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Abstract

We revisit known constructions of efficient learning algorithms from various no-
tions of constructive circuit lower bounds such as distinguishers breaking pseudoran-
dom generators or efficient witnessing algorithms which find errors of small circuits
attempting to compute hard functions. As our main result we prove that if it is
possible to find efficiently, in a particular interactive way, errors of many p-size cir-
cuits attempting to solve hard problems, then p-size circuits can be PAC learned
over the uniform distribution with membership queries by circuits of subexponential
size. The opposite implication holds as well. This provides a new characterisation
of learning algorithms and the natural proofs barrier of Razborov and Rudich. The
proof is based on a method of reconstructing Nisan-Wigderson generators intro-
duced by Krajicek (2010) and used to analyze complexity of circuit lower bounds
in bounded arithmetic.

An interesting consequence of known constructions of learning algorithms from
circuit lower bounds is a learning speedup of Oliveira and Santhanam (2016). We
present an alternative proof of this phenomenon and discuss its potential to advance
the program of hardness magnification.

1 Introduction

While the central conjectures in complexity theory such as P # NP have the form of
impossibility results, we hope that a better understanding of the impossibility phenomena
will also shed light on the question of constructing new useful algorithms. A successful
formalization of such hopes can be found in cryptography, where the impossibility results
in the form of average-case lower bounds are turned into cryptographic primitives. In the
present paper we are interested in turning complexity lower bounds into efficient learning
algorithms.

Results of this form can be traced back to cryptography as well. The ‘pseudoran-
domness from unpredictability’ paradigm was used by Blum, Furst, Kearns and Lipton [5]



to show that efficient distinguishers breaking pseudorandom generators imply an efficient
learning of p-size circuits on average. The distinguishers from [5] can be interpreted as con-
structive circuit lower bounds distinguishing partial truth-tables of easy Boolean functions
from partial truth-tables of hard functions, cf. Section 4. The existing methods for prov-
ing circuit lower bounds have been also applied in constructions of new learning algorithms
for restricted circuit classes, e.g. Linial, Mansour and Nisan [31] used AC® lower bounds
to get learning algorithms for AC’. More recently, in a landmark work, Carmosino, Im-
pagliazzo, Kabanets and Kolokolova [7] gave a generic construction of learning algorithms
from natural proofs of circuit lower bounds. Oliveira and Santhanam [41] extended their
result to a dichotomy between the non-existence of non-uniform pseudorandom function
families and the existence of efficient learning of small circuits. These results led Oliveira
and Santhanam [41] also to a discovery of a surprising learning speedup. For example,
learning p-size circuits over the uniform distribution with membership queries by circuits
of weakly subexponential size 2" /n“(!) implies that for each constant k and ¢ > 0, cir-
cuits of size n¥ can be learned over the uniform distribution with membership queries by
circuits of strongly subexponential size 2"°.

1.1 Our contribution

In the present paper we revisit these connections. We start by considering a simple
instance-specific model of learning in which proving a single circuit lower bound implies
a reliable prediction of the value of a target function on a single input. The model can
be intuitively seen as a very basic version of the construction of learning algorithms from
[5, 7] and differs from the standard PAC learning model mainly in that it does not ask
learners to construct a circuit which computes the target function on a big fraction of
inputs, cf. Section 3.1.

Learning from witnessing lower bounds. Our main result is a construction of efficient
PAC learning of p-size circuits from a constructive circuit lower bound for an arbitrary
Boolean function H. More precisely, we obtain subexponential-size circuits learning p-
size circuits over the uniform distribution with membership queries. The assumption of
a constructive circuit lower bound we need is defined as the existence of 20-size ‘wit-
nessing’ circuits W which given an oracle access to a p-size circuit D with n inputs find
a not-yet-queried input on which D fails to compute H. The circuits W are allowed to
fail on 1/poly(n) fraction of circuits D. Moreover, even if circuits W succeed on a circuit
D they are allowed to output incorrect answer logn times (receiving a correction from
a helpful counterexample oracle in each round) before generating the right answer, cf.
Theorem 5. The implication can be also interpreted as a construction of PAC learning
algorithms from a frequent interactive instance-specific' learning: If we are given an al-

'We use the adjective ‘instance-specific’ only informally in this paper. The instance-specific model
discussed earlier actually differs slightly from the concept in Theorem 5.



gorithm which is able to predict a value of a big fraction of p-size circuits (after a small
number of queries and < logn mistakes) even on a single input, this already implies learn-
ability of p-size circuits over the uniform distribution on almost all inputs. The opposite
implication producing efficient witnessing of lower bounds from learning algorithms holds
as well, which yields a new characterisation of PAC learning of small circuits over the
uniform distribution, cf. Lemma 7.

Relation to proof complexity, natural proofs and witnessing theorems. The
notion of interactive witnessing of circuit lower bounds from Theorem 5 is inspired by wit-
nessing theorems in bounded arithmetic. One of the most prominent theories of bounded
arithmetic is Cook’s theory PV; formalizing p-time reasoning. Theories of bounded arith-
metic satisfy many kinds of witnessing theorems which show, for example, that if we can
prove a p-size circuit lower bound for a function H € NP in PVy, then there exists a wit-
nessing analogous to the one from Theorem 5 except that the witnessing circuits W have
white-box access to D (i.e. they have access to a full description of D), see Section 3.2 for
a more detailed comparison.? The witnessing from Theorem 5 is also closely related to
algorithms finding hard instances of NP problems by Gutfreund, Shaltiel, Ta-Shma [15]
and Atserias [3]. The main difference is that the algorithms from [15] have white-box ac-
cess to the algorithm whose error they search for. While Atserias [3] made [15] work with
the black-box (oracle) access, his algorithm achieves much smaller probability of success
than the one required in Theorem 5, cf. Section 3.2.

The proof of Theorem 5 is an adaptation of a method of exploiting Nisan-Wigderson
generators introduced by Krajicek [23] in order to give a model-theoretic evidence for
Razborov’s conjecture in proof complexity. Razborov’s conjecture [49] states a conditional
hardness of deriving tautologies expressing the existence of an element outside of the
range of a suitable NW-generator in strong proof systems. Krajicek’s result significantly
strengthens a similar but much simpler proof of the validity of Razborov’s conjecture for
proof systems with feasible interpolation [43]. The method has been also used to show a
conditional hardness of generating hard tautologies [26], a conditional unprovability of p-
size circuit lower bounds for SAT in theories of bounded arithmetic below PV [44] and an
unconditional unprovability of strong nondeterministic lower bounds in PV; [46]. We take
advantage of its unique way of exploiting the NW generator: it gives us a reconstruction
algorithm which after breaking the NW-generator in a particular interactive fashion allows
us to approximately compute the function on which the generator is based. There are,
however, technical issues with adapting this method in our context. For example, unlike
in previous applications of Krajicek’s reconstruction of the NW-generator, our witnessing
circuits can fail with a significant probability. Our main contribution is in finding the
right notions which allow the arguments to go through (in both directions).

A competing notion of constructive circuit lower bounds has been developed in the

2Tt is not clear how to define a theory of bounded arithmetic so that the witnessing algorithm resulting
from the provability of circuit lower bounds in the theory would match the witnessing in Theorem 5.



influential theory of natural proofs of Razborov and Rudich [50], which explains why many
of the existing lower bound methods cannot yield separations such as P # NP without
disproving cryptographic conjectures. Natural proofs are known to be equivalent to the
existence of efficient learning algorithms, cf. [7]. For example, P/poly-natural proofs useful
against P/poly? are equivalent to subexponential-size circuits learning p-size circuits over
the uniform distribution with membership queries. Furthermore, natural proofs have been
used to derive unprovability results in proof complexity as well. Specifically, to derive
unprovability of circuit lower bounds in proof systems with the feasible interpolation
property, cf. [48, 22]. Despite similar applications and motivations for defining these
concepts, the relation between natural proofs and the witnessing method has not been
clear. In fact, a priori the ‘static’ definition of natural proofs (which inspect the whole
truth-table) appears to be quite orthogonal to the witnessing from Theorem 5 (which
prints a single error of a small candidate circuit). Theorem 5 thus presents a bridge
between two seemingly different notions of constructivizing circuit lower bounds. It thus
not only extends the scope of the natural proofs barrier by providing another equivalent
characterisation which incorporates interactivity but also helps to clarify its relation to
the witnessing method in bounded arithmetic.

Learning speedup. Our second contribution is a simple proof of a generalized learning
speedup of Oliveira and Santhanam [41]. Specifically, we show that for each superpolyno-
mial function s, if for each constant k, circuits of size n* are learnable by circuits of size s
over the uniform distribution with random examples, then for each constant k£ and € > 0,
circuits of size n* are learnable over the uniform distribution with membership queries
by circuits of size O(s¢), cf. Theorem 19. We obtain the speedup by a more direct ex-
ploitation of a slightly modified NW-generator. In comparison to the proof from [41], this
sidesteps the need to construct natural proofs and invoke the construction of Carmosino
et al. [7]. A disadvantage of the method is that we need to assume learning with random
examples instead of membership queries. Nevertheless, we present one more alternative
proof of the learning speedup based on (a simple case of) Theorem 5, which allows to
start with membership queries, cf. Theorem 20. We emphasize, however, that behind all
proofs of the learning speedup is essentially the same general idea of reconstructing, in
this or that way, the base function of some form of the NW-generator.

Relation to hardness magnification and locality. The generalized learning speedup
can be interpreted as a ‘nonlocalizable’ hardness magnification theorem reducing a com-
plexity lower bound into a seemingly weaker one. In general, hardness magnification refers
to an approach to strong complexity lower bounds developed in a series of recent papers,
cf. Section 5. Unfortunately, while the approach avoids (in certain cases provably [8])

3P /poly-natural proofs useful against P/poly are defined as 20(")_size circuits with 2" inputs accepting
al/ 20(")_fraction of inputs and rejecting all inputs which represent truth-tables of Boolean functions on
n inputs computable by p-size circuits, cf. Definition 1.



the natural proofs barrier, it suffers from a ‘locality barrier’: magnification theorems typ-
ically yield unconditional upper bounds for specific problems if the computational model
in question is allowed to use oracles with small fan-in (local oracles), but the existing
lower bounds actually work even against the presence of local oracles. In fact, a better
understanding of nonlocalizable lower bounds (i.e. lower bounds which do not remain
valid in the presence of local oracles) is essential for further progress on strong complexity
lower bounds in general, see Section 5 for more details. A promising aspect of the learning
speedup (Theorem 19) is that it avoids the locality barrier, cf. Section 5.

Learning from breaking cryptographic pseudorandom generators. In Section 4
we survey known constructions of learning algorithms from various ways of breaking pseu-
dorandom generators (PRGs). While several such constructions are known, the question of
extracting efficient learning of p-size circuits from the mere non-existence of cryptographic
PRGs remains open. A positive answer to this question would establish an interesting
win-win situation: either safe cryptography or efficient learning is possible. In the al-
ready mentioned approach, Oliveira and Santhanam [41] showed that efficient learning
of p-size circuits with membership queries follows from the non-existence of nonuniform
pseudorandom function families. By a straightforward adaptation of the proof method
behind their result we show that efficient learning of p-size circuits with random examples
follows from the non-existence of succinct nonuniform pseudorandom function families,
cf. Theorem 15. Finally, we point out that the desired construction of learning algorithms
from the non-existence of cryptographic PRGs is closely related to a question of Rudich
about turning demibits to superbits, cf. Section 4.4.

2 Preliminaries

[n] denotes {1,...,n}. Circuit[s] denotes fan-in two Boolean circuits of size at most s. The
size of a circuit is the number of gates. A function f : {0,1}" — {0, 1} is y-approximated
by a circuit C, if Pr,[C(x) = f(x)] > 7.

Definition 1 (Natural property [50]). Let m = 2" and s,d : N — N. A sequence of
circuits {Cy, }5°_, is a Circuit[s(m)]-natural property useful against Circuit[d(n)] if

1. Constructivity. C,, has m inputs and size s(m),
2. Largeness. Pr,[C,,(z) = 1] > 1/m°W),

3. Usefulness. For each sufficiently big m, C,,(x) = 1 implies that x is a truth-table of
a function on n inputs which is not computable by circuits of size d(n).



Definition 2 (Pseudorandom generator). A function g : {0,1}" — {0, 1}"*1 computable
by p-size circuits is a pseudorandom generator safe against circuits of size s(n), if for
each circuit D of size s(n),

LB D) =1 P (D) = 1)) < o

Definition 3 (PAC learning). A circuit class C is learnable over the uniform disribution
by a circuit class D up to error € with confidence ¢, if there are randomized oracle circuits
L from D such that for every Boolean function f : {0,1}" + {0,1} computable by
a circuit from C, when given oracle access to f, input 1™ and the internal randomness
w € {0,1}*, L/ outputs the description of a circuit satisfying

Pr[Lf (1", w) (1 — €)-approzimates f] > .

L/ wuses non-adaptive membership queries if the set of queries which LY makes to the
oracle does not depend on the answers to previous queries. LY uses random examples if
the set of queries which LY makes to the oracle is chosen uniformly at random.

In this paper, PAC learning always refers to learning over the uniform distribution.
While, a priori, learning over the uniform distribution might not reflect real-world sce-
narios very well (and on the opposite end, learning over all distributions is perhaps overly
restrictive), as far as we can tell it is possible that PAC learning of p-size circuits over the
uniform distribution implies PAC learning of p-size circuits over all p-samplable distribu-
tions. Binnendyk, Carmosino, Kolokolova, Ramyaa and Sabin [4] proved the implication,
if the learning algorithm in the conclusion is allowed to depend on the p-samplable dis-
tribution.

Boosting confidence and reducing error. The confidence of the learner can be
efficiently boosted in a standard way. Suppose an s-size circuit L learns f up to error ¢
with confidence 6. We can then run L/ k times, test the output of L/ from every run with
m new random queries and output the most accurate one. By Hoeffding’s inequality, m
random queries fail to estimate the error € of an output of L’ up to v with probability at
most 2/e27°™. Therefore the resulting circuit of size poly(s,m, k) learns f up to error e+
with confidence at least 1 — 2k /"™ — (1 — §)k > 1 — 2k /e?*™ — e=# _If we are trying to
learn small circuits we can get even confidence 1 by fixing the internal randomness of the
learner nonuniformly without losing much on the running time or the error of the output.

It is also possible to reduce the error up to which L/ learns f without a significant
blowup in the running time and confidence. If we want to learn f with a better error, we
first learn an amplified version of f, Amp(f). Employing direct product theorems and
Goldreich-Levin reconstruction algorithm, Carmosino et. al. [7, Lemma 3.5] showed that
for each 0 < €,y < 1 it is possible to map a Boolean function f with n inputs to a Boolean



function Amp(f) with poly(n, 1/e,log(1/~)) inputs so that Amp(f) € P/poly’ and there
is a probabilistic poly(|C|,n,1/€,1/v)-time machine which given a circuit C' (1/2 + 7)-
approximating Amp(f) and an oracle access to f outputs with high probability a circuit
(1 —€)-approximating f. We can thus often ignore the optimisation of the confidence and
error parameter. Note, however, that the error reduction of Carmosino et al. requires
membership queries.

3 Instance-specific learning

In Section 3, we consider two types of ‘instance-specific’ learning. While in Theorem 5
we show that the second type coincides with the standard PAC learning, the first type
presented in Section 3.1 is more rudimentary and its connection to PAC learning is less
clear.

3.1 Learning from individual circuit lower bounds

The most direct way of turning circuit lower bounds into a certain type of learning can
be described as follows.

A. Prediction from lower bound. Suppose we are given bits f(y1), ..., f(yx)
for n-bit strings v, . . ., yr defining a partial Boolean function f. We want to pre-
dict the value of f on a new input yx1 € {0,1}". A priori f(ygi1) is not defined
but we will interpret the minimal-size circuit C/ coinciding with f on 41, ...,y
as ‘the right’ prediction of f(yr.1). That is, we want to find C/(y4). Here, we
assume that the minimal circuit C/ determines the value f(ygy1). Otherwise,
there are two circuits C', C? of minimal size such that C'(yx41) # C?*(yrs1), and
therefore any prediction is equally good. Say that the size of the minimal circuit
C/ is s (here we assume that we know s). Then the task to predict the value
CY (yr11) can be formulated as the task to prove an s-size circuit lower bound of
the form

V circuit C of size s, \/ Cyi) # flyi) V Clygs1) # €

i=1,...k

fore=0o0re=1.

The simple observation from box A appeared in [36, Section 4.5] and [45]. We are not
aware of a more systematic treatment of this concept. There are related models of learning
such as ‘knows what it knows’ model by Li-Littman-Walsh [30] and ‘reliable learning’ by



Rivest-Sloan [51] which prohibit incorrect predictions in various ways.? These models,

however, follow the formalization of PAC learning in that the goal of the learner is to
learn the target concept by accessing it. In box A we do not assume that the target
concept f is determined on all inputs or prior to the given samples.

An interesting aspect of the prediction method described in box A is that by proving
even a single circuit lower bound we can learn something about the function f (if we know
the value s). More precisely, we predict C¥ on a single input but do not necessarily gain
knowledge of the values of C/ on other inputs. This instance-specific learning should be
contrasted with PAC learning, Definition 3, where one is required to generate a circuit
predicting the target function f on most inputs. This, however, does not mean that it is
easier to learn in the sense of box A: in Definition 3 we do not need to recognize when the
prediction errs while the prediction from box A is zero-error in the sense that it guarantees
to output the right value of C/(yp,1).

Provability vs truth. The definition of ‘the right’ prediction in terms of minimal circuits
used in box A can be interpreted as an implicit (alternative) definition of truth. Consider,
for example, that strings y; encode statements in set theory ZFC and the value f(y;) is 1
if and only if the statement encoded by y; is provable in ZFC. It would be interesting to
find out whether the minimal circuit coinciding with a sufficiently rich list of such samples
(yj, f(y;)) determines a truth value of the Continuum Hypothesis or of the consistency of
ZFC, statements which are independent of ZFC. Unfortunately, in general, such questions
seem to be out of reach of the contemporary mathematics.

Determining minimal circuit size. A drawback of the observation in box A is that it
requires knowledge of the size s of the minimal circuit C¥. The size s could be determined
by deciding s t-size circuit lower bounds for all £ € [s], but this can be a hard task. Perhaps
a more practical way of addressing the issue is to take instead of s a sufficiently big s
(intended to approximate s), choose a random ¢ € [¢'] and prove t-size lower bounds (as
in box A with ¢ instead of s). If s < n®®  the probability that we have the right ¢t = s
is 1/n°M). Informally speaking, if we want to get an approximation of the accuracy of
the predictions obtained in this way, it suffices to solve polynomially many t-size lower
bounds (in order to predict CV(y) on polynomially many y’s). If the accuracy is not high,
we can repeat the process with a new random ¢ € [¢']. The advantage of the resulting
prediction method is that it does not rely on deciding correctly whether some particular
t-size circuit lower bounds hold - we are actually allowed to err on some fraction of lower
bounds. However, its predictions are no longer zero-error. A closely related argument is
formalized in Theorem 11.

Proof complexity. The prediction method from box A relies on proof complexity of

“In a recent paper, Amit et al. [2] address the reliability issue using interactive protocols.



circuit lower bounds, cf. [27].5 It would be interesting to find out if proving circuit lower
bounds in standard proof systems suffices to construct learning circuits.

Question 4 (Learning interpolation). Is there a p-time function which given an Extended
Frege proof of a formula \/,c,C(y) # f(y) vV C(x) # €, for e = 0 or e = 1, with free
variables representing s-size circuits C with n inputs, a fived set A of n-bit inputs of a
sufficiently big size |A| = poly(s,n), a fivred n-bit string x ¢ A and values of f € Circuit[s]
on A, outputs a circuit (1/2 + 1/n)-approzimating f ¢

3.2 Learning from witnessing lower bounds

We now give a construction of PAC learning algorithms from an interactive witnessing
of circuit lower bounds. As discussed in the introduction, the implication can be also
interpreted as a construction of PAC learning algorithms from a frequent interactive
instance-specific learning.

Theorem 5 (Learning from interactive witnessing of lower bounds). Let d > 2;k, K > 1
and H be a Boolean function with n inputs. Assume there are 2K"-size circuits

{W}je2mn tefliogn)]

W0dk_gize circuits with n inputs there ewists j €

W0dk_size circuits attempting to

such that for each distribution R on n
[257] such that circuits WY, ... s Wilogn) witness errors of n
compute H in the following way.

Given black-box oracle access to a random n'°%-size circuit D(x) with n inputs,

with probability at least 1 —3/n® over R, the following interactive protocol succeeds:
After querying values of circuit D, Wf outputs a not-yet-queried x; € {0,1}" s.t.
D(z1) # H(xy) or Wi receives a correction in the form of bits D(x1), H(x1) s.t.
D(z1) = H(zy). Having D(z1), H(z1) and the ezamples queried by Wi, Wi makes
further queries to D and generates the second not-yet-queried candidate x5 € {0,1}"
for the claim D(x2) # H(xy). If D(x2) = H(xa), Wi receives a correction and the
protocol continues in this way until some Wtj, for some t <logn, with access to all
previous corrections and examples, finds the right x; which has not been queried by
Wi, ..., W/ and witnesses D(z;) # H(z,).

®Notably, Razborov [49] established that weak proof systems such as Resolution operating with k-
DNFs for small & do not have polynomial-size proofs of any superpolynomial circuit lower bound what-
soever and he conjectured this holds under a hardness assumption even for stronger systems such as
Frege. The issue is, however, delicate because proof systems like Extended Frege are already capable of
formalizing a lot of complexity theory, see e.g. [36], and it is perfectly plausible that if a circuit lower
bound is provable at all, then it is efficiently provable in Extended Frege.



Then, circuits of size n% with n® inputs can be learned by circuits of size 25 over
the uniform distribution with non-adaptive membership queries, with confidence 1/ QK'n?

up to error 1/2 — 1/2K'”2, where K' is a constant depending only on K.

Note that the witnessing circuits from Theorem 5 can work for arbitrary function H
and, for the circuits D on which the witnessing succeeds, the number of queries in each
round is implicitly bounded by < 2" (since after querying D on all inputs it would be
impossible to output a not-yet-queried input).

It is not necessary to determine the precise form of inputs of circuits Wtj . The inputs
of Vth include examples queried by circuits ng, for ¢ < t, and the tuples of corrections
from rounds ¢’ < t. The examples received by Wt] include the results of all queries made
by Wg, for #' < t. If these results were not included, W/ could get them by simulating
W), for t' < t. Wi does not receive the candidate error z; € {0,1}" generated by W7,
but again, as Wi is allowed to simulate W7, it can obtain z; itself.

Proof sketch. The proof of Theorem 5 follows the main construction from [44, 23| in
the context of learning. The main technical complication is caused by the fact that the
witnessing circuits are allowed to fail on a significant fraction of inputs.®

Intuitively, the proof can be described as follows. Given an n%-size circuit C' with
n? inputs, which we want to learn, we define a set of circuits D¥(x) := NWg(w),, for
w € {0, 1}"2d, using a suitable Nisan-Wigderson generator NW¢ based on the circuit C.
The size of C' and the parameters of the NW-generator will ensure that D has n inputs
and size n'%* . By the assumption of the theorem, the witnessing circuits th can find
errors of such circuits D", for many w’s.

We will use the witnessing circuits to reconstruct the circuit C'. To this end, we show
that there is a frequent ‘trace’ Tr of the candidate errors generated by circuits th in
the witnessing protocol applied on D®. In more detail, for a 1/2°( fraction of w’s, the
candidate errors generated by Wf . th , with ¢ < logn, proceed along the fixed trace
Tr = (x1,...,x;) and in roughly 2/3 of these cases the protocol stops at x; and succeeds
in finding an error of D% satisfying D" (z;) # H(x;).

Using T'r and the truth-table of H as a non-uniform advice, we are able to construct
a single 29(_gize circuit D’ simulating the interactive protocol given by circuits th , for
a 1/2°M fraction of w’s. The simulation of the protocol by circuit D’ is obtained after
making a small number of queries to C. The queries (together with H) serve as the
corrections provided in the interactive witnessing. To guarantee that the set of queries is
small (and independent of the choice of w), we exploit the design of the NW-generator.

6A similar form of witnessing with some failure probability appears in [46], but in [46] the errors can
be removed after giving the witnessing algorithm a non-uniform advice. Krajicek [25] generalizes the
construction from [23] by allowing a small fraction of errors, but the fraction is significantly smaller than
what is needed in our application. Roughly, [25] allows ~ p2™" errors, for some p,e < 1 and m >> 1,
while we allow > p2™ errors.
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Once D’ can simulate the witnessing protocol for a 1/2°( fraction of w’s and in
roughly 2/3 of these cases find an error = such that D¥(z) # H(z), it can determine
the value of NWe(w), on a 1/2°0" fraction of w’s with advantage roughly 2/3 and
approximate C' with advantage 1/2°(™,

The final learning algorithm is described as the meta-algorithm generating circuits
D’ but it uses a uniformly random trace T’ instead of Tr (Tr depends on C and it is
unclear how to find it efficiently). Since there are 20("1°¢™) possible traces, Tr' = Tr with
probability > 1/20(nlogn),

Proof of Theorem 5. In order to derive the conclusion of the theorem it suffices to assume
that the witnessing circuits work for distributions R induced by specific Nisan-Wigderson
generators.

Consider a Nisan-Wigderson generator based on a circuit C' which we aim to learn.
Specifically, for d > 2 and n?! < m < 2n?? let A = {ai,j};i[[i:]] be a 2" x m 0-1 matrix
with n ones per row and J;(A) := {j € [m];a;; = 1}. Then define an NW-generator
NWe :{0,1}™ — {0,1}*" as

(NWe(w)) = C(w]Ji(A))

where w|.J;(A) consists of the w;’s such that j € J;(A).

For any d > 2, Nisan and Wigderson [38] constructed a 2" x m 0-1 matrix A with
n? ones per row and n?? < m < 2n?? which is also an (n,nd)—design meaning that for
each i # j, [J;(A) N J;(A)| < n and |J;(4)] = n?. Moreover, there are n®*-size circuits
which given ¢ € {0,1}" and w € {0,1}™ output w|J;(A), cf. [7]. Therefore, if C' has n?
inputs and size n?, then for each w € {0,1}™, (NW¢(w)), is a function on n inputs x
computable by circuits of size n'%%*. We want to learn C' by a circuit of size 20,

Let R be the distribution on n'°_size circuits defined so that a random circuit over
R is (NWe(w)), for w € {0,1}™ chosen uniformly at random.

By the assumption of the theorem, we have 25"-size circuits {7 }jG[QKn]’te[Llogn I such

that for some j € [2K7], for 1 — 3/n? fraction of all w € {0, 1}™, circuits W7, ... Wiogn,
find an error of the n'%-size circuit (NWe(w)), attempting to compute H. We will use
them in order to break, in a certain sense, the generator NW and reconstruct the circuit
C.

For each w, define a trace tr(C,w) = x1,...,x; as the sequence of ¢ < logn strings
generated by W7, ..., W/ on (NWe(w)), such that W7 is the first circuit which succeeds
in witnessing the error, i.e. H(x;) # (NWe(w)),. If circuits W7, ..., WL'lognJ do not find
an error, ¥y = T|lgn|- Lhe trace is defined w.r.t. a fixed ‘helpful’ oracle Y providing
corrections in the form of bits (NWe(w)).,, H(z).

For u € {0,1}™ and v € {0,1}™ " define r,(u,v) € {0,1}™ by putting bits of u into
positions J,(A) and filling the remaining bits by v (in the natural order). We say that

11



w € {0,1}™ is good if the trace tr(C,w) ends with a string witnessing an error of the
circuit (NWe(w)), where (NWe(w)), # H(z) and bad otherwise. Similarly, we say that
ue {0,1} is good wrt. v e {0,1}™ " and 2’ € {0,1}", if ry (u, v) is good.

The core claim of the proof is the existence of a frequent trace on which the circuits
Wf yee ,WL‘ succeed in witnessing the error with a significant advantage.

Claim 6. There is a trace Tr = X,...,X;,t <logn such that for s > 1/(6*"t=1)2%p)
fraction of all a € {0,1Y" " there is &' > s fraction of all u € {0,1}", such that
tr(C,rx, (u,a)) starts with Tr and at least (2/3 — 6! /n — 2/n)s'2"" of these u’s are good
w.r.t. a, Xy and satisfy tr(C,rx,(u,a)) = Tr.

logn |

The trace T'r is constructed inductively: in step ¢ we want to find Xy,..., X; 1 such
that for > 1/62"0~V fraction of all w’s tr(C,w) strictly extends Xi,..., X;_; and of the
w’s such that tr(C, w) strictly extends X7, ..., X; 1 at least 1 —6/2n? fraction are good.
For ¢ = 1 this holds by the assumption. Assume we have such Xi,..., X; 1. We want to
extend them to Xq,...,X;.

Let S be the set of w’s such that tr(C,w) strictly extends X, ..., X;_1. Since there
are at most 2" strings X;, there is X; such that for s” > 1/(22"6*"(—1) fraction of w’s
tr(C,w) starts with X;,..., X; and < 6°/n® fraction of these w’s are bad. Otherwise, the
fraction of good w’s in S would be < 1/2"+1—6"/n® < 1—6"/2n3 if 2n® < 2™. Here, the
term 1 — 6°/n? is contributed by the fraction of good w’s in S for which ¢r(C,w) extends
Xy, ..., X;_1 by ‘frequent’ X;’s, where X; is frequent if tr(C,w) extends X,..., X; 1 to
X;, for > 1/2" fraction of w’s in S. The term 1/2" is contributed by the fraction of good
w’s in S for which ¢r(C,w) extends X7, ..., X; 1 by the remaining X;’s.

Now, either for > (2/3)s” fraction of w’s tr(C,w) stops at X; (hence, for < (1/3)s”
fraction of w’s the trace continues and < 6's”/n? fraction of w’s such that tr(C,w) starts
with Xi, ..., X; are bad) or for > (1/3)s” > 1/6** fraction of w’s the trace strictly extends
X1,...,X;. In the latter case, < 6°s”/n3 fraction of w’s such that tr(C,w) starts with
Xi,...,X; are bad, which means that the fraction of bad w’s of w’s such that tr(C,w)
strictly extends X7,..., X; is < 3-6'/n3.

Since for all w, the length of ¢r(C,w) is bounded by logn, the process of extending
Xq,...,X; 1 has to stop at some step 1 <17 < logn. That is, thereis Tr = Xy,..., X;,t <
log n such that for > (2/3)s fraction of w’s tr(C,w) = T'r, for < (1/3)s fraction of w’s
tr(C,w) strictly extends Tr and < 6's/n? fraction of w’s such that ¢r(C,w) is consistent
with Tr are bad, where s > 1/(62**=122"). The number of good w’s such that tr(C,w) =
Tr is at least (2/3 — 6'/n3)s2™. Therefore, > s/n fraction of a’s can be completed
by s’ > s/n fraction of u’s to a string w = rx,(u,a) such that tr(C,w) starts with
Tr and at least (2/3 — 6!/n® — 2/n)s'2"" of these u’s are good w.r.t. a, X, and satisfy
tr(C,rx,(u,a)) = Tr. This proves the claim.

In order to design a circuit approximating C' we will make a small number of queries
to C'. The queries will form a part of the sets of corrections described as follows. For
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X € {0,1}" and o € {0,1}™ ", define rx(-,a’) € {0,1,%}™ by placing the bits of @’ in
the positions [m]\Jx(A) (in the natural order) and placing *’s in the remaining positions.
Since A is an (n, n?)-design, for any row x # X, there are at most n *’s in rx (-, a’)|.J,(A).
For x # X, let Yx‘f{éal be the set of all corrections provided by Y on z, C' and rx (u, a’)|J.(A),
for all u € {0,1}™". Formally, the elements of Yz)fc’“l are pairs (C(rx(u,a’)|J.(A)), H(z)),

for u € {0,1}"". As there are at most n *'s in rx(-,a’)|J,(A), the size of each set Y;féa/ is
200,

We are ready to describe a circuit D’ that approximates C. First, choose uniformly
at random o’ € {0,1}" " a trace X',..., X" with ¢t < logn, a bit maj € {0,1} and
j' € [257]. Query C so that all values of C' from sets Y:C)g’a,, for x # X, are obtained.

In order to get access to all corrections from Y;ﬂt”g/, e ,Y;ZT:C we provide also the full
truth-table of H as a nonuniform advice of D’. The truth table of H is a single nonuniform
advice of the learner which works for every C. Then D’ computes as follows. For each
u € {0, 1}”d produce rxt(u,a’). Next, use Wf, to produce z'. If a query of Wf, cannot
be answered by Y;’g’a/ with 2 # X! or if #! # X', output maj. (That is, if W7 does
not proceed along the trace X',..., X! D’ stops and outputs maj.) Otherwise, use the

advice from Y;ﬂt’g to find out if H(X') = NWg(rxe(u,a’))x1. If the equality does not

hold, output maj. Otherwise, use WQj/ to generate 22 and continue in the same manner
until I/th / produces zt. If a query of th " cannot be answered by }/Zg’a/ with x # X' or if
zt # X' output maj. Otherwise, output 0 iff H(X") = 1. The resulting circuit D’ has
n? inputs and size 29 if m < 2" (which holds w.l.o.g.).

By Claim 6, with probability at least 1/(6%7!°8m20(nlogn)) the learner guessed j' = 7,
trace Tr and assignment a such that for at least (2/3 — 6'/n® — 2/n)s’ fraction of all
u € {0,1}"", D’ will successfully predict C'(u). Moreover, for at most (1/3+6"/n3+2/n)s’
fraction of all u’s, the trace extends T'r or starts with 7'r but does not end with a string
witnessing an error. Since with probability 1/2 the correct value on at least half of all

remaining u’s is maj, Pr,[D'(u) = C(u)] > 1/2+ (1/6 — 6'/n® — 2/n)s. O

The assumption from Theorem 5 is justified by the following lemma which establishes
the converse (modulo a small change of parameters).

Lemma 7 (Witnessing from learning). Let k > 1; ¢ < 1; 2"/2n > 2 > nF and H
be a Boolean function with n inputs hard to (1 — 1/n)-approximate by circuits of size
2en. Assume Circuit[n®] can be learned by Circuit[2"] over the uniform distribution with
confidence 1 up to error €.

Then, there are 2°0 -size circuits {Wj}je[gn/gn], such that for each distribution R on
n¥-size circuits with n inputs there exists j € [2"/2n] such that given an oracle access to a
random n*-size circuit D(z) with n inputs, with probability at least 1 — 2e'n over R, after
< 29 queries to circuit D, WY outputs a not-yet-queried x € {0,1}" s.t. D(x) # H(z).
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Proof. By the assumption, there exists an 2-size circuit W which for each n*-size circuit
D, given an oracle access to D, outputs a circuit C' (1 — ¢’)-approximating D. Since H
is hard to (1 — 1/n)-approximate by circuits of size 2" < 2"/2n, there are at least 2"/2n
inputs which have not been queried by W and on which C fails to compute H. Therefore,
a random input which has not been queried by W and on which C fails to compute H
witnesses D(z) # H(x) with probability > 1 — 2¢'n. Let WY, for j € [2"/2n], be circuits
such that W/ simulates W and outputs the j-th input on which C' fails to compute H
ignoring inputs which have been queried by W. The size of each W7 is 20" because it
uses the whole truth table of H as a nonuniform advice. Let R be arbitrary distribution
on circuits of size n*. Since for each D, at least 1 — 2¢/n of W7’s succeed, there is W/
which succeeds on random D with probability > 1 — 2¢/n over R. O]

Note that Theorem 5 together with Lemma 7 imply that for suitable H it is possible to
collapse the number of rounds in the interactive witnessing from Theorem 5 at the expense
of witnessing errors of slightly smaller circuits (and a small increase in the running time
of the witnessing).

Learning from witnessing lower bounds with white-box access. Theorem 5 holds
also under the stronger assumption that circuits W} witness errors of n'*%*-size nondeter-
ministic circuits D with n inputs (and < n!%®% nondeterministic bits), where D computes
a function in Circuit[n'%], i.e. D is a nondeterministic circuit computing a function in
P/poly. Then it makes sense to allow Wt] to access a full description of a given nondeter-
ministic circuit D. The conclusion of the resulting theorem remains valid with the only
difference that the learning algorithm is given full description of an n?-size nondetermin-
istic circuit with n¢ inputs representing the target function (which is computable by an

n_size deterministic circuit with n? inputs).

Comparison to witnessing in bounded arithmetic. The existence of witnessing
analogous to the one from Theorem 5 follows from the provability of circuit lower bounds
in bounded arithmetic.

If H:{0,1}" — {0,1} is an NP function and ng, k are constants, we can write down
a VX4 formula LB(H, n*) stating that H is hard for circuits of size n*:

Vn, n > ng V circuit D of size < n* Iy, |y| =n, D(y) # H(y),

where D(y) # H(y) is a X% formula stating that a circuit D on input y outputs the opposite
value of H(y). Here, 3 is a class of formulas in the language of Cook’s theory PV; which
define precisely the predicates from X3 level of the polynomial hierarchy, cf. [27].

By a theorem of Krajicek, Pudldk and Takeuti (KPT theorem) [28], if PV; proves
LB(H, n*) then there are finitely many poly(n)-time functions Wy, ..., W; which witness
the existential quantifiers of LB(H,n*) (including the existential quantifier from the sub-
formula D(y) # H(y)) in the same interactive way as in Theorem 5 except that the
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corrections include strings standing for the innermost universal quantifier of LB(H,n*)
(which allow to verify in p-time that D(y) # H(y) has not been witnessed by the most
recent candidates). Moreover, Wy, ..., W, have access to the full description of a given
circuit D and do not make queries to D but directly generate potential errors, cf. [44].

It is possible to change the formula LB(H, n*) by introducing a parameter m satisfying
2" = |m| (this is often denoted by writing that n € LogLog) so that the witnessing from
the PV;-provability of the new formula is given by circuits Wi, ..., W, of size 20, In
such case, H is allowed to be in NE. We could allow H to be even an arbitrary Boolean
function if we formulated the lower bound in QBF proof systems instead of bounded
arithmetic.

A crucial difference between the black-box witnessing from Theorem 5 and white-
box witnessing in bounded arithmetic is that, under standard hardness assumptions, the
white-box witnessing of p-size circuit lower bounds for functions H such as SAT exists,
cf. [36].

Comparison to other witnessing theorems. Lipton and Young [33] showed that for
each Boolean function H hard for circuits of size O(n**1) there is a multiset of inputs A
of size O(n¥), the so called anticheckers, such that each n*-size circuit fails to compute
H on > 1/3 fraction of inputs from A. Therefore, for each distribution R on n*-size
circuits, some input from the set of anticheckers will witness an error of a random n*-size
circuits D (without a single query to D) with probability > 1/3 over R. Using ¢ rounds
the probability of witnessing an error can be increased to 1 — (2/3)". This can be done
with < n©®*Y) witnessing circuits VV; More precisely, we can let WY, ... W/ to be the i-th
possible t-tuple of inputs from the set of anticheckers, for i < n®*) . Theorem 5 shows
that it is not possible to increase this probability further to 1 — 3/n? using logn rounds
unless p-size circuits can be learned efficiently.

Gutfreund, Shaltiel and Ta-Shma [15] showed that if P # NP there is a p-time algo-
rithm which, given a description of an n*-time machine D, generates a set of < 3 formulas
such that D fails to solve SAT on one of them. Atserias [3] extended this by showing that
if NP ¢ BPP there is a probabilistic p-time algorithm which, given an oracle access to
an n*-time machine D, outputs with probability > 1/8 a set of formulas such that D
fails to solve SAT on one of them. These algorithms differ from the witnessing in The-
orem 5 in several ways: they find errors of uniform algorithms, are allowed to generate
errors of different lengths, generate errors with a significantly smaller probability than the
probability required in Theorem 5 and the set of formulas generated by the algorithm of
Atserias includes formulas on which the algorithm queried D.
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4 Learning from breaking pseudorandom generators

Circuit lower bounds can be used to construct PAC learning algorithms also if we assume
that they break pseudorandom generators. The construction goes back to a relation be-
tween predictability and pseudorandomness which can be interpreted in terms of learning
algorithms, as shown by Blum, Furst, Kearn and Lipton [5] and later extended by several
other works. In this section we survey some of these connections, derive a construction of
learning algorithms from the non-existence of succinct nonuniform pseudorandom func-
tion families and show how these connections relate to a question of Rudich about turning
demibits to superbits.

Our goal in Section 4 is to approach a construction of learning algorithms for p-size
circuits from (constructive circuit lower bounds, where the notion of constructivity of
lower bounds is relaxed from the natural properties useful against p-size circuits to) the
mere non-existence of cryptographic pseudorandom generators. Since efficient learning
algorithms for p-size circuits yield natural properties useful against p-size circuits, which
by [50] break pseudorandom generators, this would establish an important dichotomy:
cryptographic pseudorandom generators do not exist if and only if there are efficient
learning algorithms for small circuits (with suitable parameters). This possibility has
been explored by Oliveira-Santhanam [41] and Santhanam [53], cf. Section 4.3.

Question 8 (Dichotomy). Assume that for each € < 1 there is no pseudorandom generator
g : {0,1}" — {0,1}""! computable in P/poly and safe against circuits of size 2" for
ifinitely many n. Does it follow that p-size circuits are learnable by circuits of size
20(") " for some § < 1, with confidence 1/n, up to error 1/2 — 1/20("5)? 7

4.1 Learning from breaking a dependent generator

We start by recalling the construction from [5], which underlies all results in Section 4.

For an n®size circuit C' with n inputs define a generator
Ge :{0,1}™ — {0, 1}t

which maps m n-bit strings z1, ..., T, to x1,C(x1),...,Tm, C(Tm).

In order to learn the circuit C' it suffices to break the generator G depending on C'.
Lemma 9 (from [5]). There is a randomized p-time function L such that for every n°-size
circuit C, if an s-size circuit D satisfies

Pr[D(z) = 1] — Pr[D(G¢e(x)) = 1] > 1/s,

"In a subsequent paper [47], the question has been connected to the problem of reducing circuit lower
bounds to proof complexity lower bounds for concrete propositional proof systems.
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then the circuit C is learnable by L(D) over the uniform distribution with random exam-
ples, confidence 1/2m?s, up to error 1/2 —1/2ms.

Proof. Given D, L(D) chooses a random i € [m], random bits 7;,...,7,,, random n-bit
strings 1, ...,z except x; and queries the bits C(z4),...,C(z;—1). For z; € {0,1}",
let p; := D(x1,C(x1),...,2i-1,C(xi_1), i, T, - o, Ty T ). Then L(D) on z; predicts the
value C'(z;) by outputting —r; if p; = 1 and r; otherwise. By the triangle inequality, a
random i satisfies

Prlp;, = 1] — Pr[piy1 = 1] > 1/ms (4.1)

with probability 1/m. Since the probability over r; ..., 7y, x1, ..., 2, that L(D) predicts
C'(x;) correctly is

%PT[Pz‘ =1[r # C(zi)] + %(1 —Pr[pi=1|r; = C(x)]),

and Prlp; = 1] = s Pr[p; = 1| r; = C(x;)] + 3 Prlp; = 1 | r; # C(x)], it follows that the
probability over r;, ..., 7y, 21, ..., Ty that L(D) = C(x;) is > 1/2+1/ms, for i satisfying
(4.1). By averaging, for at least 1/2ms fraction of tuples 7, ..., T, T1, . o, Tio1, Tig1, - -« Ty,
Pr,,[L(D)(x;) = C(z;)] > 1/2 4 1/2ms, if i satisfies (4.1). Therefore,

Pr[L(D)(z;) = C(x;)] > 1/2 + 1/2ms
with probability 1/2m?s over the internal randomness of L(D). O

The proof of Lemma 9 implies that learning on average follows from breaking (inde-
pendent) pseudorandom generators. Specifically, let R be a p-size circuit which given r
bits outputs an n°-size circuit C' and consider a generator G : {0,1}""*" — {0, 1}7""+™
which applies R on its first r input bits in order to output a circuit C' and then computes
as a generator G¢ on the remaining mn inputs. Breaking GG implies that we can break
G with significant probability over C' drawn from the distribution induced by R. Con-
sequently, breaking G means that we can learn a big fraction of n°-size circuits w.r.t. R.
Can we improve this average-case learning into a worst-case learning which works for all
n‘-size circuits?®

8In a subsequent work, Hirahara and Nanashima [18] generalize this observation by constructing learn-
ing algorithms from the non-existence of one-way functions, where the learning algorithms learn samplers
(algorithms generating examples of concepts) having logarithmically small ‘computational depth’. It
seems reasonable to expect that many (if not all) samplers occurring in practice have logarithmically
small computational depth. Ideally, we would like to avoid this assumption. However, more importantly,
we would like to have a generator g which does not depend on the sampler/concept we want to learn
and such that a distinguisher for g on a (practically feasible) input length n can be efficiently turned
into a learning algorithm for practical samplers/concepts on an input length n?M) <m < poly(n). This
is not achieved by [18] (despite the fact that the generator g obtained in [18] does not depend on the
sampler/concept).
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4.2 Learning from natural proofs

The proof of Lemma 9 shows also that we can construct a worst-case learning algorithm as-
suming that given an oracle access to a pseudorandom generator we can efficiently produce
its distinguisher. In particular, a single method breaking all pseudorandom generators
would suffice.

Definition 10. The general circuit size problem GCSPls, k| is the problem to decide
whether for a given list of k samples (y;, b;), y; € {0,1}",b; € {0,1}, there exists a circuit
C' of size s computing the partial function defined by samples (y;,b;), i.e. C(y;) = b; for
the given k samples (y;,b;). The parameterized minimum circuit size problem MCSP|s]
stands for GCSP([s,2"] where the list of 2™ samples defines the whole truth-table of a
Boolean function.

If we were extraordinary in proving circuit lower bounds, we could solve GCSP effi-
ciently. Note that MCSP[n®®M)] € P/poly is a stronger assumption than the existence of a
P /poly-natural property useful against P/poly, which breaks pseudorandom generators.

The following theorem appeared (in a different terminology) in Vadhan [55], see
also [19].

Theorem 11 (Learning from succinct natural proofs). Assume GCSP[n¢,n?] € P/poly for
constants d > c¢+ 1. Then, Circuit[n®| is learnable by P/poly over the uniform distribution
with random examples, confidence 1/poly(n), up to error 1/2 —1/poly(n).

Proof. As the number of partial Boolean functions on a given set of m inputs is 2™ and
the number of n°-size circuits is bounded by 2", GCSP[n¢, n%] € P/poly implies that for
m = n? there are p-size circuits D such that for each n‘-size circuit C,

Pr[D(x) = 1] = Pr[D(G¢e(x)) = 1] > 1/2.
Now, it suffices to apply Lemma 9. O]

In Theorem 11, we can learn f € Circuit[n°]| even if the algorithm for GCSP works just
for a significant fraction of partial truth-tables (y1,b1),..., (Ypd, bya) with zero-error on
easy partial truth-tables. Carmosino, Impagliazzo, Kabanets and Kolokolova [7] proved
that the assumption of Theorem 11 can be weakened to the existence of a standard natural
property. The price for this is that the resulting learning uses membership queries instead
of random examples. The crucial idea is similar to the proof of Theorem 5: apply the
natural property (as an algorithm for suitable GCSP) on a Nisan-Wigderson generator
NW; based on the function f, which we want to learn.

Theorem 12 (Learning from natural proofs [7]). Let R be a P/poly-natural property useful
against Circuit[n?] for some d > 1. Then, for each v € (0,1), Circuit[n*] is learnable
by Circuit[2°"")] over the uniform distribution with non-adaptive membership queries,
confidence 1, up to error nik, where k = ‘%’ and a is an absolute constant.
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4.3 Learning from breaking pseudorandom function families

Oliveira and Santhanam [41] showed that the assumption of the existence of natural proofs
from Theorem 12 can be further weakened to the existence of a distinguisher breaking
non-uniform pseudorandom function families. Their result follows from a combination of
Theorem 12 and the Min-Max Theorem. Using their strategy but combining the Min-Max
Theorem with Theorem 11, we will show now that learning with random examples can
be obtained from distinguishers breaking succinct non-uniform pseudorandom function
families.”

A two-player zero-sum game is specified by an r x ¢ matrix M and is played as follows.
MIN, the row player, chooses a probability distribution p over the rows. MAX, the column
player, chooses a probability distribution ¢ over the columns. A row 7 and a column j are
drawn randomly from p and ¢, and MIN pays M, ; to MAX. MIN plays to minimize the
expected payment, MAX plays to maximize it. The rows and columns are called the pure
strategies available to MIN and MAX, respectively, while the possible choices of p and ¢
are called mized strategies. The Min-Max theorem states that playing first and revealing
one’s mixed strategy is not a disadvantage:

min,max, Zp(@)M” = Max,min; Z q(j)M; ;.
? J
Note that the second player need not play a mixed strategy - once the first player’s
strategy is fixed, the expected payoff is optimized for the second player by playing some
pure strategy. The expected payoff when both players play optimally is called the value
of the game. We denote it v(M).

A mixed strategy is k-uniform if it chooses uniformly from a multiset of k£ pure strate-
gies. Let My, = min,; jM;; and M., = maz;jM;;. Newman [37], Althofer [1] and
Lipton-Young [33] showed that each player has a near-optimal k-uniform strategy for k
proportional to the logarithm of the number of pure strategies available to the opponent.

Theorem 13 ([37, 1, 33]). For each € > 0 and k > In(c)/2¢?,

minpepkmaacj ZP(Z)M%] < U(M> + €(Mma:r - Mmm);

(2

where Py, denotes the k-uniform strategies for MIN. The symmetric result holds for MAX.

9There have been some subsequent developments after the composition of the present papers. Goldberg
and Kabanets [14] showed that learning of p-size circuits with random examples follows from efficient
algorithms solving various versions of MCSP adapted to time-bounded Kolmogorov complexity. Karchmer
[20] proved that a stronger form of an average-case learning with random examples follows from natural
proofs obtained in a suitable way.
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Definition 14 (Succinct non-uniform PRF). An (m,m’)-succinct non-uniform pseudo-
random function family from circuit class C safe against circuits of size s is a set S of
partial truth-tables ((x1,b1), ..., (Tm,bn)) where each x; is an n-bit string and b; € {0,1}
such that each partial truth-table from S is computable by one of m' circuits from C and
for every circuit D of size s,

P;r[D(x) =1] - Eg[D(x) =1]<1/s

where the first probability is taken over x € {0, 1}V chosen uniformly at random and
the second probability over partial truth-tables chosen uniformly at random from S.

Theorem 15 (Learning or succinct non-uniform PRF). Let ¢ > 1 and s > n,m > 1.
There is an (m,8s?)-succinct non-uniform PRF in Circuit[n¢| safe against Circuit[s] or
there are circuits of size poly(s) learning Circuit[n®] over the uniform distribution with
random examples, confidence 1/poly(s), up to error 1/2 —1/poly(s).

Proof. Consider a two-player zero-sum game specified by a matrix M with rows indexed
by nf-size circuits with n inputs and columns indexed by s-size circuits with m(n + 1)
inputs. Define the entry M¢ p of M corresponding to a row circuit C' and a column circuit
D as

Me,p = | Pr[D(z) = 1] - Pr[D(Gc(x)) = 1]

for the generator G¢ from the proof of Lemma 9. Hence M, — Mpnin < 1.

If v(M) > 1/4s, then by Theorem 13 (with ¢ = 1/8s), there exist a multiset of
k < 32n°t1s? s-size circuits D', ..., D* such that for every n‘size circuit C, a random D
from D', ..., D¥ satisfies

E[| Pr[D(z) = 1] — Pr[D(Go(z)) = 1][] > 1/8s.

By Lemma 9, for every n‘-size circuit C, one of the circuits D?',... D* (or their
negations) can be used to learn C' with confidence 1/poly(s), up to error 1/2 —1/poly(s).
A poly(s)-size circuit using a random D! from D' ... D¥ or its negation thus learns
Circuit[n¢] with random examples, confidence 1/poly(s), up to error 1/2 — 1/poly(s).

If v(M) < 1/4s, then by Theorem 13 (with € = 1/4s), there exists a multiset of
k < 8s* n°size circuits C, ..., C* such that for every s-size circuit D, a random C' from
Cl, ..., C* satisfies

E[|Pr[D(z) = 1] — Pr[D(Ge(x)) = 1]]] < 1/2s.
Since E[|Pr[D(z) = 1] — Pr[D(G¢(z)) = 1)|] > | Pr[D(z) = 1] — E[Pr[D(G¢o(2)) = 1]]| a

generator
G - {07 1}mn+ﬂogk] — {07 1}mn+m
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which takes as input a string of length mn+ [log k] encoding (an index of) a circuit C' from
C*, ..., C* together with m n-bit strings z1, ..., z,, and outputs x1, C(z1), . .., Tm, C(z)
is safe against circuits of size s. The range of G defines an (m, 8s?)-succinct non-uniform
PRF in Circuit[n‘] safe against Circuit[s]. O

Note that the existence of a generator GG from the proof of Theorem 15 follows directy
from a counting argument if we do not require that GG defines a PRF of small complexity: a

random set of poly(s,n) strings (yielding a non-uniform pseudorandom generator mapping
{0,1}000es) t5 {0,1}") fools circuits of size s.

4.4 Superbits vs demibits

Rudich [52] proposed a conjecture about the existence of superbits, a version of pseudo-
random generators safe against nondeterministic circuits, and showed that it rules out the
existence of NP-natural properties against P/poly. He then asked whether the existence
of superbits follows from a seemingly weaker assumption of the existence of so called
demibits. We note that an affirmative answer to his question would resolve Question 8 in
nondeterministic setting.

Definition 16 (Superbit). A function g : {0,1}" — {0,1}"* computable by p-size cir-
cuits is a superbit if there is € < 1 such that for infinitely many input lengths n, for all
nondeterministic circuits C' of size |C| < 2,

Pr [Cl)=1- Pr [Clg(x))=1] <1/C]

z€{0,1}n+1 ze{0,1}m

Definition 17 (Demibit). A function g : {0,1}"* — {0,1}"! computable by p-size cir-
cuits is a demibit if there is € < 1 such that for infinitely many input lengths n, no
nondeterministic circuit C' of size |C| < 2" satisfies

Pr [C(x)=1]>1/|C| and Pr [C(g(x))=1]=0.

ze{0,1}+1 z€{0,1}m

Proposition 18 (Question 8 vs Rudich’s problem). Assume the existence of demibits
implies the existence of superbits. Then, either superbits exist or for each ¢ > 1, for each
¢ < 1, Circuit[n®] is learnable by Circuit[2°7)] over the uniform distribution with random
examples, confidence 1/2°) up to error 1/2 — 1/20(”6), where the learner is allowed
to generate a nondeterministic or co-nondeterministic circuit approximating the target
function.

Proof. Assume that superbits do not exist and that their non-existence implies the non-
existence of demibits. Consider a generator G : {0, 1} s {0,1}™™  with m =
n°*tl 4 1, which interprets the first n°*! bits of its input as a description of an n°-size
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circuit C' and then computes on the remaining mn inputs as generator G¢ from Lemma
9. Since G is not a demibit (otherwise, it would contradict our assumptions), for each
€ < 1 there are nondeterministic circuits D of size 2("+™=1° such that for each n‘-size
circuit C,

Pr[D(z) = 1] = Pr[D(Gc(x)) = 1] = 1/|D|.

By the proof of Lemma 9, this means that n°size circuits are learnable by circuits of
size poly(|D|) with confidence 1/poly(|D|) up to error 1/2 — 1/poly(|D|), except that the
learner might generate nondeterministic (if 7; = 0) or co-nondeterminitic (if r; = 1) circuit
approximating the target function. n

5 Learning speedup

A striking consequence of the relation between natural proofs and learning algorithms is
a learning speedup of Oliveira and Santhanam [41].

Suppose P/poly is learnable by circuits of weakly subexpoential size 2"/n“(). The
learning circuits can be used to accept truth-tables of all functions in P/poly while their
size guarantees that many hard functions are going to be rejected. This implies the
existence of a P/poly-natural property useful against P/poly, which by Theorem 12, gives
us circuits of strongly subexponential size 2"", v < 1, learning P/poly.

The argument of Oliveira and Santhanam can be generalized to a speedup of learners
of arbitrary size s. Here, we show how to derive such a generalized version more directly
without constructing natural proofs and invoking Theorem 12. This is possible thanks
to a more direct exploitation of a slightly modified NW-generator. A drawback of the
approach is that we need to assume learning with random examples instead of membership
queries.

Theorem 19 (Generalized speedup). Let d,k > 1 and n < s(n) < 2"/n. Assume
Circuit[n'%*] is learnable by Circuit[s(n)] over the uniform distribution with random ez-
amples, confidence 1, up to error 1/2 — 5/n. Then circuits of size m* with m = n?
inputs are learnable by circuits of size %% (s(n))3 over the uniform distribution with non-
adaptive membership queries, confidence 1/n3, up to error 1/2 — 1/n. Here, K is an
absolute constant.

Theorem 19 implies, for example, that if for each d, k > 1 and each sufficiently big n
there is an n'°°8"_size circuit learning circuits of size n'°* (with n inputs), then for each
d,k > 1 and for infinitely many n there is an n¥n(30108m)/@*_gize circuit learning circuits of
size n* (with n inputs). That is, if p-size circuits are learnable with random examples by
circuits of quasipolynomial size n©1°8™) | then p-size circuits are learnable with membership
queries by circuits of size O(n1°¢™), for each ¢ > 0. The speedup is achieved w.r.t. the
input length of target functions at the expense of their circuit complexity.

22



Proof. Let Abe a 2°xu 0-1 matrix forming a (b, n?)-design with |J;(A)| = n? for n?¢ < u <
2n? a constant d and parameter b such that ns < 2° < 2ns. The design is constructed
in the usual way by evaluating polynomials of degree < b on n points of a field with
nd < p < 2n¢ elements. In particular, there are n%-size circuits which given i € {0,1}°
and w € {0,1}* output w|.J;(A). Define NWj-generator mapping strings w of length u
to strings of length 2™ as

(NWf(w))ﬂh ..... Tn — f(w|Jx1 ,,,,, Jﬁb(A))

Then for each m-input function f € Circuit/m*] and w € {0,1}*, (NW;(w)), is com-
putable as a function of x = x1,...,z, € {0,1}" by a circuit of size n'%*.

By the assumption of the theorem every such circuit (NWy(w)), is learnable by a
circuit L of size s with confidence § = 1, up to error 1/2 — e. Consequently, there is a
circuit D7 of size O(s?) such that

Pr t[Df(:cl, o rw,yt YD) = f(w|

w’zvylz“'vy

(A)] 2 (1/2 4 €)o (5.1)

,,,,,

where D/ queries values f(wl|.J,;(A)) for t < s random strings v/ € {0,1}°, j =1,...,¢.
The size of D/ takes into account the need to simulate the circuit described by L. Now,
random 3!, ...,y satisfy

o(A)]>1/24+e—1/n (5.2)

Pr[DY(z1,...,xn,w,y", .. y") = flw] ...
with probability at least 1/n. Otherwise, the probability in (5.1) would be < 1/n+(1/2+
¢ — 1/n). Similarly, given y', ..., y’ such that (5.2) holds, a random z € {0, 1}" satisfies
n(A))Z21/2+e=3/n (53

l?ur[Df(m, o zmw, Yty = f(w| ey
with probability at least 2/n. Moreover, since every 3 specifies 2"~ values of (NW(w)).,
given y', ... y', a random = € {0,1}" equals some 3’ on the first b bits with probability
< t/2® < 1/n. Applying the same averaging one more time, for y!,... 4" and x which
differs on the first b bits from each 3’ and satisfies (5.3), randomly fixed u — n? bits of w
on the positions of [u]\J,(A) preserve the probability (5.3) up to an additional error 1/n
with probability at least 1/n.

For each y', ...y, each x which differs on the first b bits from every ¢’ and for each
fixation of u — n? bits of w on the positions of [u]\J,(A), (b, n?)-design guarantees that
the number of all queries f(wl|J,(A)), 7 = 1,...,t, of DI for all possible w with the
u — n? fixed bits is < t2°. We can thus learn a circuit D' approximating f € Circuit[m*]
with m = n¢ inputs with advantage 1/2 + € — 4/n in the following way. Choose random
y', ...yt x, random u — n? bits of w corresponding to [u]\J,(A) and query < ¢2° values
f(w|J,i(A)) for all possible w with the u—n fixed bits. Then the circuit D', given n? bits
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of w corresponding to J,(A), generates w and computes as D/ with the provided queries
f(w|J,i(A)). Since w can be constructed from given n bits, 2 and the u —n? fixed bits of
w by a circuit of size n°@, each wlJ,i (A) can be constructed from w and 3’ by a circuit
of size n%@ and for each query to f the right value can be selected by a circuit of size
O(ndt2%), the size of D' is O(s® + tn®? + n¥?2 + n9@) < nOds3. D' can be described
by ns3 bits, for an absolute constant K, and constructed by a circuit of the same size
which just substitutes 3/, z and © — n? bits of w in the otherwise fixed description of D’.

Since random !, ...y’ satisfy (5.2) with probability at least 1/n, a random x differs
on the first b bits from each y!,..., y" and satisfies (5.3) with probability at least 1/n
while the randomly fixed u — n? bits of w have the desired property with probability at
least 1/n as well, the confidence of the learning algorithm is at least 1/n?. O

We give one more proof of the learning speedup which also addresses the issue of
membership queries.

Theorem 20 (Alternative speedup). Letd > 2;k > 1 and e < 1. Assume Circuit[n'%*] is
learnable by Circuit[2"] over the uniform distribution (possibly with membership queries)
with confidence 1, up to error 1/n®. Then, circuits of size n®™ with n® inputs are learnable
by circuits of size 25™ over the uniform distribution with confidence 1/25™ up to error
1/2 — 28" where K is an absolute constant.

Proof. By a counting argument there exists H which is not (1 — 1/n)-approximable by
circuits of size 2. Here, n is w.l.o.g. sufficiently big. By Lemma 7, learnability of
Circuit[n'%%] by Circuit[2°"] up to error 1/n° implies the existence of circuits of size 20
witnessing errors of circuits of size n'% with probability > 1—2/n*. The conclusion thus
follows by applying Theorem 5. The improved confidence and approximation parameter
is the consequence of the fact that our witnessing circuits succeed in the first round, i.e.
t=1. O

Proof-search speedup. The core trick behind Theorem 19 can be formulated in the
context of proof complexity. Assume that an n'°*-size lower bound is provable in a proof
system P by a proof of size s(n). Then, a substitutional instance of the same P-proof
of size s(n) proves an mF-size lower bound for circuits with m = n? inputs, on inputs
given by the NW-generator from the proof of Theorem 19. Here, the base function of the
NW-generator is not specified but represented by free variables encoding a circuit of size

mk.

Nonlocalizable hardness magnification. Theorem 19 and the original speedup of
Oliveira and Santhanam can be interpreted as hardness magnification theorems. Hardness
magnification is an approach to strong complexity lower bounds by reducing them to

seemingly much weaker lower bounds developed in a series of recent papers [42, 36, 40, 34,
11,12, 9, 8, 10, 35, 13, 32|, see [8] for a more comprehensive survey. For example, it turns
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out that in order to prove that functions computable in nondeterministic quasipolynomial-
time are hard for NC! it suffices to show that a parameterized version of the minimum
circuit size problem MCSP is hard for AC°[2]. However, [8] identified a locality barrier
which explains why direct adaptations of many existing lower bounds do not yield strong
complexity lower bounds via hardness magnification. Essentially, the reason is that the
existing lower bounds for explicit Boolean functions work often even for models which
are allowed to use arbitrary oracles with n°Y-small fan-in (local oracles). This is easy
to see in the case of AC’[2] lower bounds: oracles of small fan-in can be simulated by
polynomials of low degree. On the other hand, hardness magnification theorems typically
yield (unconditional) upper bounds in the form of weak computational models extended
with local oracles computing specific problems such as the abovementioned version of
MCSP. In fact, even irrespective of hardness magnification it is important to develop
lower bound methods which do not localize (i.e. lower bounds which do not remain valid
in the presence of local oracles): proving the nonexistence of subexponential-size learning
algorithms for P/poly would imply the nonexistence of P/poly natural properties against
P/poly but it is not hard to see that natural properties against P/poly are computable by
a single local oracle applied on a prefix of the input. Overcoming the locality barrier is
thus essential for proving strong complexity lower bounds in general .’

Theorem 19, if read counterpositively, is a magnification of O(n¢!°¢")-size lower bounds
for learning p-size circuits to n®1°8™_size lower bounds. This differs from previous hard-
ness magnification theorems by avoiding localization: the size of the learner plays a crucial
role in the reduction and therefore cannot be simply replaced by an arbitrary oracle. The
same trick is behind non-blackbox worst-case to average-case reductions within NP of Hi-
rahara [16]. To the best of our knowledge, the only other hardness magnification theorems
with this property appeared in [8] and [17].!! [8, Theorem 1], like Hirahara [16] and the
speedup of Oliveira-Santhanam, is based on the result of Carmosino, Impagliazzo, Ka-

10Some known circuit lower bounds above the magnification threshold are provably nonlocalizable but
they do not fit to the framework of the so called Hardness Magnification frontier [8], one reason being that
they do not work for explicit and natural problems, cf. [8, 10]. For example, a nonlocalizable lower bound
from [8] works for a function in E which is artificial in the sense that it is designed to avoid localization,
not for a problem of independent interest such as MCSP. Oliveira [39] showed that near superlinear-
size lower bounds for a version of MCSP defined w.r.t. a notion of randomized Kolmogorov complexity
imply strong circuit lower bounds while the same problem is provably hard for probabilistic p-time. The
lower bound of Oliveira works, however, only against uniform models of computation. Moreover, the
magnification theorem concludes at best a ‘non-explicit’ lower bound of the form ‘quasipolynomial-time
QP being hard for P/poly.” Similarly, an approach of Chen, Jin and Williams [10] via derandomizations
and uniform obstructions appears to avoid the locality barrier but yields at best lower bounds of the form
QP & P/poly.

HThere are two more results which could be potentially classified as nonlocalizable hardness magni-
fications. A theorem of Buresh-Oppenheim and Santhanam [6, Theorem 1] is based on an exploitation
of Nisan-Wigderson generators similar to that of [8] but it seems less practical in its current form, as
it magnifies only lower bounds for nondeterministic circuits. The other result of Tal [54] shows that an
average-case hardness for formulas of size s can be magnified to the worst-case hardness for slightly bigger
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banets and Kolokolova [7]. However, the hardness magnification from [8] is still captured
by the locality barrier: it asks for a lower bound for a version of MCSP while the localized
version of the lower bound does not hold (as witnessed by other hardness magnification
theorems). Theorem 19 does not seem to localize in this sense either: it asks for an n<loen-
size lower bound on learning algorithms while there seems to be no reason to expect that
p-size circuits are learnable by circuits of size O(n'°¢") extended with oracles of fan-in
n°M) . (Such a localization would mean that p-size circuits are learnable in subexponential
size.) The magnification theorems of Hirahara [17] face similar complications.'?

Unfortunately, Theorem 19 does not reduce p-size lower bounds to, say, subquadratic
lower bounds: It magnifies n®@ s3-size lower bounds for learning functions with m = n¢
inputs (and circuit complexity m*) to an s-size lower bound for learning functions with
n inputs (and circuit complexity n'@). That is, a polynomial speedup w.r.t. the input-
length of target functions is traded for a polynomial decrease of the circuit size of target
functions. Ideally, we would like to magnify, say, n'-size formula lower bound for learning
circuits of size n''' with n inputs to n°M-size formula lower bounds for learning circuits
of size n*! with n inputs. If the existing methods for proving the required formula
lower bounds were applicable to prove subquadratic formula lower bounds for learning
algorithms (note that such lower bounds are allowed to localize and naturalize), such a
strengthening of Theorem 19 would lead to explicit NC' lower bounds.

6 Concluding remarks and open problems

The methods for deriving learning algorithms from circuit lower bounds presented in this
paper might be improvable in many ways.

Safe cryptography or efficient learning. Perhaps the most appealing question asks
for bridging cryptography and learning theory. Showing that efficient learning follows from
breaking pseudorandom generators, i.e. answering positively Question 8, would establish
a remarkable win-win situation. As discussed in Section 4.4 the question is closely related
to a problem of Rudich about turning demibits to superbits.

formulas. A problem is that [54] magnifies at best to an s*-size lower bound. Moreover, if we wanted to

strenghten it further by connecting it with another magnification theorem, it is not clear how to preserve
the nonlocalizability - the weak lower bound obtained via [54] would likely localize.

12Hirahara [17, Theorem 11 and 13] proves two types of magnification theorems. The first type essen-
tially adapts the result from [8] in the context of weaker computational models. The second type extends
it by introducing metacomputational circuit lower bound problems MCLPs and showing that weak lower
bounds for MCLPs can be magnified as well. MCLPs are not solvable by any algorithm whatsoever
unless standard hardness assumptions break. This implies that there is no unconditional upper bound
for MCLPs and the locality barrier does not apply. Unfortunately, we do not have any interesting lower
bound for MCLPs either. The corresponding magnification theorems thus do not establish a Hardness
Magnification frontier [8]. Nevertheless, as suggested in [17], developing such methods might be a way to
strong lower bounds.
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Instance-specific learning vs PAC learning. Circuit lower bounds correspond to
a simple instance-specifc learning model described in Section 3.1. Can we improve our
understanding of the model and its relation to PAC learning? In particular, can we deter-
mine how much we can learn from a single circuit lower bound? A possible formalization
of the problem is given by Question 4.

Connections to proof complexity. The present paper brings several methods from
proof complexity to learning theory. It seems likely that these connections can be strength-
ened. A particularly relevant part of proof complexity is the theory of proof complexity
generators, cf. [24]. An interesting conjecture in the area due to Razborov [49] implies
a conditional hardness of circuit lower bounds in strong proof systems. In other words,
Razborov’s conjecture asks for turning short proofs of circuit lower bounds into upper
bounds breaking standard hardness assumptions.

Notably, strengthening Theorem 5 by allowing white-box access in the witnessing of
lower bounds would lead to a conditional unprovability of p-size lower bounds for SAT in
Cook’s theory PV;. A complication is that under standard hardness assumptions such a
witnessing exists. That is, in order to obtain the conditional unprovability, one might need
to exploit the PVi-provability in a deeper way. Nevertheless, this suggests a simplified
version of Question 8: Can we prove a disjunction stating the PV;i-consistency of the
existence of strong pseudorandom generators or the PV;-consistency of efficient learning?
Since, by witnessing theorems in PVy, both the PVi-provability of the non-existence of
pseudorandom generators and the PVi-provability of the impossibility of efficient learning
imply uniform efficient algorithms witnessing these facts, it could be possible to combine
them with a version of uniform MinMax [56] to get a contradiction.

Nonlocalizable hardness magnification near the existing lower bounds. Can
we push forward the program of hardness magnification by strengthening the magnifica-
tion from Theorem 19 to a setting in which strong circuit lower bounds follow from lower
bounds near the already existing ones?” The importance of the question stems from the ne-
cessity of developing nonlocalizable magnification theorems or nonlocalizable constructive
lower bound methods as discussed in Section 5.

SAT solving circuit lower bounds. It would be interesting to investigate practical
consequences of the provability of circuit lower bounds. Circuit lower bounds for explicitly
given Boolean functions are coNP statements which means that they are encodable into
propositional tautologies resp. SAT instances. Could SAT solvers be successful in proving
interesting instances of circuit lower bounds for some fixed input lengths? At present the
existing SAT solvers are not able to deal with circuit lower bounds for circuits with more
than 13 gates, cf. [29], so one would need to develop new methods to get more interesting
outcomes. If successful, this could provide an experimental verification of central results
and conjectures from complexity theory such as P # NP up to some finite domain. As
discussed in the present paper, efficient algorithms proving circuit lower bounds can be

27



also transformed into learning algorithms, which provides a separate motivation for this
line of research.

In particular, SAT solving of circuit lower bounds could lead to an interesting com-
parison with the research on neural networks. The task of training a neural network
is to design a circuit C' of size s, typically with a specific architecture, coinciding with
some training input samples (y;, f(y;)), and apply it to predict the value f(y) on a new
input y. As discussed in Section 3.1, this problem can be addressed by proving a circuit
lower bound. Since proving a circuit lower bound can give us a reliable instance-specific
prediction one could try to use SAT solvers to verify outcomes of neural networks. More
generally, one could try to simulate neural networks by SAT solving circuit lower bounds.
A potential advantage of SAT solvers is that they do not need to construct a circuit co-
inciding with training data - it is enough to prove its properties (lower bounds). On the
other hand, SAT solvers need to prove a universal statement which might turn out to be
even harder.
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