2 s). A drawback of his construction is that it is
nonconstructive and not known to be complete - it proves s-size lower bounds for almost
all functions, for suitable s.

The motivation for the construction from [19] was the question of finding a version of
the approximation method capable of proving strong lower bounds which would be suitable
for formalizations in bounded arithmetic S1

2. Informally, S1
2 is a theory of polynomial-time

reasoning and does not allow to operate with objects which cannot be described by bit-
strings of polynomial-size, cf. [4]. The polynomial-size is considered w.r.t. an initial
parameter which is typically s(n), where n is the number of inputs of the target function
and s(n) is the size of the lower bound we aim to prove, but it is possible to consider also,
say, 2n as the initial parameter, if the lower bound is formulated w.r.t. the truth-table
of the target function. The latter formulation corresponds to the setting in the natural
proofs and we refer to it as the ‘truth-table’ formalization, see [11].

If we want to formalize an s-size lower bound for f ∈ Fn in S1
2 using the truth-table

formalization, it suffices to show that for each set of s pairs (A,B), A,B ⊆ U , there is
a suitable semi-filter preserving the set. In the truth-table formalization, S1

2 can operate
only with objects described by 2O(n) bits. Nevertheless, semi-filters from F0 in Theorem
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6 can be chosen so that they are predicates computable by circuits of size 2O(n). That
is, the size of notions appearing in the fusion method does not present an obstacle for
proving circuit lower bounds in S1

2 using the truth-table formalization.
With the more succinct formalization of lower bounds in S1

2, where the initial parameter
is s(n) instead of 2n, each semi-filter needs to be described by poly(s) bits. This leads
to the following adaptation of the fusion method, which we refer to as the antichecker
fusion.

Lipton and Young [10, Theorem 6] proved that for each sufficiently big n and each
function f ∈ Fn such that f /∈ Circuit[s7], s ≥ n, there is a set S ⊆ {0, 1}n of size
|S| = poly(s) such that no s3-size circuit computes f on S. The set S is the set of
anticheckers of f . Consider the fusion method modified so that instead of sets U, V we use
U∩S, V ∩S. If we denote by ρSF0

the resulting version of ρF0 , we have ρSF0
(fn) ≤ 2·SizeC(f),

for each set F0 of semi-filters F ⊆ P(U ∩ S) with v(F ) ∈ V ∩ S. Moreover, by the proof
of Theorem 6, for some F0 with |F0| = 2poly(s), f /∈ Circuit[Ks7] implies ρSF0

(f) ≥ s. This
proves the following.

Theorem 7 (Completeness of the antichecker fusion). Let f ∈ Fn, for a sufficiently big
n, and assume that f /∈ Circuit[Ks7], for K1/7s ≥ n. Then there is a set F0 of semi-filters
F ⊆ P(U ∩S) with v(F ) ∈ V ∩S and a set S of anticheckers of f such that |F0| = 2poly(s)

and ρSF0
(f) ≥ s. Here, K is an absolute constant.

The approximation model M corresponding to the antichecker fusion from Theorem 7
uses N = poly(s) and semi-filters from F0 are predicates computable by poly(s)-size
circuits. We can consider a more efficient approximation modelMS consisting of functions
g(x, y) ∈M restricted to S on x’s. That is,MS consists of partial Boolean functions - the
approximation method straightforwardly generalizes to this setting. Functions g ∈ MS

are computable by poly(s)-size circuits. Further, for each f1, f2 ∈ MS, the predicate
(x, y) ∈? δ+

∧ (f1, f2) is computable by a poly(s)-size circuit. Therefore, if we ignore the
question of generating anticheckers efficiently and consider only the size of the notions
involved, S1

2 is perfectly capable of proving circuit lower bounds by estimating ρ(f ′,MS).
A nonconstructive element of the modelMS is that we do not have a p-time algorithm

which would output the set of anticheckers given a function f ∈ Fn. For f = SAT,
the set of anticheckers w.r.t. s = poly(n) can be generated in p-time given 1n under
the assumption of the existence of a one-way function secure against nonuniform p-size
circuits and a function in E hard for subexponential-size circuits [11].

The complication with generating anticheckers disappears if we interpret the an-
tichecker fusion as a fusion method for partial Boolean functions: Given f : S 7→ {0, 1},
S ⊆ {0, 1}n, which is not computable by any Ks7-size circuit, we have s ≤ ρSF0

(f) and
ρSF0

(f)/2 is a lower bound on the size of the smallest circuit computing f .
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4.2 Constant-depth circuits

We now adapt the fusion method to the case of constant-depth circuit lower bounds. To
make this work we break the monotonicity of semi-filters.

Let f ∈ Fn, V := f−1(1), U := f−1(0). We say that F = (F 0, . . . , F d), where F 0 ⊆
· · · ⊆ F d ⊆ P(U) is a d-semifilter with v(F ) ∈ V , if F d(∅) = 0, F 0(U) = 1 and

1. (initial sets) v(F )i = F 0([[xi]]) 6= F 0([[¬xi]]), for i ∈ [n];

2. (d-monotonicity) For 1 ≤ k ≤ d, F k−1(B) = 1 ∧B ⊆ A⇒ F k(A) = 1.

A d-semifilter F k-preserves a tuple (A1, . . . , At), Ai ⊆ U , for 1 ≤ k ≤ d, if∧
i=1,...,t

F k−1(Ai) = 1⇒ F k(
⋂

i=1,...,t

Ai) = 1.

Otherwise, we say that (A1, . . . , At) k-covers F .
Suppose that C is a (d+ 1)-depth circuit over

⋃
a=2,...,t{¬,∧a,∨a} with negation gates

at the bottom layer. Further, assume that C computes f and that F is a d-semifilter
with v(F ) ∈ V . If for each 1 ≤ k ≤ d, F k-preserves tuples ([[g1]], . . . , [[gt]]), for all
gates g1, . . . , gt of C computable by k-depth subcircuits of C, then F implicitly defines a
rejecting computation of C on input v(F ).

Let F0 be a set of (d − 1)-semifilters F with v(F ) ∈ V , for d ≥ 2. Define ρF0,d,t(f)
as the minimal number of tuples (A1, . . . , At), Ai ⊆ U, such that for each F ∈ F0, there
is 1 ≤ k < d such that one of the tuples k-covers F . If such tuples do not exist, we
set ρF0,d,t(f) := ∞. Then, ρF0,d,t(f)/2 is a lower bound on the size of a smallest d-depth
circuit over

⋃
a=2,...,t{¬,∧a,∨a} computing f .

Theorem 8 (Completeness of fusion for constant-depth circuit lower bounds). Let f ∈ Fn
and assume that no (2d+1)-depth Kd(st+n)2-size circuit over

⋃
a=2,...,s(t+2)+2n+2{¬,∧a,∨a},

for d, n, t ≥ 2, computes f . Then, ρF∀,d,t(f) ≥ s, where F∀ is the set of all (d − 1)-
semifilters F with v(F ) ∈ V . Here, K is an absolute constant.

Proof. We proceed as in the proof of Theorem 6. Assuming ρF∀,d,t(f) ≤ s, we want to
construct an O(d(st + n)2)-size (2d + 1)-depth circuit computing f . We have s tuples
(Ai1, . . . , A

i
t), i ∈ [s], covering all F ∈ F∀.

Define Fz = (F 0
z , . . . , F

d−1
z ), where F 0

z ⊆ · · · ⊆ F d−1
z ⊆ P(U), for z ∈ {0, 1}n as

follows. F 0
z consists of the set U and sets [[ ¬︸︷︷︸

1−zi times

xi]], for all i ∈ [n]. For k ≥ 1,

define F k−1
z ⊆ F k

z ⊆ P(U) by extending F k−1
z by all supersets of sets in F k−1

z and by
‘k-preserving’ tuples (Ai1, . . . , A

i
t), for i ∈ [s], consisting of sets from F k−1

z .
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We claim that f(z) = 0 ⇔ ∅ /∈ F d−1
z . If f(z) = 0, then z is included in all sets in

F d−1
z so ∅ /∈ F d−1

z . If f(z) = 1, then ∅ ∈ F d−1
z as otherwise v(Fz) ∈ V and Fz would be a

(d− 1)-semifilter k-preserving all tuples (Ai1, . . . , A
i
t), i ∈ [s], for all 1 ≤ k < d.

It remains to construct a circuit deciding ∅ ∈? F d−1
z . Let

A :=
⋃
i∈[s]

{Ai1, . . . , Ait,
⋂

j=1,...,t

Aij} ∪
⋃
i∈[n]

{[[xi]], [[¬xi]]} ∪ {∅, U}.

For each B ∈ A and k ≥ 0, define a function wkB inductively by

w0
B :=

{
1 if ∃i ∈ [n], B = [[xi]] ∧ zi = 1 or B = [[¬xi]] ∧ zi = 0 or B = U,

0 otherwise

wk+1
B :=

∨
C⊆B,C∈A

wkC ∨
∨

i∈{i|B=
⋂

j=1,...,t A
i
j}

( ∧
j=1,...,t

wkAi
j

)
.

By definition, B ∈ F k
z ⇔ wkB = 1, for k ∈ {0, 1} and B ∈ A. For each C ∈ F k

z , 1 ≤ k < d,
with C ⊆ B ∈ A, C was added to F k

z either as a superset of some D ∈ F k−1
z , in which

case B ∈ F k
z ∩A, or C was added to F k

z in order to preserve a tuple, in which case C ∈ A.
This allows us to prove by induction that the previous equivalence holds for 0 ≤ k < d.
In particular, ∅ ∈ F d−1

z ⇔ wd−1
∅ = 1. Finally, by the construction of wd−1

B , there are
(2d + 1)-depth O(d(st + n)2)-size circuits over

⋃
a=2,...,s(t+2)+2(n+1){¬,∨a,∧a} computing

wd−1
B .

Random restrictions as the approximation method. By Theorem 8, essentially
every lower bound for constant-depth circuits can be turned into a lower bound obtained
by the fusion method for constant-depth circuits. In particular, this holds for lower bounds
based on the method of random restrictions.

The method of random restrictions proceeds by showing that each small circuit can
be trivialized by a partial restriction, which implicitly defines an incorrect computation
of the circuit w.r.t. a suitable target function. This is similar to the construction of
semi-filters in the fusion method. Moreover, the number of partial restrictions needed
to trivialize all poly(s)-size constant-depth circuits is just poly(s). This suggests that it
might be possible to formalize random restrictions in the framework of the approximation
method with just O(log s) inessential variables. Such formalization would allow us to
conclude that random restrictions are subject to the localizability from Theorem 5 (with
the asymmetric definition of ρd). However, at this point we have not even managed
to construct legitimate approximation models corresponding to the fusion method for
constant-depth circuits.

It would be interesting to formulate random restrictions also in terms of approxi-
mation models with poly(s) inessential variables with an addition property similar to
0-projectivity. Such models could be localizable similarly as in Theorem 5 as well.
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