
Learning algorithms versus
automatability of Frege systems

Ján Pich
University of Oxford

Rahul Santhanam
University of Oxford

July 2022

Abstract

We connect learning algorithms and algorithms automating proof search in
propositional proof systems: for every sufficiently strong, well-behaved propositional
proof system P , we prove that the following statements are equivalent,

1. Provable learning. P proves efficiently that p-size circuits are learnable by
subexponential-size circuits over the uniform distribution with membership
queries.

2. Provable automatability. P proves efficiently that P is automatable by
non-uniform circuits on propositional formulas expressing p-size circuit lower
bounds.

Here, P is sufficiently strong and well-behaved if I.-III. holds: I. P p-simulates
Jeřábek’s system WF (which strengthens the Extended Frege system EF by a sur-
jective weak pigeonhole principle); II. P satisfies some basic properties of standard
proof systems which p-simulate WF; III. P proves efficiently for some Boolean func-
tion h that h is hard on average for circuits of subexponential size. For example,
if III. holds for P = WF, then Items 1 and 2 are equivalent for P = WF. We use
the following modified notion of automatability in Item 2, the automating circuits
output a P -proof of a given formula (expressing a p-size circuit lower bound for a
function f) in nonuniform p-time in the length of a shortest P -proof of a closely
related but different formula (expressing an average-case subexponential-size circuit
lower bound for the same function f).

If there is a function h ∈ NE∩ coNE which is hard on average for circuits of size
2n/4, for each sufficiently big n, then there is an explicit propositional proof system
P satisfying properties I.-III., i.e. the equivalence of Items 1 and 2 holds for P .

1

1 Introduction

Learning algorithms and automatability algorithms searching for proofs in propositional
proof systems are central concepts in complexity theory, but a priori they appear rather
unrelated.

Learning algorithms. In the PAC model of learning introduced by Valiant [38], a circuit
class C is learnable by a randomized algorithm L over the uniform distribution, up to error
ε, with confidence δ and membership queries, if for every Boolean function f computable
by a circuit from C, when given oracle access to f , L outputs with probability ≥ δ over
the uniform distribution a circuit computing f on ≥ (1 − ε) inputs. An important task
of learning theory is to find out if standard circuit classes such as P/poly are learnable by
efficient circuits. A way to approach the question is to connect the existence of efficient
learning algorithms to other standard conjectures in complexity theory. For example, we
can try to prove that efficient learning of P/poly is equivalent to P = NP or to the non-
existence of strong pseudorandom generators. In both cases one implication is known:
P = NP implies efficient learning of P/poly (with small error and high confidence) which
in turn breaks pseudorandom generators. However, while some progress on the opposite
implications has been made, they remain open, cf. [2, 37].

Automatability. The notion of automatability was introduced in the work of Bonet,
Pitassi and Raz [6]. A propositional proof system P is automatable if there is an algorithm
A such that for every tautology φ, A finds a P -proof of φ in p-time in the size of a shortest
P -proof of φ. That is, even if P does not prove all tautologies efficiently, it can still be
automatable. Establishing (non-)automatability results for concrete proof systems is one
of the main tasks of proof complexity. This led to many attempts to link the notion of
automatability to other standard complexity-theoretic conjectures. For example, recently
Atserias and Müller [3] proved that automating Resolution is NP-hard and their work has
been extended to other weak proof systems, e.g. [12, 13, 14]. For stronger systems, it is
known that automating Extended Frege system EF, Frege or even constant-depth Frege
would break specific cryptographic assumptions such as the security of RSA or Diffie-
Hellman scheme, cf. [23, 6, 5]. It remains, however, open to obtain non-automatability
of strong systems like Frege under a generic assumption such as the existence of strong
pseudorandom generators, let alone to prove the equivalence between such notions.

In the present paper we derive a conditional equivalence between learning algorithms
for p-size circuits and automatability of proof systems on tautologies encoding circuit
lower bounds.

2

1.1 Our result

An ideal connection between learning and automatability would say that for standard
proof systems P ,

“P is automatable if and only if P/poly is learnable efficiently”.

We establish this modulo some provability conditions and a change of parameters.
Additionally, we need to consider automatability only w.r.t. formulas encoding circuit
lower bounds. More precisely, denote by tt(f, s) a propositional formula which expresses
that boolean function f represented by its truth-table is not computable by a boolean
circuit of size s represented by free variables, see Section 3. So tt(f, s) is a tautology if
and only if f is hard for circuits of size s. Similarly, let tt(f, s, t) be a formula expressing
that circuits of size s fail to compute f on ≥ t-fraction of inputs. In our main result
(Theorem 1) we use a slightly modified notion of automatability where the automating
algorithm for a proof system P is non-uniform and outputs a P -proof of a given formula
tt(f, nO(1)) in p-time in the size of a shortest P -proof of tt(f, 2n

o(1)
, 1/2 − 1/2n

o(1)
), see

Section 3.1

Theorem 1 (Informal, cf. Theorem 10). Let P be any propositional proof system which
APC1-provably p-simulates WF and satisfies some basic properties, e.g. P = WF. More-
over, assume that P proves efficiently2 tt(h, 2n/4, 1/2− 1/2n/4) for some boolean function
h. Then, the following statements are equivalent:

1. Provable learning. P proves efficiently that p-size circuits are learnable by 2n
o(1)

-
size circuits, over the uniform distribution, up to error 1/2− 1/2n

o(1)
, with member-

ship queries and confidence 1/2n
o(1)

.

2. Provable automatability. P proves efficiently that P is automatable by non-
uniform circuits on formulas tt(f, nO(1)).

WF is an elegant strengthening of EF introduced by Jeřábek [15], which corresponds
to the theory of approximate counting APC1, a theory formalizing probabilistic p-time
reasoning, see Section 2.2. Concrete proof systems which APC1-provably p-simulate WF
and satisfy the basic properties from Theorem 1 include WF itself or even much stronger
systems such as set theory ZFC (if we interpret ZFC as a suitable system for proving tau-
tologies, see Section 5). The error and confidence of learning algorithms can be amplified

1We believe that the gap between tt(f, nO(1)) and tt(f, 2n
o(1)

, 1/2 − 1/2n
o(1)

) can be almost closed
(leaving only the gap between the worst-case and average-case lower bound and a small difference in
the circuit size), if we use learning of subexponential-size circuits instead of p-size circuits in Item 1 of
Theorem 1 and tt-formulas expressing subexponential-size circuit lower bounds in Item 2. This should
follow directly from the proof of Theorem 1.

2We say that P proves efficiently tautologies φn, if P admits poly(|φn|)-size proofs of φn.

3

‘for free’, see Section 2.1, but we did not make the attempts to prove that the amplifica-
tion is efficiently provable already in WF. Perhaps the most unusual aspect of Theorem 1
is its usage of metamathematics: we do not prove the equivalence between automatability
and learning but between provable automatability and provable learning.

Plausibility of the assumption. The main assumption in Theorem 1 is the provability
of a circuit lower bound tt(h, 2n/4, 1/2 − 1/2n/4). This assumption has an interesting
status. Razborov’s conjecture about hardness of Nisan-Wigderson generators implies a
conditional hardness of formulas tt(h, nO(1)) for Frege (for every h), cf. [35], and it is
possible to consider extensions of the conjecture to all standard proof systems, even set
theory ZFC. A conditional hardness of tt-formulas (for EF) follows also from a conjecture
of Kraj́ıček [20, Conjecture 7.9]. On the other hand, it is not known how to prove hardness
of tt(h, 2n/4, 1/2 − 1/2n/4), for all h, for Frege, under any standard complexity-theoretic
hardness assumption. Moreover, all major circuit lower bounds for weak circuit classes
and explicit boolean functions are known to be effciently provable in EF 3, cf. [33, 25].
If we believe that explicit circuit lower bounds such as tt(h, 2n/4, 1/2− 1/2n/4), for some
h ∈ EXP, are true, it is also perfectly possible that they are efficiently provable in a
standard proof system such as ZFC 4 or EF. Notably, if EF proves efficiently tt(h, 2n/4)
for some boolean function h, then EF simulates WF, cf. [22, Lemma 19.5.4]. If there is
a p-time algorithm which given a string of length 2n (specifying the size of tt(h, 2n/4))
generates an EF-proof of tt(h, 2n/4), then EF is p-equivalent to WF. To see that, combine
Lemma 1 with the fact (proved in [15]) that APC1 proves the reflection principle for WF.

As a corollary of Theorem 1 we show that, under a standard hardness assumption,
there is an explicit proof system P for which the equivalence holds. This, follows, essen-
tially, by ‘hard-wiring’ tautologies tt(h, 2n/4, 1/2− 1/2n/4) to WF.

Corollary 1 (cf. Corollary 3). Assume there is a NE∩coNE-function hn : {0, 1}n 7→ {0, 1}
such that for each sufficiently big n, hn is not (1/2 + 1/2n/4)-approximable by 2n/4-size
circuits.5 Then there is a proof system P (which can be described explicitly given the
definition of hn) such that Items 1 and 2 from Theorem 1 are equivalent.

The proof of Theorem 1 reveals also a conditional proof complexity collapse, which we
discuss in Section 5.

Corollary 2 (cf. Corollary 4). Let P, P0 be propositional proof systems which APC1-
provably p-simulate WF and satisfy some basic properties. Moreover, assume that systems

3This has not been verified for lower bounds obtained via the algorithmic method of Williams [39].
4Efficient provability of tt(h, 2n/4, 1/2 − 1/2n/4) in ZFC, for some h ∈ EXP, would follow from the

standard provability of this lower bound in ZFC.
5A circuit C with n inputs γ-approximates function f : {0, 1}n 7→ {0, 1} if Prx∈{0,1}n [C(x) = f(x)] ≥

γ.

4

P, P0 prove efficiently tt(hn, 2
n/4, 1/2−1/2n/4) for some boolean function hn. Then, Item 1

implies Item 2:

1. P -provable automatability. P proves efficiently that P is automatable by non-
uniform circuits on formulas tt(f, nO(1)).

2. P0-provable proof search. There are p-size circuits B such that P0 proves effi-
ciently that circuits B (given just tt(f, nO(1))) generate P -proofs of tt(f, nO(1)) or

2n
o(1)

-size circuits (1/2 + 1/2n
o(1)

)-approximating f .

1.2 Outline of the proof

Our starting point for the derivation of Theorem 1 is a relation between natural proofs and
automatability which goes back to a work of Razborov and Kraj́ıček. Razborov [34, 32]
proved that certain theories of bounded arithmetic cannot prove explicit circuit lower
bounds assuming strong pseudorandom generators exist. Kraj́ıček [19, 21] developed
the concept of feasible interpolation (a weaker version of automatability, cf. [22]) and
reformulated Razborov’s unprovability result in this language, see [22, Section 17.9] for
more historical remarks.

Theorem 2 (Razborov-Kraj́ıček [34, 32, 19] - informal version). Let P be a proof system
which simulates EF and satisfies some basic properties. If P is automatable and P proves
efficiently tt(h, nO(1)) for some function h, then there are P/poly-natural proofs useful
against P/poly.

The second crucial ingredient we will use is a result of Carmosino, Impagliazzo, Ka-
banets and Kolokolova, who showed that natural proofs can be turned into learning algo-
rithms [8]. This allows us to conclude the following.

Theorem 3 (Informal, cf. Theorem 6). Let P be a proof system simulating EF and
satisfying some basic properties. If P proves efficiently tt(h, nO(1)) for some function
h, then automatability of P implies the existence of subexponential-size circuits learning
p-size circuits over the uniform distribution, with membership queries.

Theorem 3 directly implies that if strong pseudorandom generators exist and EF
proves efficiently tt(h, nO(1)) for some h, then EF is automatable if and only if there are
subexponential-size circuits learning p-size circuits over the uniform distribution, with
membership queries. The disadvantage of this observation is that, unlike in Theorem 1,
its assumptions are known to imply that both sides of the desired equivalence are false.

We note that the proof of Theorem 3 can also be used to show that optimal and
automatable proof systems imply learning algorithms. Here, a propositional proof system
P is optimal, if for each propositional proof system R, an R-proof π of φ, implies the
existence of a poly(|π|)-size P -proof of φ.

5

Theorem 4 (Optimality and automatability implies learning, cf. Theorem 7). If there is
an optimal proof system which is automatable, then there are subexponential-size circuits
infinitely often learning p-size circuits over the uniform distribution, with membership
queries.

In fact, it is possible to prove, unconditionally, that there is some propositional proof
system P such that automatability of P is equivalent to the existence of subexponential-
size circuits inifnitely often learning P/poly over the uniform distribution, cf. Theorem 8.
The proof is, however, non-constructive so (unlike in Corollary 1) we do not know which
system P satisfies the equivalence.

The entrance of metamathematics. Unfortunately, it is unclear how to derive the
opposite implication in Theorem 3. We do not know how to automate, say, EF assuming
just the existence of efficient learning algorithms. In order to get the reverse, we need to
assume that an efficient learning algorithm is provably correct in a proof system P , which
p-simulates WF. For simplicity, let P = WF. If we assume that WF proves efficiently for
some small circuits that they can learn p-size circuits, we can show that there are small
circuits such that WF proves efficiently that these circuits automate WF on formulas
tt(f, nO(1)). In more detail, we first formalize in APC1 the implication that WF-provable
learning yields automatability of WF on tt(f, nO(1)) - if a learning circuit A does not find a
small circuit for a given function f , the automating circuit uses WF-proof of the correctness
of A to produce a short WF-proof of tt(f, nO(1)). Then, we translate the APC1-proof to WF
and conclude that WF proves that WF-provable learning implies automatability of WF.
This allows us to show that if we have WF-provable learning, then WF is WF-provably
automatable on tt(f, nO(1)).

It is important that assuming WF-provable learning, we are able to derive WF-provable
automatability of WF, and not just automatability of WF. This makes it possible to obtain
the opposite direction and establish the desired equivalence: If we know that WF proves
that WF is automatable, we can formalize the proof of Theorem 3 in WF and conclude
the existence of WF-provable learning algorithms.

One could expect that WF-provable learning would yield just automatability of WF
and WF-provability of WF-provable learning would be needed to get WF-provable au-
tomatability of WF. We note, however, that WF-provability of WF-provable learning
follows from WF-provable learning because there are short WF-proofs of the fact that a
formula (expressing that its atoms encode a correct WF-proof of learning) holds under a
specific satisfying assignment.

Benefits of bounded arithmetic. The proof of Theorem 1 relies heavily on formal-
izations. Among other things we need to formalize the result of Carmosino, Impagliazzo,
Kabanets and Kolokolova in APC1

6, and use an elaborated way of expressing complex

6We will actually formalize the result of Carmosino et al. [8] just conditionally, in order to avoid the

6

statements about metacomplexity by propositional formulas: existential quantifiers often
need to be witnessed before translating them to propositional setting. The framework
of bounded arithmetic allows us to deal with these complications in an elegant way:
we often reason in bounded arithmetic, possibly using statements of higher quantifier
complexity, and only subsequently translate the outcomes to propositional logic, if the
resulting (proved) statement has coNP form. Notably, already propositional formulas ex-
pressing probabilities in the definition of learning algorithms require more advanced tools
- the probabilities are encoded using suitable Nisan-Wigderson generators which come out
of the notion of approximate counting in APC1, cf. Section 3.2.

1.3 Related results

Learning algorithms and automatability have been linked already in the work of Alekhnovich,
Braverman, Feldman, Klivans and Pitassi [1], who showed an informal connection between
learning of weak circuit classes and automatability of some weak systems such as tree-like
Resolution. As already mentioned, Atserias and Müller [3] proved that automating Reso-
lution is NP-hard and their work has been extended to other weak proof systems, see e.g.
[12, 13, 14]. A direct consequence of these results is that efficient algorithms automating
the respective proof systems can be used to learn efficiently classes like P/poly. A major
difference between these results and ours is that for our results to apply, the proof system
needs to be sufficiently strong, while for the other results, the proof system needs to be
weak (in the sense that lower bounds for the system are already known).

1.4 Open problems

Unconditional equivalence between learning and automatability. Is it possible
to avoid the assumption on the provability of a circuit lower bound in Theorem 1 and
establish an unconditional equivalence between learning and automatability?

Complexity theory from the perspective of metamathematics. Our results demon-
strate that in the context of metamathematics it is possible to establish some complexity-
theoretic connections which we are not able to establish otherwise. We exploit the meta-
mathematical nature of the notion of automatability: efficient P -provability of the correct-
ness of an algorithm implies efficient P -provability of automatability of P . Is it possible to
take advantage of metamathematics in other contexts and resolve other important open
problems in this setting? For example, could we get a version of the desired equivalence
between the existence of efficient learning algorithms and the non-existence of crypto-
graphic pseudorandom generators, cf. [27, 37, 29]? The question of basing cryptography

formalization of Bertrand’s postulate. Moreover, we avoid the formalization of amplification procedures
in [8].

7

on a worst-case assumption such as P 6= NP could be addressed in this setting by show-
ing that if a sufficiently strong proof system P proves efficiently that there is no strong
pseudorandom generator7, then P is p-bounded.

Circuit lower bound tautologies. How essential are circuit lower bound tautologies
in our results? Consider fundamental questions of proof complexity (p-boundness, opti-
mality, automatability) w.r.t. formulas tt(f, s). Do they coincide with the original ones?
Are formulas tt(f, s) the hardest ones, do they admit optimal proof systems, or can we
turn automatability on formulas tt(f, s) into automatability on all formulas?

Proof complexity magnification. Is it possible to obtain the collapse from Corollary 2
for formulas expressing standard conjectures? For example, is it possible to show that the
hardness of tt(SAT, nO(1)) for some proof system P0, implies hardness of tt(SAT, nO(1)) for
stronger proof systems? An instance of such a magnification phenomenon appeared in [25]
(with P0 = constant-depth Frege, P = Frege and a different formalization of tt(SAT, nO(1))
in P).

2 Preliminaries

2.1 Natural proofs and learning algorithms

[n] denotes {1, . . . , n}. Circuit[s] denotes fan-in two Boolean circuits of size at most s.
The size of a circuit is the number of gates.

Definition 1 (Natural property [36]). Let m = 2n and s, d : N 7→ N. A sequence of
circuits {Cm}∞n=1 is a Circuit[s(m)]-natural property useful against Circuit[d(n)] if

1. Constructivity. Cm has m inputs and size s(m),

2. Largeness. Prx[Cm(x) = 1] ≥ 1/mO(1),

3. Usefulness. For each sufficiently big m, Cm(x) = 1 implies that x is a truth-table of
a function on n inputs which is not computable by circuits of size d(n).

Definition 2 (PAC learning). A circuit class C is learnable over the uniform distribution
by a circuit class D up to error ε with confidence δ, if there are randomized oracle circuits
Lf from D such that for every Boolean function f : {0, 1}n 7→ {0, 1} computable by
a circuit from C, when given oracle access to f , input 1n and the internal randomness
w ∈ {0, 1}∗, Lf outputs the description of a circuit satisfying

Pr
w

[Lf (1n, w) (1− ε)-approximates f] ≥ δ.

7The formalization of this statement would assume the existence of a p-size circuit which for any p-size
circuit defining a potential pseudorandom generator outputs its distinguisher.

8

Lf uses non-adaptive membership queries if the set of queries which Lf makes to the
oracle does not depend on the answers to previous queries. Lf uses random examples if
the set of queries which Lf makes to the oracle is chosen uniformly at random.

In this paper, PAC learning always refers to learning over the uniform distribution.
While, a priori, learning over the uniform distribution might not reflect real-world sce-
narios very well (and on the opposite end, learning over all distributions is perhaps overly
restrictive), as far as we can tell it is possible that PAC learning of p-size circuits over the
uniform distribution implies PAC learning of p-size circuits over all p-samplable distribu-
tions. Binnendyk, Carmosino, Kolokolova, Ramyaa and Sabin [4] proved the implication,
if the learning algorithm in the conclusion is allowed to depend on the p-samplable dis-
tribution.

Boosting confidence and reducing error. The confidence of the learner can be
efficiently boosted in a standard way. Suppose an s-size circuit Lf learns f up to error ε
with confidence δ. We can then run Lf k times, test the output of Lf from every run with
m new random queries and output the most accurate one. By Hoeffding’s inequality, m
random queries fail to estimate the error ε of an output of Lf up to γ with probability at
most 2/e2γ

2m. Therefore the resulting circuit of size poly(s,m, k) learns f up to error ε+γ
with confidence at least 1− 2k/e2γ

2m− (1− δ)k ≥ 1− 2k/e2γ
2m− e−kδ. If we are trying to

learn small circuits we can get even confidence 1 by fixing internal randomness of learner
nonuniformly without losing much on the running time or the error of the output. It is
also possible to reduce the error up to which Lf learns f without a significant blowup in
the running time and confidence. If we want to learn f with a better error, we first learn
an amplified version of f , Amp(f). Employing direct product theorems and Goldreich-
Levin reconstruction algorithm, Carmosino et. al. [8, Lemma 3.5] showed that for each
0 < ε, γ < 1 it is possible to map a Boolean function f with n inputs to a Boolean
function Amp(f) with poly(n, 1/ε, log(1/γ)) inputs so that Amp(f) ∈ P/polyf and there
is a probabilistic poly(|C|, n, 1/ε, 1/γ)-time machine which given a circuit C (1/2 + γ)-
approximating Amp(f) and an oracle access to f outputs with high probability a circuit
(1− ε)-approximating f . We can thus often ignore the optimisation of the confidence and
error parameter. Note, however, that the error reduction of Carmosino et al. requires
membership queries.

Natural proofs vs learning algorithms. Natural proofs are actually equivalent to
efficient learning algorithms with suitable parameters. In this paper we need just one
implication.

Theorem 5 (Carmosino-Impagliazzo-Kabanets-Kolokolova [8]). Let R be a P/poly-natural
property useful against Circuit[nk] for k ≥ 1. Then, for each γ ∈ (0, 1), Circuit[nkγ/a] is
learnable by Circuit[2O(nγ)] over the uniform distribution with non-adaptive membership
queries, confidence 1, up to error 1/nkγ/a, where a is an absolute constant.

9

2.2 Bounded arithmetic and propositional logic

Theories of bounded arithmetic capture various levels of feasible reasoning and present a
uniform counterpart to propositional proof systems.

The first theory of bounded arithmetic formalizing p-time reasoning was introduced by
Cook [10] as an equational theory PV. We work with its first-order conservative extension
PV1 from [24]. The language of PV1, denoted PV as well, consists of symbols for all
p-time algorithms given by Cobham’s characterization of p-time functions, cf. [9]. A
PV-formula is a first-order formula in the language PV. Σb

0 (=Πb
0) denotes PV-formulas

with only sharply bounded quantifiers ∃x, x ≤ |t|, ∀x, x ≤ |t|, where |t| is “the length
of the binary representation of t”. Inductively, Σb

i+1 resp. Πb
i+1 is the closure of Πb

i

resp. Σb
i under positive Boolean combinations, sharply bounded quantifiers, and bounded

quantifiers ∃x, x ≤ t resp. ∀x, x ≤ t. Predicates definable by Σb
i resp. Πb

i formulas are in
the Σp

i resp. Πp
i level of the polynomial hierarchy, and vice versa. PV1 is known to prove

Σb
0(PV)-induction:

A(0) ∧ ∀x (A(x)→ A(x+ 1))→ ∀xA(x),

for Σb
0-formulas A, cf. Kraj́ıček [18].

Buss [7] introduced the theory S1
2 extending PV1 with the Σb

1-length induction:

A(0) ∧ ∀x < |a|, (A(x)→ A(x+ 1))→ A(|a|),

for A ∈ Σb
1. S1

2 proves the sharply bounded collection scheme BB(Σb
1):

∀i < |a| ∃x < a,A(i, x)→ ∃w ∀i < |a|, A(i, [w]i),

for A ∈ Σb
1 ([w]i is the ith element of the sequence coded by w), which is unprovable in PV1

under a cryptographic assumption, cf. [11]. On the other hand, S1
2 is ∀Σb

1-conservative
over PV1. This is a consequence of Buss’s witnessing theorem stating that S1

2 ` ∃y, A(x, y)
for A ∈ Σb

1 implies PV1 ` A(x, f(x)) for some PV-function f .
Following a work by Kraj́ıček [20], Jeřábek [15, 16, 17] systematically developed a

theory APC1 capturing probabilistic p-time reasoning by means of approximate counting.8

The theory APC1 is defined as PV1 + dWPHP (PV) where dWPHP (PV) stands for the
dual (surjective) pigeonhole principle for PV-functions, i.e. for the set of all formulas

x > 0→ ∃v < x(|y|+ 1)∀u < x|y|, f(u) 6= v,

where f is a PV-function which might involve other parameters not explicitly shown.
We devote Section 2.3 to a more detailed description of the machinery of approximate
counting in APC1.

8Kraj́ıček [20] introduced a theory BT defined as S12 + dWPHP (PV) and proposed it as a theory for
probabilistic p-time reasoning.

10

Any Πb
1-formula φ provable in PV1 can be expressed as a sequence of tautologies ||φ||n

with proofs in the Extended Frege system EF which are constructible in p-time (given
a string of the length n), cf. [10]. Similarly, Πb

1-formulas provable in APC1 translate
to tautologies with p-time constructible proofs in WF, an extension of EF introduced by
Jeřábek [15]. We describe the translation and system WF in more detail below.

As it is often easier to present a proof in a theory of bounded arithmetic than in
the corresponding propositional system, bounded arithmetic functions, so to speak, as a
uniform language for propositional logic.

We refer to Kraj́ıček [22] for basic notions in proof complexity.

Definition 3 (WF (WPHP Frege), cf. Jeřábek [15]). Let L be a finite and complete
language for propositional logic, i.e. L consists of finitely many boolean connectives of
constant arity such that each boolean function of every arity can be expressed by an L-
formula, and let R be a finite, sound and implicationally complete set of Frege rules (in
the langauge L). A WF-proof of a (L-)circuit A is a sequence of circuits A0, . . . , Ak such
that Ak = A, and each Ai is derived from some Aj1 , . . . , Aj`, j1, . . . , j` < i by a Frege rule
from R, or it is similar to some Aj, j < i, or it is the dWPHP axiom,

m∨
`=1

(r` 6= C`(D1, . . . , Dn)),

where n < m and r` are pairwise distinct variables which do not occur in circuits A, C`′,
or Aj for j < i, but may occur in circuits D1, . . . , Dn.

The similarity rule in Definition 3 is verified by a specific p-time algorithm which
checks that circuits Ai and Aj can be ‘unfolded’ to the same (possible huge) formula,
cf. [15, Lemma 2.2.]. Intuitively, the NLOG (⊆ P) algorithm recognizes if two circuits
are not similar by guessing a partial path through them, going from the output to the
inputs, where on at least one instruction the circuits disagree. As defined WF depends
on the choice of Frege rules and language L, but for each choice the resulting systems
are p-equivalent, so we can identify them. The dWPHP axiom refers to ‘dual weak
pigeonhole principle’ postulating the existence of an element r1, . . . , rm outside the range
of a p-size map C` : {0, 1}n 7→ {0, 1}m. The dWPHP axiom comes with a specification of
circuits C`, D1, . . . , Dn so that we can recognize the axiom efficiently. The role of circuits
D1, . . . , Dn in the dWPHP axiom is to allow WF to postulate not only that r1, . . . , rm is
not the output of C` on a specific input x1, . . . , xn but to postulate that r1, . . . , rm is not
the output of C` on other inputs (which could depend on r1, . . . , rm) either.

The translation of a Πb
1 formula φ into a sequence of propositional formulas ||φ||n

works as follows (full details can be found in [22, Section 12.3]). For each PV-function
f(x1, . . . , xk) and numbers n1, . . . , nk we have a p-size circuit Cf computing the restric-
tion f : 2n1 × · · · × 2nk 7→ 2b(n1,...,nk), where b is a suitable ‘bounding’ polynomial for

11

f . The formula ||f ||n(p, q, r) expresses that Cf outputs r on input p, with q being the
auxiliary variables corresponding to the nodes of Cf . The formula ||φ(x)||n(p, q) is de-
fined as ||φ′(x)||n(p, q), where φ′ is the negation normal form of φ, i.e. negations in φ′

are only in front of atomic formulas. The formula ||φ′(x)||n(p, q) is defined inductively
in a straightforward way so that || . . . || commutes with ∨,∧. The atoms p correspond
to variables x, atoms q correspond to the universally quantified variables of φ and to the
outputs and auxiliary variables of circuits Cf for functions f appearing in φ. Sharply
bounded quantifiers are replaced by polynomially big conjuctions resp. disjunctions. For
the atomic formulas we have9,

||f(x) = g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′)→
∧
i

ri = r′i,

||¬f(x) = g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′)→ ¬
∧
i

ri = r′i,

||f(x) ≤ g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′)→
∧
i

(ri ∧
∧
j>i

(rj = r′j)→ r′i),

||¬f(x) ≤ g(x)||n :=||f(x)||n(p, q, r) ∧ ||g(x)||n(p, q′, r′)→ ¬
∧
i

(ri ∧
∧
j>i

(rj = r′j)→ r′i).

2.3 Approximate counting

In order to prove our results we will need to use Jeřábek’s theory of approximate counting.
This section recalls the properties of APC1 we will need.

By a definable set we mean a collection of numbers satisfying some formula, possibly
with parameters. When a number a is used in a context which asks for a set it is assumed
to represent the integer interval [0, a), e.g. X ⊆ a means that all elements of set X are
less than a. If X ⊆ a, Y ⊆ b, then X × Y := {bx + y | x ∈ X, y ∈ Y } ⊆ ab and
X∪̇Y := X ∪ {y + a | y ∈ Y } ⊆ a + b. Rational numbers are assumed to be represented
by pairs of integers in the natural way. We use the notation x ∈ Log ↔ ∃y, x = |y| and
x ∈ LogLog ↔ ∃y, x = ||y||.

Let C : 2n → 2m be a circuit and X ⊆ 2n, Y ⊆ 2m definable sets. We write C : X � Y
if ∀y ∈ Y ∃x ∈ X, C(x) = y. Jeřábek [17] gives the following definitions in APC1 (but
they can be considered in weaker theories as well).

Definition 4. Let X, Y ⊆ 2n be definable sets, and ε ≤ 1. The size of X is approximately
less than the size of Y with error ε, written as X �ε Y , if there exists a circuit C, and
v 6= 0 such that

C : v × (Y ∪̇ε2n) � v ×X.
X ≈ε Y stands for X �ε Y and Y �ε X.

9Formally, we should allow terms, not just function symbols f, g, in atomic formulas.

12

Since a number s is identified with the interval [0, s), X �ε s means that the size of
X is at most s with error ε.

The definition of X �ε Y is an unbounded ∃Πb
2-formula even if X, Y are defined by

circuits so it cannot be used freely in bounded induction. Jeřábek [17] solved this problem
by working in HARDA, a conservative extension of APC1, defined as a relativized theory
PV1(α) + dWPHP (PV(α)) extended with axioms postulating that α(x) is a truth-table
of a function on ||x|| variables hard on average for circuits of size 2||x||/4, see Section 3.2.
In HARDA there is a PV1(α) function Size approximating the size of any set X ⊆ 2n

defined by a circuit C so that X ≈ε Size(C, 2n, 2ε
−1

) for ε−1 ∈ Log, cf. [17, Lemma 2.14].
If X ∩ t ⊆ 2|t| is defined by a circuit C and ε−1 ∈ Log, we can define

Pr
x<t

[x ∈ X]ε :=
1

t
Size(C, 2|t|, 2ε

−1

).

The presented definitions of approximate counting are well-behaved:

Proposition 1 (Jeřábek [17]). (in PV1) Let X,X ′, Y, Y ′, Z ⊆ 2n and W,W ′ ⊆ 2m be
definable sets, and ε, δ < 1. Then

i) X ⊆ Y ⇒ X �0 Y ,
ii) X �ε Y ∧ Y �δ Z ⇒ X �ε+δ Z,
iii) X �ε X ′ ∧W �δ W ′ ⇒ X ×W �ε+δ+εδ X ′ ×W ′.
iv) X �ε X ′∧Y �δ Y ′ and X ′, Y ′ are separable by a circuit, then X∪Y �ε+δ X ′∪Y ′.

Proposition 2 (Jeřábek [17]). (in APC1)
1. Let X, Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n, ε, δ, θ, γ < 1, γ−1 ∈ Log. Then

i) X �γ Y or Y �γ X,
ii) s �ε X �δ t⇒ s < t+ (ε+ δ + γ)2n,
iii) X �ε Y ⇒ 2n\Y �ε+γ 2n\X,
iv) X ≈ε s ∧ Y ≈δ t ∧X ∩ Y ≈θ u⇒ X ∪ Y ≈ε+δ+θ+γ s+ t− u.

2. (Disjoint union) Let Xi ⊆ 2n, i < m be defined by a sequence of circuits and ε, δ ≤ 1,
δ−1 ∈ Log. If Xi �ε si for every i < m, then

⋃
i<m(Xi × {i}) �ε+δ

∑
i<m si.

3. (Averaging) Let X ⊆ 2n × 2m and Y ⊆ 2m be definable by circuits, Y �ε t and
Xy �δ s for every y ∈ Y , where Xy := {x| 〈x, y〉 ∈ X} and 〈x, y〉 is the pairing function
〈x, y〉 := (x+ y)(x+ y + 1)/2 + x. Then for any γ−1 ∈ Log,

X ∩ (2n × Y) �ε+δ+εδ+γ st.

When proving Σb
1 statements in APC1 we can afford to work in S1

2 + dWPHP (PV) +
BB(Σb

2) and, in fact, assuming the existence of a single hard function in PV1 gives us the
full power of APC1. Here, BB(Σb

2) is defined as BB(Σb
1) but with A ∈ Σb

2.

13

Lemma 1 ([25]). Suppose S1
2 + dWPHP (PV) +BB(Σb

2) ` ∃yA(x, y) for A ∈ Σb
1. Then,

for every ε < 1, there is k and PV-functions g, h such that PV1 proves

|f | ≥ |x|k ∧ ∃y, |y| = ||f ||, Ch(y) 6= f(y)→ A(x, g(x, f))

where f(y) is the yth bit of f , f(y) = 0 for y > |f |, and Ch is a circuit of size ≤ 2ε||f ||

generated by h on f, x. Moreover, APC1 ` ∃yA(x, y).

3 Formalizing complexity-theoretic statements

3.1 Circuit lower bounds

An ‘almost everywhere’ formulation of a circuit lower bound for circuits of size s and a
function f says that for every sufficiently big n, for each circuit C with n inputs and size
s, there exists an input y on which the circuit C fails to compute f(y).

If f : {0, 1}n → {0, 1} is an NP function and s = nk for a constant k, this can be
written down as a ∀Σb

2 formula LB(f, nk),

∀n, n > n0 ∀ circuit C of size ≤ nk ∃y, |y| = n, C(y) 6= f(y),

where n0 is a constant and C(y) 6= f(y) is a Σb
2 formula stating that a circuit C on input

y outputs the opposite value of f(y). The intended meaning of ‘∃y, |y| = n’ is to say that
y is a string from {0, 1}n. This is a slight abuse of notation as, formally, |y| = n fixes the
first bit of y to 1.

If we want to express s(n)-size lower bounds for s(n) as big as 2O(n), we add an extra
assumption on n stating that ∃x, n = ||x||. That is, the resulting formula LBtt(f, s(n))
has form ‘∀x, n;n = ||x|| → . . . ’. Treating x, n as free variables, LBtt(f, s(n)) is Πb

1 if f
is, for instance, SAT because n = ||x|| implies that the quantifiers bounded by 2O(n) are
sharply bounded. Moreover, allowing f ∈ NE lifts the complexity of LBtt(f, s(n)) just
to ∀Σb

1. The function s(n) in LBtt(f, s(n)) is assumed to be a PV-function with input x
(satisfying ||x|| = n).

In terms of the Log-notation, LB(f, nk) implicitly assumes n ∈ Log while LBtt(f, n
k)

assumes n ∈ LogLog. By chosing the scale of n we are determining how big objects are
going to be ‘feasible’ for theories reasoning about the statement. In the case n ∈ LogLog,
the truth-table of f (and everything polynomial in it) is feasible. Assuming just n ∈ Log
means that only the objects of polynomial-size in the size of the circuit are feasible.
Likewise, the theory reasoning about the circuit lower bound is less powerful when working
with LB(f, nk) than with LBtt(f, n

k). (The scaling in LBtt(f, s) corresponds to the choice
of parameters in natural proofs and in the formalizations by Razborov [33].)

We can analogously define formulas LBtt(f, s(n), t(n)) expressing an average-case lower
bound for f , where f is a free variable (with f(y) being the yth bit of f and f(y) = 0 for

14

y > |f |). More precisely, LBtt(f, s(n), t(n)) generalizes LBtt(f, s(n)) by saying that each
circuit of size s(n) fails to compute f on at least t(n) inputs, for PV-functions s(n), t(n).
Since n ∈ LogLog, LBtt(f, s(n), t(n)) is Πb

1.

Propositional version. An s(n)-size circuit lower bound for a function f : {0, 1}n →
{0, 1} can be expressed by a 2O(n)-size propositional formula tt(f, s),∨

y∈{0,1}n
f(y) 6= C(y)

where the formula f(y) 6= C(y) says that an s(n)-size circuit C represented by poly(s)
variables does not output f(y) on input y. The values f(y) are fixed bits. That is, the
whole truth-table of f is hard-wired in tt(f, s).

The details of the encoding of the formula tt(f, s) are not important for us as long as the
encoding is natural because systems like EF considered in this paper can reason efficiently
about them. We will assume that tt(f, s) is the formula resulting from the translation of
Πb

1 formula LBtt(h, s), where n0 = 0, n, x are substituted after the translation by fixed
constants so that x = 22n , and h is a free variable (with h(y) being the yth bit of h and
h(y) = 0 for y > |h|) which is substituted after the translation by constants defining f .

Analogously, we can express average-case lower bounds by propositional formulas
tt(f, s(n), t(n)) obtained by translating LBtt(h, s(n), t(n)2n), with n0 = 0, fixed x = 22n

and h substituted after the translation by f .

3.2 Learning algorithms

A circuit class C is defined by a PV-formula if there is a PV-formula defining the predicate
C ∈ C. Definition 2 can be formulated in the language of HARDA: A circuit class C
(defined by a PV-formula) is learnable over the uniform disribution by a circuit class D
(defined by a PV-formula) up to error ε with confidence δ, if there are randomized oracle
circuits Lf from D such that for every Boolean function f : {0, 1}n 7→ {0, 1} (represented
by its truth-table) computable by a circuit from C, for each γ−1 ∈ Log, when given oracle
access to f , input 1n and the internal randomness w ∈ {0, 1}∗, Lf outputs the description
of a circuit satisfying

Pr
w

[Lf (1n, w) (1− ε)-approximates f]γ ≥ δ.

The inner probability of approximability of f by Lf (1n, w) is counted exactly. This is
possible because f is represented by its truth-table, which implies that 2n ∈ Log.10

10It could be interesting to develop systematically a standard theory of learning algorithms in APC1

and WF, but it is not our goal here. Note, for example, that when we are learning small circuits it is
not clear how to boost the confidence to 1 in APC1, because we don’t have counting with exponential
precision.

15

Propositional version. In order, to translate the definition of learning algorithms to
propositional formulas we need to look more closely at the definition of HARDA.

PV1 can be relativized to PV1(α). The new function symbol α is then allowed in the
inductive clauses for introduction of new function symbols. This means that the language
of PV1(α), denoted also PV(α), contains symbols for all p-time oracle algorithms.

Proposition 3 (Jeřábek [15]). For every constant ε < 1/3 there exists a constant n0

such that APC1 proves: for every n ∈ LogLog such that n > n0, there exist a function
f : 2n → 2 such that no circuit of size 2εn computes f on ≥ (1/2 + 1/2εn)2n inputs.

Definition 5 (Jeřábek [15]). The theory HARDA is an extension of the theory PV1(α) +
dWPHP (PV(α)) by the axioms

1. α(x) is a truth-table of a Boolean function in ||x|| variables,
2. LBtt(α(x), 2||x||/4, 2||x||(1/2− 1/2||x||/4)), for constant n0 from Proposition 3,
3. ||x|| = ||y|| → α(x) = α(y).

By inspecting the proof of Lemma 2.14 in [17], we can observe that on each input
C, 2n, 2ε

−1
the PV1(α)-function Size calls α just once (to get the truth-table of a hard

function which is then used as the base function of the Nisan-Wgiderson generator). In
fact, Size calls α on input x which depends only on |C|, the number of inputs of C
and w.l.o.g. also just on |ε−1| (since decreasing ε leads only to a better approximation).
In combination with the fact that the approximation Size(C, 2n, 2ε

−1
) ≈ε X, for X ⊆ 2n

defined by C, is not affected by a particular choice of the hard boolean function generated
by α, we get that APC1 proves

LBtt(y, 2
||y||/4, 2||y||(1/2− 1/2||y||/4)) ∧ ||y|| = S(C, 2n, 2ε

−1

)→ Sz(C, 2n, 2ε
−1

, y) ≈ε X,

where Sz is defined as Size with the only difference that the call to α(x) on C, 2n, 2ε
−1

is
replaced by y and S(C, 2n, 2ε

−1
) = ||x|| for a PV-function S. (S is given by a subcompu-

tation of Size specifying ||x||, for x on which Size queries α(x).)
This allows us to express Prx<t[x ∈ X]ε = a, where ε−1 ∈ Log and X ∩ t ⊆ 2|t| is

defined by a circuit C, without a PV1(α) function, by formula

∀y (LBtt(y, 2
||y||/4, 2||y||(1/2−1/2||y||/4))∧||y|| = S(C, 2|t|, 2ε

−1

)→ Sz(C, 2|t|, 2ε
−1

, y)/t = a).

We denote the resulting formula by Pryx<t[x ∈ X]ε = a. We will use the notation
Pryx<t[x ∈ X]ε in equations with the intended meaning that the equation holds for
the value Sz(·, ·, ·, ·)/t under corresponding assumptions. For example, t · Pryx<t[x ∈
X]ε �δ a stands for ‘∀y,∃v,∃ circuit Ĉ (defining a surjection) which witnesses that
LBtt(y, 2

||y||/4, 2||y||(1/2−1/2||y||/4))∧||y|| = S(C, 2|t|, 2ε
−1

) implies Sz(C, 2|t|, 2ε
−1
, y) �δ a’.

The definition of learning can be now expressed without a PV1(α) function: If circuit
class C is defined by a PV-function, the statement that a given oracle algorithm L (given

16

by a PV-function with oracle queries) learns a circuit class C over the uniform distribution
up to error ε with confidence δ can be expressed as before with the only difference that
we replace Prw[Lf (1n, w) (1− ε)-approximates f]γ ≥ δ by

y

Pr
w

[Lf (1n, w) (1− ε)-approximates f]γ ≥ δ.

Since the resulting formula A defining learning is not Πb
1 (because of the assumption

LBtt) we cannot translate it to propositional logic. We will sidestep the issue by translating
only the formula B obtained from A by deleting subformula LBtt (but leaving ||y|| =
S(·, ·, ·) intact) and replacing the variables y by fixed bits representing a hard boolean
function. In more detail, Πb

1 formula B can be translated into a sequence of propositional
formulas learyγ(L, C, ε, δ) expressing that “if C ∈ C is a circuit computing f , then L querying
f generates a circuit D such that Pr[D(x) = f(x)] ≥ 1− ε with probability ≥ δ, which is
counted approximately with precision γ”. Note that C, f are represented by free variables
and that there are also free variables for error γ from approximate counting and for boolean
functions y. As in the case of tt-formulas, we fix |f | = 2n, so n is not a free variable.
Importantly, learyγ(L, C, ε, δ) does not postulate that y is a truth-table of a hard boolean
function. Nevertheless, for any fixed (possibly non-uniform) bits representing a sequence
of boolean functions h = {hm}m>n0 such that hm is not (1/2 + 1/2m/4)-approximable by
any circuit of size 2m/4, we can obtain formulas learhγ(L, C, ε, δ) by substituting bits h for
y.

Using a single function h in learhγ(L, C, ε, δ) does not ruin the fact that (the transla-
tion of function) Sz approximates the respective probability with accuracy γ because Sz
queries a boolean function y which depends just on the number of atoms representing γ−1

and on the size of the circuit D defining the predicate we count together with the number
of inputs of D. The size of D and the number of its inputs are w.l.o.g. determined by the
number of inputs of f .

If we are working with formulas learhγ(L, C, ε, δ), where h is a sequence of bits repre-
senting a hard boolean function, in a proof system which cannot prove efficiently that h
is hard, our proof system might not be able to show that the definition is well-behaved
- it might not be able to derive some standard properties of the function Sz used inside
the formula. Nevertheless, in our theorems this will never be the case: our proof systems
will always know that h is hard.

In formulas learyγ(L, C, ε, δ) we can allow L to be a sequence of nonuniform circuits, with
a different advice string for each input length. One way to see that is to use additional
input to L in Πb

1 formulaB, then translate the formula to propositional logic and substitute
the right bits of advice for the additional input. Again, the precise encoding of the formula
learyγ(L, C, ε, δ) does not matter very much to us but in order to simplify proofs we will
assume that learyγ(L,Circuit[n

k], ε, δ) has the from ¬tt(f, nk) → R, where n, k are fixed,
f is represented by free variables and R is the remaining part of the formula expressing
that L generates a suitable circuit with high probability.

17

3.3 Automatability

Let Φ be a class of propositional formulas and s : Φ → N be a function. We say that a
proof system P is automatable w.r.t. Φ up to proofs of size s if there is a PV-function A
such that for each φ ∈ Φ and each t-size P -proof of φ with t ≤ s(φ), A(φ, 1t) is a P -proof
of φ.

In our main theorem we will need a slightly modified notion of automatability where
the automating algorithm outputs a proof of a given tautology φ which is not much longer
than a proof of an associated tautology ψ. (Formula ψ will be closely related to φ: while
φ will express a worst-case lower bound, ψ will express an average-case lower bound for
the same function.)

Let Φ be a class of pairs of propositional formulas and s : Φ → N be a function.
We say that a proof system P is automatable w.r.t. Φ up to proofs of size s if there is
a PV-function A such that for each pair 〈ψ, φ〉 ∈ Φ and each t-size P -proof of ψ with
t ≤ s(〈ψ, φ〉), A(φ, 1t) is a P -proof of φ.

Propositional version. If Φ is defined by a PV-function and s is a PV-function, the
statement that an algorithm A (given by a PV-function) automates system P w.r.t. Φ up
to proofs of size s is Πb

1. Therefore, it can be translated into a sequence of propositional
formulas autP (A,Φ, s). Again, in formulas autP (A,Φ, s) we can allow A to be a sequence
of nonuniform circuits and s to be arbitrary, possibly nonuniform, parameter depending
only on the length of given pairs.

4 Lower bounds versus learning in proof complexity

In this section we show how automatability together with efficient provability of a lower
bound, or together with optimality, implies efficient learning. This shows some of the
methods used in the proof of Theorem 10, but the proof of Theorem 10 can be read
independently. Then, we proceed with a formalization of the transformation of natural
proofs into learning algorithms, which is one of the cornerstones of Theorem 10.

Theorem 6. Let k ≥ 1 be a constant and P be a proof system which simulates EF such
that: I. for each P -proof π0 of φ and each P -proof π1 of φ→ ψ, there is a poly(|π0|, |π1|)-
size P -proof of ψ; II. for each P -proof π of φ and a possibly partial substitution ρ of atoms
of φ by arbitrary formulas, there is a poly(|π|, |φ|ρ|)-size P -proof of φ|ρ, where φ|ρ is the
formula φ after applying substitution ρ.

Assume that P proves efficiently tt(h, 3nk), for some boolean function h = {hn}n>n0

and some n0. Then, automatability of P implies that for each γ ∈ (0, 1), Circuit[nkγ/a] is
learnable by Circuit[2O(nγ)] over the uniform distribution, with non-adaptive membership
queries, confidence 1, up to error 1/nkγ/a, where a is an absolute constant.

18

Proof sketch. By Theorem 5, it suffices to construct a P/poly-natural property useful
against Circuit[nk]. This is achieved by the proof of Theorem 2, which we sketch - more
details can be found in the proof of Theorem 10 (direction 2. → 1.). Assume P proves
efficiently tt(hn, 3n

k) for some boolean function h = {hn}n>n0 . If P simulates EF and
satisfies properties I.-II., then P proves efficiently also

tt(g, nk) ∨ tt(hn ⊕ g, nk), (4.1)

where g is represented by free variables and hn ⊕ g is a bitwise XOR of hn and g. This is
because an nk-size circuit C1 computing g and an nk-size circuit C2 computing hn⊕ g can
be combined into a 3nk-size circuit C1 ⊕ C2 computing hn. (Properties I.-II. can be used
to simulate Frege rules, see Lemma 3.) Automatability of P now implies the existence
of a P/poly-natural property useful against Circuit[nk]: For each boolean function g, we
can either find efficiently a P -proof of tt(g, nk) or we recognize that tt(hn ⊕ g, nk) holds
(if tt(hn ⊕ g, nk) did not hold, we could use properties I.-II. to substitute its falsifying
assignment to the proof of (4.1) and obtain a short P -proof of tt(g, nk) - formally, we use
here also the fact that P -proves efficiently φ(b), whenever b is a satisfying assignment of φ,
see Lemma 3, Item 2.), and one of these options happens for at least 1/2 of all functions
g.

Theorem 7 (Optimality and automatability implies learning). If there is an optimal proof
system which is automatable, then for each γ ∈ (0, 1), each k ≥ 1/γ, for infinitely many n,
Circuit[nkγ] is learnable by Circuit[2O(nγ)] over the uniform distribution, with non-adaptive
membership queries, confidence 1/24nγ , up to error 1/2− 1/23nγ .

Proof sketch. If SAT ∈ Circuit[3nk] for infinitely many n, then there is a P/poly-natural
property useful against Circuit[nlogn], for infinitely many n, and the conclusion of the the-
orem follows from the proof of Theorem 5, see Theorem 9. Assume SAT 6∈ Circuit[3nk]
holds for all sufficiently big n. Then there is a proof system P which proves efficiently
tt(SAT, 3nk) for all sufficiently big n: P is by definition allowed to derive every sub-
stitutional instance of tt(SAT, 3nk) (which is a formula recognizable in 2O(n)-time) and,
otherwise, it proceeds as EF. Therefore, we can follow the proof of Theorem 6, noting that
the automatability of P can be replaced by the automatability of the optimal system, and
obtain the desired conclusion.

Theorem 8. For each γ ∈ (0, 1), each k ≥ 1/γ, there is a proof system P such that
1.) P is automatable if and only if 2.) for infinitely many n, Circuit[nkγ] is learnable
by Circuit[2O(nγ)] over the uniform distribution, with non-adaptive membership queries,
confidence 1/24nγ , up to error 1/2− 1/23nγ .

Proof. Let γ ∈ (0, 1) and k ≥ 1. If Item 2.) from the statement of the theorem holds, then
let P be a proof system with exponentially long proofs of all tautologies, so P is trivially
automatable and the equivalence holds. Suppose Item 2.) does not hold. Then, similarly

19

as in the proof of Theorem 7, we conclude that SAT 6∈ Circuit[3nka] for all sufficiently big
n and constant a from Theorem 6. It remains to observe that the proof system P from
the proof of Theorem 7, with tt(SAT, 3nka) instead of tt(SAT, 3nk), is not automatable.
This follows by Theorem 6. Alternatively, in the case that Item 2.) fails, we can use
the fact that P 6= NP implies the existence of a non-automatable proof system, cf. [30,
Lemma 5.3].

The disadvantage of Theorem 8 in comparison to Corollary 3 is that it does not provide
an explicit definition of P . It is possible to get an explicit construction of P based on
a hardness assumption, but the hardness assumption would then itself falsify both sides
of the desired equivalence. Another advantage of Corollary 3 is that it applies to all
well-behaved proof systems simulating a ‘ground’ system P .

4.1 Learning algorithms from natural proofs in APC1

An essential component of the transformation of natural proofs into learning algorithms
is the Nisan-Wigderson generator and specific combinatorial designs on which it is based,
cf. [26]. In order to formalize the transformation in APC1 we would need to construct
combinatorial designs in APC1. A construction of combinatorial designs has been for-
malized already in [15], but our transformation requires algebraic construction of designs
obtained by evaluating polynomials on a finite field. A complication is that the algebraic
construction uses Bertrand’s postulate of the existence of a prime between x and 2x. We
will bypass the problem of proving Bertrand’s postulate in APC1 simply by assuming the
existence of such a prime.11 That is, we will not prove the existence of combinatorial
designs unconditionally, but only under the assumption of the primality of a number in
the interval [x, 2x]. Fortunately, in our setting, we will have 2x ∈ Log, so once we trans-
late the resulting statements to propositional logic, we will use Bertrand’s postulate (even
though we have not formalized it in APC1) to conclude that the assumption will have a
trivial WF-proof. The construction of Nisan and Wigderson otherwise does not require
developing new methods, but we need to verify that each step is doable in APC1. In fact,
PV1 will suffice.

For x ∈ {0, 1}n and S ⊆ [n], denote by x|S an |S|-bit string consisting of xi’s such
that i ∈ S (in the natural order).

Lemma 2 (in PV1). Let d ≥ 2. If 2n ∈ Log and nd ≤ p ≤ 2nd ∈ Log is a prime, there
is a 2n × m 0-1 matrix A with nd ones per row and m = pnd which is also an (n, nd)-
design meaning that for Ji(A) := {j ∈ [m]; ai,j = 1}, for each i 6= j, |Ji(A) ∩ Jj(A)| ≤ n
and |Ji(A)| = nd. Moreover, for sufficiently big n, there are n9d-size circuits which given
i ∈ {0, 1}n and w ∈ {0, 1}m output w|Ji(A).

11It is possible that the desired formalization of Bertrand’s postulate can be obtained from the work
of Paris, Wilkie and Woods [28].

20

Proof. Let nd ≤ p ≤ 2nd be a prime and F a field of size p. F can be constructed in
PV1, cf. [16, Section 4.3]. We construct the matrix A so that the i-th row consists of
positions (u, v), for u ∈ {0, . . . , nd − 1}, v ∈ F , with 1’s exactly on positions (u, q(u)),
for u ∈ {0, . . . , nd − 1}, where q is a polynomial of degree n with binary coefficients
corresponding to the binary representation of i. Formally, an n-degree polynomial is
represented by a sequence of its coefficients. The evaluation of an n-degree polynomial on
an element from F can be done in poly(n)-time and is well-defined in PV1, cf. [16, Section
4.3]. By definition, A is a 2n ×m 0-1 matrix with nd ones per row. |Ji(A) ∩ Jj(A)| ≤ n,
for i 6= j, follows from the fact that a non-zero n-degree polynomial over F has ≤ n roots,
which is provable in PV1, cf. [16, Lemma 4.3.6].

It remains to prove the ‘moreover’ part. The n9d-size circuit first evaluates the i-th
polynomial on inputs 0, . . . , nd − 1. This way it obtains Ji(A) and w|Ji(A). Evaluating
an n-degree polynomial on an input from F can be done PV1-provably by a circuit of size
n ·poly(d log n). (In more detail, we compute x, x2, . . . , xn over F in a standard way by an
n ·poly(d log n)-size circuit, then multiply xi’s with the corresponding coefficients and sum
the results over F , which takes another n ·poly(d log n)-size circuit.) Thus, given i, the nd

indices from Ji(A) can be generated by a circuit of size nd+1poly(d log n). Given w and
indices from Ji(A), the bits w|Ji(A) can be generated by a circuit of size O(ndpd log n) so
the total size of the circuit generating w|Ji(A) on i and w is ≤ nd+2+O(dn2d+1) ≤ n9d.

The formalization of the transformation of natural proofs into learning algorithms
follows from a straightforward inspection of the original proof as well.

Theorem 9. There is a PV-function L such that APC1 proves: For k ≥ 1, d ≥ 2,
2n

d
, ndk, δ−1 ∈ Log, δ < 1/N3 and a prime nd ≤ p ≤ 2nd, let RN be a circuit with N = 2n

inputs such that for sufficiently big N ,

1. RN(x) = 1 implies that x is a truth-table of a boolean function with n inputs hard
for Circuit[n10dk],

2. {x | RN(x) = 1} �δ 2N/N .

Then, circuits with nd inputs and size ndk are learnable by circuit L(RN , p) over the
uniform distribution with membership queries, confidence 1/N4, up to error 1/2− 1/N3.
Here, the confidence is counted approximately with error δ using PV-function Sz and the
corresponding assumptions LBtt expressing hardness of a boolean function y with a suitable
length ||y|| = S(·, ·, ·), i.e. using formulas Pry[·]δ.

Proof. We reason in APC1. Consider a Nisan-Wigderson generator based on a circuit
C which we aim to learn. Specifically, for d ≥ 2 and n2d ≤ m = pnd ≤ 2n2d, let
A = {ai,j}i∈[N]

j∈[m] be an N × m 0-1 matrix with nd ones per row. Then define an NW-

generator NWC : {0, 1}m 7→ {0, 1}N as

(NWC(w))i = C(w|Ji(A)).

21

We can assume that A is, in addition, a combinatorial design from Lemma 2. Therefore,
if C has nd inputs and size ndk, then for each w ∈ {0, 1}m, (NWC(w))x is a function on
n inputs x computable by circuits of size n10dk, for sufficiently big n. We want to learn C
by a circuit L(RN , p) of size 2O(n).

We will use circuits RN which function as distinguishers for NWC : By the assumption
of the theorem, a trivial surjection witnesses that {w | RN(NWC(w)) = 1} �0 0. Hence,
by Proposition 1 ii), 2m · Pryw[RN(NWC(w)) = 1]δ �δ 0, and by Proposition 2 1.ii),
Pryw[RN(NWC(w)) = 1]δ < 2δ, for universally quantified y. Similarly, by the assumption
of the theorem {u | RN(u) = 1} �δ 2N/N , and Pry

′

u [RN(u) = 1]δ > 1/N − 3δ. Therefore,

y′

Pr
u

[RN(u) = 1]δ −
y

Pr
w

[RN(NWC(w)) = 1]δ > 1/N − 5δ.

L(RN , p) chooses a random i ∈ [N], random bits r1, . . . , rN , random w′ ∈ {0, 1}m−nd

and queries the bits C(w|J1(A)), . . . , C(w|Ji−1(A)), for all w ∈ {0, 1}m such that w|[m]\Ji(A) =
w′. Since A is an (n, nd)-design, there are just 2O(n) such queries. For w ∈ {0, 1}m,
let pi := RN(C(w|J1(A)), . . . , C(w|Ji−1(A)), ri, . . . , rN). Then L(RN , p) outputs a cir-
cuit L′ which on x ∈ {0, 1}nd constructs w ∈ {0, 1}m such that w|Ji(A) = x while
w|[m]\Ji(A) = w′ and predicts the value C(x) by outputting ¬ri iff pi = 1.

We want to show that L′ approximates C with high probability.
First, note that by Proposition 1 iii), inequality {u | RN(u) = 1} �δ 2N/N implies

{w, r1, . . . , rN | p1 = 1} �δ 2m+N/N , so we have Pry
′

w,r1,...,rN
[p1 = 1]δ > 1/N − 3δ and

Pryw,r1,...,rN [pN+1 = 1]δ < 2δ. Consequently, there exists y1, . . . , yN+1 and i ∈ [N] such that

yi
Pr

w,r1,...,rN
[pi = 1]δ −

yi+1

Pr
w,r1,...,rN

[pi+1 = 1]δ > 1/N2 − 5δ/N. (4.2)

Otherwise, for all y1, . . . , yN+1, for all i, Pryi [pi = 1]δ − Pryi+1 [pi+1 = 1]δ ≤ 1/N2 −
5δ/N , and by Σb

0(PV)-induction Pry1 [pi = 1]δ − PryN+1 [pi+1 = 1]δ ≤ 1/N − 5δ. As APC1

proves that some y1, . . . , yN+1 satisfy the assumptions of Pryj [·]δ, for all j = 1, . . . , N + 1,
this would be a contradiction. (The existence of y1, . . . , yN+1 is proved analogously as
Proposition 3 and the proof does not require sharply bounded collection scheme - we can
construct y1, . . . , yN+1 from the string w in [16, Lemma 4.1.8]12.) That is, (4.2) means
that yi’s satisfy formulas LBtt (with suitable parameters), have the right length ||yi|| and
the corresponding functions Sz witness that the difference of the respective probabilities
is big.

Since trivial surjections witness that, for i ∈ [N], z = w′, x, r1, . . . , rN < 2m+N ,

{z | L′(x) = C(x)} �0 {z | pi = 1 ∧ ri 6= C(x)} ∪ {z | pi 6= 1 ∧ ri = C(x)},
12While N does not have to be in LogLog, the string y1, . . . , yN+1 can be composed from just LogLog

many different strings yj because each yj represents a truth-table whose length is a power of 2.

22

and {z | pi = 1 ∧ ri 6= C(x)} ∩ {z | pi 6= 1 ∧ ri = C(x)} ≈0 0, by Proposition 2 1.iv) and
Proposition 1 ii),

2m+N
y

Pr
z

[L′(x) = C(x)]δ �4δ 2m+N
y′

Pr
z

[pi = 1∧ ri 6= C(x)]δ + 2m+N
y′′

Pr
z

[pi 6= 1∧ ri = C(x)]δ.

Notably, when we applied Proposition 2 1.iv), we switched the domain of surjections from
2m+N to 2m+N+1. This does not affect our inequalities because surjections witnessing
X �δ Y , for X, Y ⊆ 2m+N can be used to witness X �δ Y , where we see X, Y as subsets
of 2m+N+1 (and consider the error δ w.r.t. 2m+N+1, not w.r.t. 2m+N), but we need to take
it into account when we now apply Proposition 2 1.ii) to conclude that13

y

Pr
z

[L′(x) = C(x)]δ >
y′

Pr
z

[pi = 1 ∧ ri 6= C(x)]δ +
y′′

Pr
z

[pi 6= 1 ∧ ri = C(x)]δ − 10δ.

Further, we have {z | pi = 1 ∧ ri = C(x)} ∪ {z | pi 6= 1 ∧ ri = C(x)} ≈0 2m+N/2, so
Pry

′′

z [pi 6= 1 ∧ ri = C(x)]δ > 1/2− Pry
′′′

z [pi = 1 ∧ ri = C(x)]δ − 8δ and

y

Pr
z

[L′(x) = C(x)]δ >
y′

Pr
z

[pi = 1 ∧ ri 6= C(x)]δ +
1

2
−

y′′′

Pr
z

[pi = 1 ∧ ri = C(x)]δ − 18δ. (4.3)

Next, we similarly derive {z | pi = 1} ≈0 {z | pi = 1∧ri = C(x)}∪{z | pi = 1∧ri 6= C(x)}
and

yi
Pr
z

[pi = 1]δ − 10δ <
y′′′

Pr
z

[pi = 1 ∧ ri = C(x)]δ +
y′

Pr
z

[pi = 1 ∧ ri 6= C(x)]δ. (4.4)

Now, observe that {z | pi = 1 ∧ ri = C(x)} ≈0 {w, r1, . . . , rN | pi+1 = 1 ∧ ri = 1}.
This yields 2m+N Pry

′′′

z [pi = 1 ∧ ri = C(x)]δ �2δ 2m+N Pry
′′′′

w,r1,...,rN
[pi+1 = 1 ∧ ri = 1]δ.

Analogously, 2m+N Pry
′′′

z [pi = 1 ∧ ri = C(x)]δ �2δ 2m+N Pry
′′′′′

w,r1,...,rN
[pi+1 = 1 ∧ ri = 0]δ. As

{w, r1, . . . , rN | pi+1 = 1 ∧ ri = 1} ∪ {w, r1, . . . , rN | pi+1 = 1 ∧ ri = 0} ≈0 {w, r1, . . . , rN |
pi+1 = 1}, we have also 2m+N Pry

′′′′

w,r1,...,rN
[pi+1 = 1 ∧ ri = 1]δ + 2m+N Pry

′′′′′

w,r1,...,rN
[pi+1 =

1 ∧ ri = 0]δ ≈4δ 2m+N Pryi+1
w,r1,...,rN

[pi+1 = 1]δ. It follows that

2
y′′′

Pr
z

[pi = 1 ∧ ri = C(x)]δ − 18δ <
yi+1

Pr
w,r1,...,rN

[pi+1 = 1]δ. (4.5)

Combining (4.2) - (4.5) shows that for some i ∈ [N],

y

Pr
w′,x,r1,...,rN

[L′(x) = C(x)]δ > 1/2 + 1/N2 − 5δ/N − 46δ, (4.6)

where L′ is generated by L(RN , p) on w′, x, r1, . . . , rN and i. As in the case of (4.2), y is
quantified existentially in (4.6) and satisfies the assumptions of Pry[·]δ.

13If we worked on the domain 2m+N the resulting error would not be 10δ but 5δ.

23

It remains to observe that (for universally quantified y)

y

Pr
w′,i,r1,...,rN

[L(RN , p) (1/2 + 1/N3)-approximates C]δ > 1/N4.

For the sake of contradiction, assume this is not the case. Then

{w′, i, r1, . . . , rN | L′ (1/2 + 1/N3)-approximates C} �δ 2m−n
d+n+N/N4

and by averaging (Proposition 2, Item 3),

{w′, x, i, r1, . . . , rN | L′ (1/2 + 1/N3)-approximates C} �2δ 2m+n+N/N4.

Therefore, for each i ∈ [N],

{w′, x, r1, . . . , rN | L′ (1/2 + 1/N3)-approximates C} �2δ 2m+N/4N2. (4.7)

(Otherwise, by Proposition 2 1.i), there is a surjection witnessing the opposite inequality,
which can be used to witness also {w′, x, i, r1, . . . , rN | L′ (1/2+1/N3)-approximates C} �2δ

2m+N/4N2 and 2m+N/4N2 �4δ 2m+n+N/N4 = 2m+N/N3, contradicting Proposition 2 1.ii)
for δ < 1/N3.)

On the other hand, for each w′, i, r1, . . . , rN ,

{x | L′(x) = C(x) ∧ L′ < (1/2 + 1/N3)-approximates C} �0 (1/2 + 1/N3)2n
d

,

which can be counted exactly because 2n
d ∈ Log. Hence, by averaging, for each i ∈ [N],

{w′, x, r1, . . . , rN | L′(x) = C(x)∧L′ < (
1

2
+

1

N3
)-approximates C} �δ (1/2+1/N3)2m+N .

The last approximation together with (4.7) imply that for each i ∈ [N],

{w′, x, r1, . . . , rN | L′(x) = C(x)} �3δ (1/2 + 1/2N2)2m+N ,

which in turn implies that (for universally quantified y) Pryw′,x,r1,...,rN [L′(x) = C(x)]δ <
1/2 + 1/2N2 + 5δ, contradicting (4.6) if δ < 1/N3 and N is sufficiently big.

5 Main theorem

Our main theorem holds for any ‘decent’ proof system p-simulating WF, which is well-
behaved in the sense that it APC1-provably satisfies some basic properties.

Definition 6 (APC1-decent proof system). A propositional proof system P is APC1-decent
if the language L of P is finite and complete, i.e. L consists of connectives of constant
arity such that each boolean function of every arity can be expressed by an L-formula, P
proves efficiently its own reflection principle, i.e. formulas stating that if π is a P -proof
of φ then φ holds, cf. [22], and there is a PV-function F such that APC1 proves:

24

1. P p-simulates WF, i.e. F maps each WF-proof of φ to a P -proof of φ.

2. P admits substitution property: F maps each triple 〈φ, ρ, π〉 to a P -proof of φ|ρ,
where π is a P -proof of φ and φ|ρ is the formula φ after applying substitution ρ
which replaces atoms of φ by formulas.

3. F maps each pair 〈π, π′〉, where π is a P -proof of φ and π′ is a P -proof of φ→ ψ,
to a P -proof of ψ.

In Definition 6, WF refers to some fixed system from the set of all WF systems. It
follows from the proof of Lemma 3 that if APC1 proves that P p-simulates a WF-system
Q, then for every WF-system R, APC1 proves that P p-simulates R, so the particular
choice of the WF-system does not matter. When we use connectives ∧,∨,¬,→ in an
APC1-decent system P , we assume that these are expressed in the language of P .

Lemma 3. Each WF system is APC1-decent. Moreover, for each APC1-decent proof sys-
tem P the following holds.

1. For every Frege rule which derives φ from φ1, . . . , φk, there is a PV-function F such
that APC1 proves that F maps each (k+ 1)-tuple 〈π1, . . . , πk, ρ〉 to a P -proof of φ|ρ,
where πi is a P -proof of φi|ρ for a substitution ρ replacing each atom of φ, φ1, . . . , φk
by a formula.

2. There is a PV-function F such that APC1 proves that F maps each pair 〈φ, b〉, for
assignment b satisfying formula φ, to a P -proof of φ(b).

3. Let π be a P -proof of E → φ, where E defines a computation of a circuit which is
allowed to use atoms from φ as inputs but other atoms of E do not appear in φ, i.e.
E is the conjunction of extension axioms of EF built on atoms from φ. Then, there
is a poly(|π|)-size P -proof of φ.

Proof. WF is known to prove efficiently its own reflection principle, cf. [15]. In order
to show that it is APC1-decent, it thus suffices to prove that it satisfies Items 1-3 from
Definition 6.

Item 2 is established already in PV1 by Σb
1-induction on the length of the proof π

(which can be used because of ∀Σb
1-conservativity of S1

2 over PV1): F replaces each circuit
C from π by C|ρ and preserves all WF-derivation rules.

Item 1 holds trivially if the given WF-system P is the WF-system P ′ from Definition 6.
Otherwise, we use implicational completeness of P and the completeness of the language
of P to simulate all O(1) Frege rules of P ′ by O(1) steps in P . (This does not require that
the implicational completeness of P is provable in APC1 because we need to simulate only
O(1) Frege rules of finite size). Similarly, by Σb

1-induction and the completeness of the
language of P , we simulate each circuit in the language of P ′ by a circuit in the language

25

of P and show that this simulation preserves the similarity rule. Then, given an s-size
P ′-proof of φ, we obtain a poly(s)-size P -proof of φ using the simulation of Frege rules of
P ′, the similarity rule and dWPHP axiom, together with substituting the right circuits
in Frege rules. This is done again in PV1 by Σb

1-induction on the length of the P ′-proof.
Item 3 follows by simulating modus ponens as in the proof of Item 1.

For the ‘moreover’ part, we consider three cases:
Item 1: As in the case of WF, observe that by completeness, P proves φ1 → . . . φk → φ
and that this fact is provable in PV1. By Definition 6, Item 2, APC1 can construct a P -
proof of φ1|ρ → . . . φk|ρ → φ|ρ. The claim then follows from k applications of Definition 6,
Item 3.

Item 2: By Definition 6, Item 1, it suffices to prove the claim for WF. This follows
from a Σb

1-induction on the complexity of φ, where we strengthen the claim to: “For each
multi-output circuit C and complete assignment b, F outputs a k|C|2-size WF-proof which
contains every single-output circuit C ′(b) such that C ′ is a subcircuit of C satisfied by
b or C ′ is ¬C ′′ for a subcircuit C ′′ of C falsified by b. Here, k is an absolute constant”.
The strengthened claim holds for literals by simulating O(1) Frege rules, which we have
by Item 1. Further, O(1) Frege rules (and their substitutional instances) suffice to prove
that if the claim holds for a multi-output circuit B and we extend B by one gate to
a multi-output circuit B′, then the claim holds for B′ as well. (The length of the proof
corresponding to B′ is ≤ k(|B|)2+O(|B′|) < k|B′|2, for sufficiently big k, where we use the
choice of WF which guarantees linear increase of proof-size when applying substitutions
and modus ponens.)

Item 3: This is easy to see for P = EF, since EF can introduce extension axioms. For
APC1-decent system P , observe that a P -proof π of E → φ implies the existence of a
poly(|π|)-size EF-proof of RefP ∧ E → φ, where RefP postulates the reflection principle
for P instantiated by π, which further implies the existence of a poly(|π|)-size EF-proof
of RefP → φ, and finally a poly(|π|)-size P -proof of φ.

APC1-decent proof systems can be much stronger than WF. For example, consider ZFC
as a propositional proof system: a ZFC-proof of propositional formula φ is a ZFC-proof of
the statement encoding that φ is a tautology. We can add the reflection of ZFC to WF,
i.e. we will allow WF to derive (substitutional instances of) formulas stating that “If π is
a ZFC-proof of φ, then φ holds.” The new system is as strong as ZFC w.r.t. tautologies14

and it is easy to see that it is APC1-decent. (The reflection of the system can be proved
in APC1 extended with an axiom postulating the reflection for ZFC.)

Theorem 10 (Learning versus automatability). Let P be an APC1-decent proof system
and assume there is a sequence of boolean functions h = {hn}n>n1, for a constant n1,

14In fact, it is equivalent to ZFC because ZFC proves efficiently its own reflection [31]. [31] also implies
that ZFC itself is APC1-decent.

26

such that P proves efficiently tt(hn, 2
n/4, 1/2 − 1/2n/4). Then, for each constant K and

constant γ < 1, the following statements are equivalent.

1. Provable learning. For each k ≥ 1 and ` ≥ K + 1, there are 2Kn
γ
-size circuits A

such that for each sufficiently big n, P proves efficiently

learh1/2`nγ (A,Circuit[nk], 1/2− 1/2Kn
γ

, 1/2Kn
γ

).

2. Provable automatability. For each k ≥ 1, for each function s(n) ≥ 2n, there is
a constant K ′ and sK

′
-size circuits B such that P proves efficiently

autP (B,Φ, s),

where Φ is the set of pairs 〈tt(f, 2Knγ , 1/2− 1/2Kn
γ
), tt(f, nk)〉 for all boolean func-

tions f with n inputs.

Proof. (1.→ 2.) We first prove the following statement in APC1.

Claim 5.1 (in APC1). Assume that π is a P -proof of leary
1/2`n

γ (A,Circuit[nk], 1/2−1/2Kn
γ
, δ)

for a circuit A and a boolean function y represented by fixed bits in formula leary
1/2`n

γ (·, ·, ·, ·).

Further, assume that the probability that A on queries to f outputs a circuit D such that
Pr[D(x) = f(x)] ≥ 1/2 + 1/2Kn

γ
is < δ, where the outermost probability is counted ap-

proximately with error 1/2`n
γ

using PV-function Sz and the corresponding assumptions
LBtt expressing hardness of y with a suitable length ||y|| = S(·, ·, ·), i.e. using formulas
Pry[·]1/2`nγ for the same y as above - we treat y as a free variable here. Then there is a
poly(|π|)-size P -proof of tt(f, nk) or y does not satisfy the assumptions of Pry[·]1/2`nγ .

To see that the claim holds, we reason in APC1 as follows. Assume π is a P -
proof of leary

1/2`n
γ (A,Circuit[nk], 1/2 − 1/2Kn

γ
, δ) but A on queries to f outputs a circuit

(1/2 + 1/2Kn
γ
)-approximating f with probability < δ. Then, either y does not satisfy the

assumptions of Pry[·]1/2`nγ or there is a trivial 2O(n)-size P -proof of ¬tt(f, nk) → ¬R(b),
for predicate R from the definition of leary

1/2`n
γ (A,Circuit[nk], 1/2− 1/2Kn

γ
, δ) and a com-

plete assignment b. The P -proof is obtained by evaluating function Sz which counts the
confidence of A - note that functions f, y and algorithm A are represented inside P by
fixed bits so the P -proof just evaluates a 2O(n)-size circuit on some input, which is possible
by Lemma 3, Item 2. (We use here also the fact that APC1 knows that the probability
statement expressed by function Sz translates to ¬R in the negation normal form.) The
formula ¬tt(f, nk)→ ¬R(b) is obtained from ¬R(b) by an instantiation of a single Frege
rule, which is available by Lemma 3, Item 1. Applying again Lemma 3, Item 1, from a
P -proof of leary

1/2`n
γ (A,Circuit[nk], 1/2− 1/2Kn

γ
, δ) and a P -proof of ¬tt(f, nk)→ ¬R(b),

we construct a poly(|π|)-size P -proof of tt(f, nk). This proves the claim.

27

Next, observe that APC1 proves that “If for a sufficiently big n and ` ≥ K + 1 the
probability that a circuit A on queries to f outputs a circuit (1/2+1/2Kn

γ
)-approximating

f is ≥ 1/2Kn
γ
, where the probability is counted approximately with error 1/2`n

γ
using

PV-function Sz and the corresponding assumptions LBtt, then there is a circuit of size
|A| (1/2 + 1/2Kn

γ
)-approximating f or y does not satisfy the assumptions of Pry[·]1/2`nγ .”

This is because, if such a circuit did not exist, a trivial surjection would witness that 2m

times the probability that A outputs a circuit (1/2 + 1/2Kn
γ
)-approximating f , counted

approximately with error 1/2`n
γ

using function Sz, is �1/2`n
γ 0. Here, 2m is the domain

of the surjection. By Proposition 2 1.ii), this would imply 2m/2Kn
γ
< 2m+1/2`n

γ
, which

is a contradiction for ` ≥ K + 1 and sufficiently big n.
Therefore, Claim 5.1 implies that APC1 proves that “For sufficiently big n and ` ≥

K + 1, if π is a P -proof of leary
1/2`n

γ (A,Circuit[nk], 1/2− 1/2Kn
γ
, 1/2Kn

γ
) for circuits A of

size 2Kn
γ
, then there is a P -proof of tt(f, nk) or there is a 2Kn

γ
-size circuit (1/2+1/2Kn

γ
)-

approximating f or there is a 2||y||/4-size circuit (1/2+1/2||y||/4)-approximating y or ||y|| ≤
n0 or ||y|| 6= S(·, 2m, 22`n

γ

);” for n0 from Definition 5. Since this is a Σb
1-statement, by

Lemma 1, PV1 proves the same statement with the existential quantifiers witnessed by
PV-functions assuming they are given a boolean function h′ which is hard for circuits of
size 2||h

′||/4, for sufficiently big |h′|.
The last statement provable in PV1 is Πb

1 so we can translate it to EF. This gives us
poly(|π|, 2n)-size circuits B0 such that for sufficiently big n, EF proves efficiently

“If ` ≥ K + 1,
h′ is not computable by a particular circuit of size 2||h

′||/4, |h′| is sufficiently big,
y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,

||y|| = S(·, 2m, 22`n
γ

)
and π is a P -proof of leary

1/2`n
γ (A,Circuit[nk], 1/2− 1/2Kn

γ
, 1/2Kn

γ
) for 2Kn

γ
-size A,

then B0 (given π, h′ and formula tt(f, nk)) outputs a P -proof of tt(f, nk)
or B0 outputs a 2Kn

γ
-size circuit (1/2 + 1/2Kn

γ
)-approximating f .”.15

If we now assume that P proves efficiently tt(hn, 2
n/4, 1/2−1/2n/4) and that Item 1 holds,

then by Definition 6, Items 1-3, for each k, there are p-size circuits B1 such that for each
sufficiently big n, P proves efficiently “B1 (given just formula tt(f, nk)) outputs a P -proof

15Formally, the statement ‘If a particular assignment a satisfies formula φ, then formula ψ holds’ means
that ‘If a is the output of a computation of a specific circuit W (where W is allowed to use as inputs
atoms from ψ, but other atoms of W do not appear in ψ), and a satisfies φ, then ψ’. By Lemma 3,
Item 3, if we assume that the statement is efficiently provable in P and that P proves efficiently φ,
then P proves efficiently ψ. Note also that for A,B ∈ Σb

0, the translation ||A → B|| is ¬||¬A|| →
||B||, which might not be the same formula as ||A|| → ||B||. Nevertheless, EF proves efficiently that
E → (||A|| ↔ ¬||¬A||), where E postulates that auxiliary variables of ||A|| encode the computation of
a suitable circuit. Therefore, in systems like EF or P , if we have a proof of ||A|| and ||A → B||, we can
remove the assumption E after proving E → ||B||, assuming ‘non-input’ variables of E do not occur in
||B||, and ignore the difference between ||A|| and ¬||¬A||.

28

of tt(f, nk) or B1 outputs a 2Kn
γ
-size circuit (1/2 + 1/2Kn

γ
)-approximating f .” (We use

here also the fact that PV1 knows that S(·, 2m, 22`n
γ

) depends just on n.) Consequently,
since P proves efficiently its own reflection, for each sufficiently big n, P proves efficiently
that “if π is a P -proof of tt(f, 2Kn

γ
, 1/2−1/2Kn

γ
) then B1 outputs a P -proof of tt(f, nk)”.16

Finally, we make the P -proofs work for all n by increasing the size of B1 by a constant.
This finishes the proof of case (1.→ 2.).

(2.→ 1.) The opposite implication can be obtained from Lemma 4 and 5 which formalize
Theorem 3.

Lemma 4. For each d ≥ 2, each k ≥ 10d and each sufficiently big c, there is a PV-function
L such that for each PV-function B the theory APC1 proves: Assume the reflection prin-
ciple for P holds, π is a P -proof of

tt(hn ⊕ g, 2Kn
γ

, 1/2− 1/2Kn
γ

) ∨ tt(g, 2Kn
γ

), (5.1)

where g is represented by free variables, and that B automates P on Φ up to size |π|c.
Then, for prime nd ≤ p ≤ 2nd, where 2n

d ∈ Log, for δ−1 ∈ Log such that δ < N−3 = 2−3n,
L(B, π, p) is a poly(2n, |π|)-size circuit learning circuits with m = nd inputs and size
mk/10d, with confidence 1/N4, up to error 1/2 − 1/N3, where the confidence is counted
approximately with error δ using PV-function Sz and the corresponding assumptions LBtt

expressing hardness of a boolean function y with a suitable length ||y|| = S(·, ·, ·), i.e.
using formulas Pry[·]δ.

Lemma 5 (‘XOR trick’). PV1 proves that for all boolean functions g, h′′ with n inputs, for
sufficiently big n, LBtt

′(h′′, 3 · 2Knγ , 2n(1/2− 1/2Kn
γ
)) implies LBtt

′(h′′⊕ g, 2Knγ , 2n(1/2−
1/2Kn

γ
))∨LBtt

′(g, 2Kn
γ
), where LBtt

′ is obtained from LBtt by setting n0 = 0 and skipping
the universal quantifier on n, i.e. all formulas LBtt

′ refer to the same n.

The proof of Lemma 5 is almost immediate: By Σb
1-induction, a 2Kn

γ
-size circuit

C1 computing g and a 2Kn
γ
-size circuit C2 (1/2 + 1/2Kn

γ
)-approximating h′′ ⊕ g can be

combined into a circuit C1 ⊕ C2 of size 3 · 2Knγ which (1/2 + 1/2Kn
γ
)-approximates h′′.

The implication (2. → 1.) can be derived from Lemma 4 and 5 as follows. Since the
APC1-provable statement from Lemma 4 is Σb

1, similarly as above, we can witness it and
translate to EF at the expense of introducing an additional assumption about the hardness
of a boolean function h′. That is, for each p-size circuit B there are poly(|π|, 2nd)-size
circuits A and poly(|π|, 2nd)-size EF-proofs of

“If the reflection principle for P is satisfied by a particular assignment,
π is a P -proof of (5.1),
h′ is not computable by a particular circuit of size 2||h

′||/4, |h′| is sufficiently big,

16It is assumed that the encoding of the statement coincides with the encoding of autP .

29

y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,
||y|| = S(·, ·, 2|δ−1|)
and nd ≤ p ≤ 2nd is a prime,

then, for δ < 1/N3, learyδ(L(B, π, p),Circuit(mk/10d), 1/2− 1/N3, 1/N4)
or A(B, π, h′) outputs a falsifying assignment of autP (B,Φ, |π|c).”.

Analogously, the PV1-proof from Lemma 5 yields p-size EF-proofs of the implication
“tt(hn, 3·2Kn

γ
, 1/2−1/2Kn

γ
) is falsified by a particular assignment or (5.1) holds”. By the

assumption of the theorem, there are p-size P -proofs of tt(hn, 3 · 2Kn
γ
, 1/2− 1/2Kn

γ
) for

sufficiently big n. Hence, by Definition 6, Items 1-3, there are p-size P -proofs of (5.1) for
sufficiently big n. As P proves efficiently also its own reflection, this yields poly(2n

d
)-size

P -proofs of

“If h′ is not computable by a particular circuit of size 2||h
′||/4, |h′| is sufficiently big,

y is not (1/2 + 1/2||y||/4)-approximable by a particular circuit of size 2||y||/4, ||y|| > n0,
||y|| = S(·, ·, 2|δ−1|)
and nd ≤ p ≤ 2nd is a prime,

then, for δ < 1/N3, learyδ(L(B, π, p),Circuit(mk/10d), 1/2− 1/N3, 1/N4)
or A(B, π, h′) outputs a falsifying assignment of autP (B,Φ, |π|c).”.

By Bertrand’s postulate there is a prime nd ≤ p ≤ 2nd, so EF proves that p is a prime by
a trivial 2O(nd)-size proof which verifies all possible divisors. Therefore, choosing d > 1/γ,
Item 2 and p-size P -proofs of tt(hn, 2

n/4, 1/2− 1/2n/4) imply Item 1.

It remains to prove Lemma 4.
Suppose π is a P -proof of (5.1). Assuming that B automates P on Φ, we want

to obtain a P/poly-natural property useful against Circuit[nk]. To do so, observe (first,
without formalizing it in APC1) that for each g, B can be used to find a proof of tt(hn ⊕
g, nk) or to recognize that tt(g, 2Kn

γ
) holds - if tt(g, 2Kn

γ
) was falsifiable, there would

exist a poly(|π|)-size P -proof of tt(hn ⊕ g, 2Kn
γ
, 1/2 − 1/2Kn

γ
) obtained by substituting

the falsifying assignment to the proof of (5.1) and thus B would find a short proof of
tt(hn ⊕ g, nk), for sufficiently big c. Since for random g, both hn ⊕ g and g are random
functions, we know that with probability ≥ 1/2 B finds a proof of tt(hn ⊕ g, nk) or with
probability ≥ 1/2 it recognizes that tt(g, 2Kn

γ
) holds. In both cases, B yields a P/poly-

natural property useful against Circuit[nk].
Let us formalize reasoning from the previous paragraph in APC1. Let N = 2n and B′

be the algorithm which uses B to search for P -proofs of tt(hn⊕g, nk) or to recognize that
tt(g, 2Kn

γ
) holds. B′ uses π to know how long it needs to run B. Assume for the sake of

contradiction that

G0 := {g ⊕ hn | B′(g) outputs a P -proof of tt(hn ⊕ g, nk)} �0 2N/3

G1 := {g | B′(g) recognizes that tt(g, 2Kn
γ

) holds} �0 2N/3.

30

It is easy to construct a surjection S witnessing that 2N �0 G0 ∪G1: S maps g ∈ G1 to g
and g ∈ G0 to g ⊕ hn. Following the argument above we conclude that S is a surjection:
for each g, either g ∈ G1 (and S(g) = g) or g⊕hn ∈ G0 (and S(g⊕hn) = g). Here, we use
the assumption that APC1 knows that P admits the substitution property and simulates
Frege rules. Thus, by Proposition 1 iv), 2N �0 2 · 2N/3, which yields a contradiction by
Proposition 2 1.ii). Consequently, by Proposition 2 1.i), G0 �δ 2N/3 or G1 �δ 2N/3 for
δ−1 ∈ Log. Since g ∈ G0 and g ∈ G1 are decidable by p-size circuits and we assume the
reflection principle for P (which implies that G0 is useful), this means that either G0 or
G1 defines a P/poly-natural property useful against Circuit[nk].

Finally, by the APC1-formalization of [8], Theorem 9, we obtain poly(2n, |π|)-size cir-
cuit L(B, π, p) learning circuits with m = nd inputs and size nk/10, over the uniform
distribution, with membership queries, confidence 1/N4, up to error 1/2− 1/N3.

Corollary 3. Assume there is a NE ∩ coNE-function hn : {0, 1}n 7→ {0, 1} such that for
each sufficiently big n, hn is not (1/2 + 1/2n/4)-approximable by 2n/4-size circuits. Then
there is a proof system P (which can be described explicitly17 given the definition of hn)
such that for each constant K and γ < 1, Items 1 and 2 from Theorem 10 are equivalent.
Moreover, the equivalence holds for each APC1-decent system simulating P .

Proof. We want to construct an APC1-decent proof system P which proves efficiently
tt(hn, 2

n/4, 1/2−1/2n/4), for some hn. By the assumption, there is hn ∈ NE∩coNE, which
is hard to approximate. Let Hε, for ε ∈ {0, 1}, be the P-time predicates defining hn, i.e.
hn(x) = ε↔ ∃y, |y| ≤ 2O(|x|), Hε(x, y). Define P as WF extended by a rule, which allows
to derive every substitutional instance of ||L||, where || · || is the propositional translation
from Section 2.2 and L is the formula[

∀x < 2||z||,

(
(H0(x, y

0
x) ∨H1(x, y

1
x)) ∧

∧
ε=0,1

(Hε(x, y
ε
x)→ zx = ε)

)]

→ LBtt(z, 2
||z||/4, 2||z||(1/2− 1/2||z||/4)),

for sufficiently big n0 in LBtt. By definition, P proves efficiently tt(hn, 2
n/4, 1/2−1/2n/4) for

each sufficiently big n (we can hardwire the hardness of a boolean function for remaining
n, if needed) and satisfies Items 1-3 from the definition of APC1-decent systems. To see
that P proves its own reflection principle we reason in APC1: given a P -proof π, each
circuit in π is derived either by a WF-rule or it is a substitutional instance of ||L||, so by
Σb

1-induction on the length of π and the APC1-provability of the reflection of WF, cf. [15],
L implies that each circuit from π holds. Similarly as in the proof of Theorem 10, we can
now translate the resulting Σb

1 theorem of APC1 (the statement that L implies that each

17More formally, there is a p-time algorithm R such that given predicates H0, H1 defining hn (see the
proof of Corollary 3), R outputs a p-time algorithm defining system P .

31

circuit from π holds) to EF and remove the assumptions after moving to P . This shows
that P proves efficiently its own reflection and is APC1-decent.

Corollary 4. Let P, P0 be APC1-decent proof systems and assume there is a sequence of
boolean functions h = {hn}n>n1, for a constant n1, such that systems P, P0 prove efficiently
tt(hn, 2

n/4, 1/2− 1/2n/4). Then, for each constant K and constant γ < 1, Item 1 implies
Item 2:

1. P -provable automatability. For each k ≥ 1, for each function s(n) ≥ 2n, there
is a constant K ′ and sK

′
-size circuits B such that P proves efficiently autP (B,Φ, s),

where Φ is the set of pairs 〈tt(f, 2Knγ , 1/2− 1/2Kn
γ
), tt(f, nk)〉 for all boolean func-

tions f with n inputs.

2. P0-provable proof search. For each k ≥ 1, there is a constant K ′ and 2K
′n-size

circuits B such that P0 proves efficiently “B (given just tt(f, nk)) outputs a P -proof
of tt(f, nk) or B outputs a 2Kn

γ
-size circuit (1/2 + 1/2Kn

γ
)-approximating f .”.

Proof. Suppose Item 1 holds. By Theorem 10, Item 1 of Theorem 10 holds. Then,
following the proof of (1.→ 2.) of Theorem 10 with P0 instead of P in the last paragraph,
we obtain Item 2. (The provability of the reflection principle in P0 is not needed because
we are not deriving automatability of P .)

Remark on the collapse. Denote by P ` φn the existence of poly(|φn|)-size P -proofs
of φn. Corollary 4 exploits the fact (captured by Lemma 3, Item 2) that for PV1-decent
proof systems P (defined analogously as APC1-decent systems, with APC1 replaced by
PV1 and WF replaced by EF) there is a p-time algorithm B such that

EF ` SAT (x, y)→ PrfP (B(x, y), dSAT (x, y)e), (5.2)

where formula SAT (x, y) says that propositional formula (encoded by) x is satisfied by
assignment y, PrfP (z, x) says that z is a P -proof of x, and dφe is a code of formula φ.
Importantly, while y stands for free atoms in the assumption SAT (x, y), it represents
fixed bits (determined by y) w.r.t. P in dSAT (x, y)e.

Using (5.2), it is possible to obtain a collapse similar to Corollary 4 which is uncon-
ditional: If there are p-size circuits A such that P ` ¬SAT (x,A(x)) ∨ PrfP (A(x), x) (in
other words, there are short P -proofs of P being p-bounded and automatable by p-size
circuits), then there are p-size circuits A′ such that EF ` ¬SAT (x,A′(x))∨PrfP (A′(x), x).
For example, if there are p-size ZFC-proofs of ZFC being p-bounded and automatable by
p-size circuits, then there are p-size EF-proofs of ZFC being p-bounded and automatable
by p-size circuits.

Intuitively, the proof proceeds as follows. Assume that, for some p-size circuits A,

ZFC ` ¬SAT (x,A(x)) ∨ PrfZFC(A(x), x).

32

Then,
EF ` PrfZFC(π, d¬SAT (x,A(x)) ∨ PrfZFC(A(x), x)e), (5.3)

for a poly(|x|)-size assignment π which is fixed for each length |x|.
Similarly, as ZFC proves efficiently its own reflection principle, there are p-size proofs

π′ such that EF ` PrfZFC(π′, dPrfZFC(z, x) → SAT (x, y)e). Moreover, there are p-size
circuits C which given x EF-provably output a ZFC-proof of PrfZFC(z, x) → φ, where
dφe = x. That is,

EF ` PrfZFC(C(x), dPrfZFC(A(x), x)→ φe). (5.4)

Since ZFC is PV1-decent, by (5.2),

EF ` ¬SAT (x,A(x)) ∨ PrfZFC(B(x,A(x)), dSAT (x,A(x))e). (5.5)

Therefore, by (5.3)-(5.5), there are p-size circuits B′ such that

EF ` ¬SAT (x,A(x)) ∨ PrfZFC(B′(x), x).

Acknowledgements

We would like to thank Moritz Müller, Jan Kraj́ıček, Iddo Tzameret and anonymous
reviewers for comments on a draft of the paper. Ján Pich received support from the
Royal Society University Research Fellowship URF\R1\211106. Rahul Santhanam was
partially funded by the EPSRC New Horizons grant EP\V048201\1: “Structure versus
Randomness in Algorithms and Computation”. This project has received funding from
the European Union’s Horizon 2020 research and innovation programme under the Marie
Sk lodovska-Curie grant agreement No 890220.

References

[1] Alekhnovich M., Braverman M., Feldman V., Klivans A. R., Pitassi T.; Learnability
and automatizability; Foundations of Computer Science (FOCS), 2004.

[2] Applebaum B., Barak B., Xiao D.; On basing lower bounds for learning on worst-case
assumptions; Foundations of Computer Science (FOCS), 2008.

[3] Atserias A., Müller M; Automating Resolution is NP-hard; Foundations of Computer
Science (FOCS), 2019.

33

[4] Binnendyk E., Carmosino M., Kolokolova A., Ramyaa R., Sabin M.; Learning with
distributional inverters; Algorithmic Learning Theory (ALT), 2022.

[5] Bonet M. L., Domingo C., Gavaldá R., Maciel A., Pitassi T.; Non-automatizability
of bounded-depth Frege proofs; Computational Complexity, 13(1-2):47-68, 2004.

[6] Bonet M. L., Pitassi T., Raz R.; On interpolation and automatization for Frege proof
systems; SIAM Journal of Computing, 29(6):1939-1967, 2000.

[7] Buss S.; Bounded arithmetic; Bibliopolis, 1986.

[8] Carmosino M., Impagliazzo R., Kabanets V., Kolokolova A.; Learning algorithms
from natural proofs; Computational Complexity Conference (CCC), 2016.

[9] Cobham A.; The intrinsic computational difficulty of functions, Proceedings of the
2nd International Congress of Logic, Methodology and Philosophy of Science, North
Holland, pp. 24-30, 1965.

[10] Cook S.A.; Feasibly constructive proofs and the propositional calculus, Symposium
on Theory of Computing (STOC), 1975.

[11] Cook S.A., Thapen N.; The strength of replacement in weak arithmetic, ACM Trans-
actions on Computational Logic, 7(4):749-764, 2006.

[12] de Rezende S., Göös M., Nördstrom J., Pitassi T., Robere R., Sokolov D.; Automating
algebraic proof systems is NP-hard; Computational Complexity Conference (CCC),
2020.

[13] Garĺık M.; Failure of feasible disjunction property for k-DNF Resolution and NP-
hardness of automating it; ECCC, 2020.

[14] Göös M., Koroth S., Mertz I., Pitassi T.; Automating Cutting Planes is NP-hard;
Symposium on Theory of Computing (STOC), 2020.

[15] Jeřábek E.; Dual weak pigeonhole principle, Boolean complexity and derandomization;
Annals of Pure and Applied Logic, 129:1-37, 2004.

[16] Jeřábek E.; Weak pigeonhole principle and randomized computation; Ph.D. thesis,
Charles University in Prague, 2005.

[17] Jeřábek E.; Approximate counting in bounded arithmetic; Journal of Symbolic Logic,
72:959-993, 2007.

[18] Kraj́ıček J.; Bounded arithmetic, propositional logic, and complexity theory; Cam-
bridge University Press, 1995.

34

[19] Kraj́ıček J.; Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic; Journal of Symbolic Logic, 66(2):457-486, 1997.

[20] Kraj́ıček J.; On the weak pigeonhole principle; Fundamenta Mathematicae, 170(1-
3):123-140, 2001.

[21] Kraj́ıček J.; Forcing with random variables and proof complexity; Cambridge Univer-
sity Press, 2011.

[22] Kraj́ıček J.; Proof complexity; Cambridge University Press, 2019.

[23] Kraj́ıček J., Pudlák P.; Some consequences of cryptographical conjectures for S1
2 and

EF; Information and Computation, 140(1):82-94, 1998.

[24] Kraj́ıček J., Pudlák P., Takeuti G.; Bounded arithmetic and the polynomial hierarchy;
Annals of Pure and Applied Logic, 52:143-153, 1991.

[25] Müller M., Pich J.; Feasibly constructive proofs of succinct weak circuit lower bounds;
Annals of Pure and Applied Logic, 2019.

[26] Nisan N., Wigderson A.; Hardness vs. randomness; J. Comp. Systems Sci., 49:149-
167, 1994.

[27] Oliveira I.C., Santhanam R.; Conspiracies between learning algorithms, circuit lower
bounds, and pseudorandomness; Computational Complexity Conference (CCC),
2017.

[28] Paris J., Wilkie A., Woods A.; Provability of the pigeonhole principle and the exis-
tence of infinitely many primes; Journal of Symbolic Logic, 53(4):1235-1244, 1988.

[29] Pich J.; Learning algorithms from circuit lower bounds; preprint, 2020.

[30] Pitassi T., Santhanam R.; Effectively polynomial simulations; ICS, 2010.

[31] Pudlák P.; On the length of proofs of finitistic consistency statements in first-order
theories; Logic Colloquium 84, North Holland P.C., 1986.

[32] Razborov A.A; On provably disjoint NP pairs, BRICS, 1994.

[33] Razborov A.A.; Bounded arithmetic and lower bounds in boolean complexity; Feasible
Mathematics II, 344-386, 1995.

[34] Razborov A.A; Unprovability of lower bounds on the circuit size in certain fragments
of bounded arithmetic, Izvestiya of the Russian Academy of Science, 59:201-224, 1995.

35

[35] Razborov A.A.; Pseudorandom generators hard for k-DNF Resolution and Polyno-
mial Calculus; Annals of Mathematics, 181(2):415-472, 2015.

[36] Razborov A.A, Rudich S.; Natural Proofs; Journal of Computer and System Sciences,
55(1):24-35, 1997.

[37] Santhanam R.; Pseudorandomness and the Minimum Circuit Size Problem; Innova-
tions in Theoretical Computer Science (ITCS), 2020.

[38] Valiant L.; A theory of the learnable; Communications of the ACM, 27, 1984.

[39] Williams R.; Non-uniform ACC circuit lower bounds; Computational Complexity
Conference (CCC), 2011.

36

	Introduction
	Our result
	Outline of the proof
	Related results
	Open problems

	Preliminaries
	Natural proofs and learning algorithms
	Bounded arithmetic and propositional logic
	Approximate counting

	Formalizing complexity-theoretic statements
	Circuit lower bounds
	Learning algorithms
	Automatability

	Lower bounds versus learning in proof complexity
	Learning algorithms from natural proofs in APC1

	Main theorem

