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Abstract

We give a formalization of AC0 lower bounds based on H̊astad’s switching lemma,
Razborov-Smolensky’s AC0[p] lower bounds and monotone circuit lower bounds in
Jeřábek’s theory of approximate counting APC1. We use these formalizations to
obtain short proofs and automatizability of Extended Frege system EF and its ex-
tension WF on various weak circuit lower bounds.

1 Introduction

Proving lower bounds on the size of Boolean circuits computing explicit Boolean functions
is a fundamental problem in complexity theory. Interestingly, the known circuit lower
bounds are often very constructive as captured in the notion of natural proofs by Razborov
and Rudich [30]. We analyze these constructive aspects from the perspective of proof
complexity.

The investigation of proof complexity of known circuit lower bounds was initiated
by Razborov [27] who argued that all existing circuit lower bounds for explicit Boolean
functions are derivable in the theory PV1 formalizing p-time reasoning, and often below.
For example, the theory U1

1 corresponding to NC reasoning proves AC0 lower bounds, PV1

∗This pdf differs from the journal version of the paper. Proofs here are presented in a more similar
way to the standard “not-formalized” ones omitting many technical details of the formalizations. Sev-
eral proofs give a quite different solution to the problems arising in the process of formalization. The
structure of the introductory sections including their content differs significantly, and the section on the
naturalizations related to learning algorithms is not reduced to the AC0[p] case.
†Revised in September 2018: added hyperlinks, corrected constants in Theorem 6.3 and the value of

d in Lemma 6.1.
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proves AC0[p] lower bounds and W1,τ
1 , corresponding to reasoning with uniform p-size

circuits of a suitable depth, proves monotone circuit lower bounds. Further, Kraj́ıček [16,
Theorem 15.2.3] formalized PARITY /∈ AC0 with a different scaling in PV1 + WPHP(PV).

The main contribution of this paper is a derivation of analogous results in the frame-
work of theories of approximate counting developed by Jeřábek [14]. Specifically, in the
theory APC1 formalizing probabilistic p-time reasoning which slightly extends Kraj́ıček’s
PV1 + WPHP(PV). We show that APC1 proves PARITY /∈ AC0 by formalizing H̊astad’s
switching lemma, AC0[p] lower bounds by formalizing Razborov-Smolensky’s method, and
monotone circuit lower bounds by formalizing the approximation method.

A crucial difference between Razborov’s and our formalizations is in the scaling of
parameters. In Razborov’s formalizations, whenever a theory T proves a lower bound for
a function f : {0, 1}n → {0, 1} it is assumed that 2n is the length of some number. This
means that from the perspective of the theory T , the whole truth-table of f is a feasible
object. Our formalizations assume only that n is the length of some number. The same
scaling of parameters was used in Kraj́ıček’s proof of PARITY /∈ AC0. Consequently, the
theory Razborov is working in is exponentially stronger w.r.t. his formulation of circuit
lower bounds than it is w.r.t. ours. For more details see section 2.1.

We do not develope new methods for deriving circuit lower bounds, quite the opposite,
we keep the original proofs as intact as possible. Some changes were, however, needed.
In case of the AC0 and monotone circuit lower bound, the probabilities used in the known
proof are estimated by Jeřábek’s notion of approximate counting, cf. section 4. This re-
quires a construction of surjections witnessing the approximations. More invasive changes
are needed in the case of the AC0[p] lower bound. The degree lower bound in Razborov-
Smolensky’s method typically requires to consider exponentially big objects (the set of all
functions on n inputs). In order to simulate the argument in APC1 we scale it down to the
functions with logarithmic input size. Secondly, we code the approximating polynomials
with arithmetic circuits because the set of all coefficients representing such plynomials
can be infeasible.

The presented upper bounds are to a large extent motivated by their propositional
counterpart. Propositional formulas encoding circuit lower bounds like SAT /∈ P/poly are
considered as candidate hard tautologies for strong proof systems like Frege, cf. section
3. Razborov’s argument about the provability of known circuit lower bounds in PV1

translates to p-size proofs of 2O(n)-size propositional formulas encoding known circuit
lower bounds in Extended Frege system EF (and often in weaker systems). Here, n is the
input-size of the function on which the lower bound is proven. Our formalizations yield
efficient EF proofs of existing circuit lower bounds expressed by propositional formulas of
size poly(n) under the assumption of another circuit lower bound simulating the power of
APC1 in EF.

Additionally, we show that the AC0 and AC0[p] lower bounds can be naturalized within
APC1. Consequently, we obtain efficient algorithms generating EF proofs of poly(n)-
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size tautologies expressing AC0 and AC0[p] lower bounds (assuming another circuit lower
bound) for a wider class of functions. In particular, we get the so called automatizability
resp. quasi-automatizability of EF on many AC0 and AC0[p] lower bounds. The natural-
ization of Razborov-Smolensky’s method gives us also WF proofs of AC0[p] lower bounds
without extra assumptions. Here, WF is a canonical proof system corresponding to APC1

on coNP statements, cf. [12].
For the completeness we formalize also the natural proofs barrier itself in APC1.

The paper is organized as follows. Section 2 gives the preliminaries on bounded
arithmetic, propositional proof complexity, and discusses the formulation of circuit lower
bounds in the language of bounded arithmetic and propositional logic. Section 3 presents
some previous results concerning the provability of complexity-theoretic statements. Sec-
tions 4, 5 describe the APC1 in more detail and some standard inequalities in PV1. Section
6 contains the formalizations of AC0, AC0[p] and monotone circuit lower bounds. Section
7 gives a naturalization of AC0 and AC0[p] lower bounds in APC1 which yields an autom-
atizability of EF on these circuit lower bounds. Section 7 provides also a formalization
of the natural proofs barrier itself in APC1. Finally, section 8 recapitulates possible im-
provements of our results and suggests some future research directions.

2 Bounded arithmetic and propositional logic

Theories of bounded arithmetic capture various levels of feasible reasoning and present a
uniform counterpart to propositional proof systems.

The first theory of bounded arithmetic formalizing p-time reasoning was introduced by
Cook [7] as an equational theory PV. We work with its first-order conservative extension
PV1 from [21]. The language of PV1, denoted PV as well, consists of symbols for all
p-time algorithms given by Cobham’s characterization of p-time functions, cf. [6]. A
PV-formula is a first-order formula in the language PV. Σb

0 (=Πb
0) denotes PV-formulas

with only sharply bounded quantifiers ∃x, x ≤ |t|, ∀x, x ≤ |t|, where |t| is “the length
of the binary representation of t”. Inductively, Σb

i+1 resp. Πb
i+1 is the closure of Πb

i

resp. Σb
i under positive Boolean combinations, sharply bounded quantifiers, and bounded

quantifiers ∃x, x ≤ t resp. ∀x, x ≤ t. Predicates definable by Σb
i resp. Πb

i formulas are in
the Σp

i resp. Πp
i level of the polynomial hierarchy, and vice versa. PV1 is known to prove

Σb
0(PV)-induction,

A(0) ∧ ∀x (A(x)→ A(x+ 1))→ ∀xA(x)

for Σb
0-formulas A, cf. Kraj́ıček [16].

Buss [3] introduced the theory S1
2 extending PV1 with the length induction

A(0) ∧ ∀x < |a|, (A(x)→ A(x+ 1))→ ∀xA(|a|)
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for A ∈ Σb
1. S1

2 proves the sharply bounded collection scheme BB(Σb
1),

∀i < |a| ∃x < a,A(i, x)→ ∃w ∀i < |a|, A(i, [w]i)

for A ∈ Σb
1 ([w]i is the ith element of the sequence coded by w), which is unprovable in PV1

under a cryptographic assumption, cf. [9]. On the other hand, S1
2 is ∀Σb

1-conservative over
PV1. This is a consequence of Buss’s witnessing theorem stating that S1

2 ` ∃y, A(x, y) for
A ∈ Σb

1 implies PV1 ` A(x, f(x)) for some PV-function f . When proving a Σb
2 formula in

S1
2 we are free to use the sharply bounded collection scheme for A ∈ Σb

2, denoted BB(Σb
2),

because S1
2 +BB(Σb

2) is ∀Σb
2-conservative over S1

2, cf. [31].
Jeřábek [14] developed a theory APC1 capturing probabilistic p-time reasoning by

means of approximate counting. The theory APC1 is defined as PV1+dWPHP (PV) where
dWPHP (PV) stands for the dual (surjective) pigeonhole principle for PV-functions, i.e.
for the set of all formulas

x > 0→ ∃v < x(|y|+ 1)∀u < x|y|, f(u) 6= v

where f is a PV-function. We devote Section 4 to a more detailed description of the
machinery of approximate counting in APC1.

Any Πb
1-formula provable in PV1 can be expressed as a sequence of tautologies τn with

proofs in the Extended Frege system EF which are constructible in p-time (given a string
of the length n), cf. [7]. Similarly, Πb

1-formulas provable in APC1 translate to tautologies
with p-time constructible proofs in WF, an extension of EF introduced by Jeřábek [12].

As it is often easier to present a proof in a theory of bounded arithmetic than in
the corresponding propositional system, bounded arithmetic functions, so to speak, as a
uniform language for propositional logic.

2.1 Formulation of circuit lower bounds

A typical formulation of a circuit lower bound for circuits of size s and a function f says
that for every sufficiently big n, each circuit C with n inputs and size s, there exists an
input y on which the circuit C fails to compute f(y).

If f : {0, 1}n → {0, 1} is an NP function and s = nk for a constant k, this can be
written down as a ∀Σb

2 formula LB(f, nk),

∀n, n > n0 ∀ circuit C of size ≤ nk ∃y, |y| = n, C(y) 6= f(y),

where n0 is a constant and C(y) 6= f(y) is a Σb
2 formula stating that a circuit C on input

y outputs the opposite value of f(y).
If we want to express s(n)-size lower bounds for s(n) as big as 2O(n), we add an extra

assumption on n stating that ∃x, n = ||x||. The resulting formula LBtt(f, s(n)) is Σb
0 if f
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is, for instance, SAT because n = ||x|| implies that the quantifiers bounded by 2O(n) are
sharply bounded. Moreover, allowing f ∈ NE lifts the complexity of LBtt(f, s(n)) just to
Σb

1.

To indicate sizes of objects we employ the notation x ∈ Log ↔ ∃y, x = |y| and
x ∈ LogLog ↔ ∃y, x = ||y||. For example, LB(f, nk) implicitly assumes n ∈ Log while
LBtt(f, n

k) assumes n ∈ LogLog. By chosing the scale of n we are chosing the “feasible
object”. In the case n ∈ LogLog, the truth-table of f (and everything polynomial in
it) is feasible. Assuming just n ∈ Log means that only the objects of polynomial-size in
the size of the circuit are feasible. Likewise, the theory reasoning about the circuit lower
bound becomes less resp. more powerful when working with LB(f, nk) resp. LBtt(f, n

k).

The scaling in LBtt(f, s) corresponds to the choice of parameters in natural proofs and
in the formalizations by Razborov [27].

We will work mainly with lower bounds for restricted circuit classes like AC0, con-
stant depth circuits with a polynomial number of gates of unbounded arity, and AC0[p],
AC0 circuits with MODp gates. Such circuit lower bounds can be formulated similarly
without increasing the quantifying complexity of the resulting formula. For example,
by LB(f,AC0

d, n
k) we denote LB(f, nk) restricted to AC0 circuits of size nk and depth d.

Analogously for LBtt formulation and other circuit classes.

2.2 Propositional version

An s(n)-size circuit lower bound for a function f : {0, 1}n → {0, 1} can be expressed by
a 2O(n)-size propositional formula tt(f, s),∨

y∈{0,1}n
f(y) 6= C(y)

where the formula f(y) 6= C(y) says that a circuit C represented by poly(s) variables does
not output f(y) on input y. That is, the whole truth-table of f is hard-wired in tt(f, s).

A more succinct encoding follows from a result of Lipton and Young [22] who showed
that whenever f : {0, 1}n → {0, 1} is hard for circuits of size poly(s(n)), there is a set
Sn of poly(s(n)) n-bit strings such that each s(n)-size circuit fails to compute f on some
input from the “anti-checking” set Sn. The s(n)-size circuit lower bound for f can be
then expressed by a poly(s(n))-size formula lbA(f, s),∨

y∈Sn

f(y) 6= C(y).

Even more feasible, uniform, encoding follows from translations of LB(f, nk). This re-
quires an efficient witnessing of existential quantifiers in LB(f, nk) collapsing its complexity

5



to ∀Σb
0. Such a p-time witnessing of LB(SAT, nk) follows, for example, from the existence

of one-way permutations and a function in E hard for subexponential-size circuits, cf. [23,
Proposition 4.3] 1. Further, by the KPT theorem [21], whenever PV1 ` LB(f, nk) we get
a sequence of finitely many p-time functions w = w1, . . . , wc witnessing the existential
quantifiers in LB(f, nk). LB(f, nk) witnessed by w can be equivalently expressed by a
sequence of poly(n)-size propositional formulas lbw(f, nk).

Restricting tt(f, nk) to AC0 circuits of a depth d we obtain propositional formulas
denoted tt(f,AC0

d, n
k). Similarly for lbA(f,AC0

d, n
k) and lbw(f,AC0

d, n
k).

Formulas lbA(f, nk) and lbw(f, nk) seem to be harder to derive than tt(f, nk). This
intuition can be formally supported.

Proposition 2.1. For any constant k, if formulas tt(f, nk) do not have p-size constant-
depth Frege proofs, then formulas lbA(f, nk) do not have p-size Frege proofs. Here, tt(f, nk)
and lbA(f, nk) are assumed to be expressed as DNFs.

Proof. Suppose that Frege has p-size proofs of lbA(f, nk) for some A. A generic collapse
of Frege to constant depth Frege by Filmus Pitassi and Santhanam [11] implies that there

is a constant K such that for any d, Frege proves lbA(f, nk) by proofs of size 2O(dnK/d) and
depth d + 2. Tautologies tt(f, nk) can be then derived by weakening which increases the
size of the proofs to 2O(n).

3 Prior results

3.1 Lower bounds

Assuming the existence of strong pseudorandom generators, Razborov [28, 26] showed
that a theory S2

2(α) cannot prove superpolynomial circuit lower bounds for SAT in a
formulation which corresponds to LBtt(SAT, n

k) but with circuits coded by the oracle α.
Unfortunately, the theory S2

2(α) is too weak w.r.t. this formulation. It is not clear how
to derive results like PARITY /∈ AC0 within S2

2(α).
For the formulation of circuit lower bounds used in this paper, Pich [23] showed that

the theory VNC1 formalizing NC1 reasoning, cf. [8], cannot prove LB(SAT, nk) unless
functions computable by p-size circuits can be approximated by subexponential NC1 cir-
cuits. Concerning the power of VNC1, it seems plausible that VNC1 could prove NC1 lower
bounds like LB(SAT,NC1, nk). On the other hand, we do not even know how to prove
LB(PARITY,AC0, nk) in PV1.

1Proposition 4.3 in [23] shows just the existence of an S-T protocol witnessing LB(SAT, nk) but the
p-time witnessing easily follows.
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For PV1, Kraj́ıček and Oliveira [19] obtained an unconditional unprovability result
involving circuit upper bounds. Specifically, they showed that for every k there is a p-time
function f such that PV1 does not prove f ∈ SIZE(cnk) for any constant c. Concerning
the unprovability of upper bounds, Buss’s witnessing theorem [3] implies that PV1 cannot
prove NP = coNP unless P = NP. Further, any superpolynmial lower bound on the
lengths of proofs in EF would imply an unprovability of SAT ∈ P/poly in PV1. This
implication is generic, e.g. the existing lower bounds for bounded depth Frege yield an
unconditional unprovability of SAT ∈ P/poly in a theory V0, cf. [18].

Razborov’s unprovability result from [28, 26] can be nicely formulated on the proposi-
tional level. Assuming strong pseudorandom generators exist, no sufficiently strong proof
system admitting the so called feasible interpolation property has p-size proofs of tt(f, nk)
where f is an arbitrary function [17]. Unfortunately, stronger proof systems like Frege
or even constant depth Frege do not admit feasible interpolation unless a cryptographic
assumption fails [20, 2]. For weak propositional systems, lower bounds on tt(f, nk) can
be derived unconditionally. Raz [25] showed that formulas tt(f, nk), for sufficiently big

constant k, have no p-size Resolution proofs and Razborov [29] obtained a 2t
Ω(1)

-size lower
bound on the lengths of proofs of tt(f, t) for n2 ≤ t ≤ 2n, in en extension of Resolution
operating with k-DNFs (which is not known to admit feasible interpolation). The results
of Raz and Razborov work with a specific choice of encoding of tt(f, nk) suitable for weak
proof systems.

Notably, formulas tt(f, s) are special instances of proof complexity generators consid-
ered as candidate hard tautologies for strong proof systems like Frege. In fact, Razborov’s
conjecture [29, Conjecture 1] implies the hardness of tt(f, nk) for Frege assuming the
existence of functions computable by p-size circuits and hard on average for NC1.

3.2 Upper bounds

As already discussed in the introduction, Razborov [27] argued that the theory U1
1 cor-

responding to NC reasoning proves AC0 lower bounds, PV proves AC0[p] lower bounds
and W1,τ

1 , corresponding to reasoning with uniform p-size circuits of a suitable depth,
proves monotone circuit lower bounds. Further, Kraj́ıček [16, Theorem 15.2.3] derived
PARITY /∈ AC0 with a different (the same as our) scaling in PV1 + WPHP(PV). Since
Kraj́ıček’s WPHP(PV) is a special case of dWPHP (PV) which does not appear to imply
dWPHP (PV) over PV1, his result is stronger than ours.

The constructivity of many other parts of complexity theory has been demonstrated
as well. For an illustration see Table 1.
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Theory Theorem Reference
PV1 Cook-Levin’s theorem folklore

the PCP theorem [24]
Hardness amplification [13]

APC1 AC0 lower bounds Section 6.1

AC0[p] lower bounds (with 2logO(1) n ∈ Log) Section 6.2
Monotone circuit lower bounds Section 6.3

HARDA Nisan-Wigderson’s derandomization [12]
Impagliazzo-Wigderson’s derandomization [13]
Goldreich-Levin’s theorem [10]
Natural proofs barrier Section 7.2

APC2 Graph isomorphism in coAM [15]

APC
⊕pP
2 Toda’s theorem [4]

Table 1: A list of formalizations.

4 Approximate counting

This section recalls a part of Jeřábek’s theory for approximate counting, cf. [14].

By a definable set we mean a collection of numbers satisfying some formula, possibly
with parameters. When a number a is used in a context which asks for a set it is assumed
to represent the integer interval [0, a), e.g. X ⊆ a means that all elements of set X are
less than a. If X ⊆ a, Y ⊆ b, then X × Y := {bx + y | x ∈ X, y ∈ Y } ⊆ ab and
X∪̇Y := X ∪ {y + a | y ∈ Y } ⊆ a + b. Rational numbers are assumed to be represented
by pairs of integers in the natural way.

Let n,m ∈ Log, C : 2n → 2m be a circuit and X ⊆ 2n, Y ⊆ 2m definable sets. We
write C : X � Y if ∀y ∈ Y ∃x ∈ X, C(x) = y. Jeřábek [14] gives the following definitions
in APC1 but there is no need to restrict them.

Definition 4.1. Let X, Y ⊆ 2n be definable sets, and ε ≤ 1. The size of X is approxi-
mately less than the size of Y with error ε, written as X �ε Y , if there exists a circuit C,
and v 6= 0 such that

C : v × (Y ∪̇ε2n) � v ×X.

X ≈ε Y stands for X �ε Y and Y �ε X.

Since a number s is identified with the interval [0, s), X �ε s means that the size of
X is at most s with error ε.

Definition 4.2. Let X ⊆ 2|t| be a definable set and 0 ≤ ε, p ≤ 1. We define

Pr
x<t

[x ∈ X] �ε p iff X ∩ t �ε pt
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and similarly for ≈ε.

The definition of X �ε Y is an unbounded ∃Πb
2-formula even if X, Y are defined by

circuits so it cannot be used freely in bounded induction. Jeřábek [14] solved this problem
by working in HARDA, a conservative extension of APC1, defined as a relativized theory
PV1(α) + dWPHP (PV(α)) extended with axioms postulating that α(x) is a truth-table
of a function on ||x|| variables hard on average for circuits of size 2||x||/4. In HARDA there
is a PV1(α) function Size approximating the size of any set X ⊆ 2n defined by a circuit
C so that X ≈ε Size(C, 2n, 2ε

−1
) for ε−1 ∈ Log. If X ⊆ 2|t| is defined by a circuit C and

ε−1 ∈ Log, we have

Pr
x<t

[x ∈ X]ε :=
1

t
Size(C, 2|t|, 2ε

−1

).

The presented definitions of approximate counting are well-behaved:

Proposition 4.1 (Jeřábek [14]). (in PV1) Let X,X ′, Y, Y ′, Z ⊆ 2n and W,W ′ ⊆ 2m be
definable sets, and ε, δ < 1. Then

i) X ⊆ Y ⇒ X �0 Y ,
ii) X �ε Y ∧ Y �δ Z ⇒ X �ε+δ Z,
iii) X �ε X ′ ∧W �δ W ′ ⇒ X ×W �ε+δ+εδ X ′ ×W ′.
iv) X �ε X ′∧Y �δ Y ′ and X ′, Y ′ are separable by a circuit, then X∪Y �ε+δ X ′∪Y ′.

Proposition 4.2 (Jeřábek [14]). (in APC1)
1. Let X, Y ⊆ 2n be definable by circuits, s, t, u ≤ 2n, ε, δ, θ, γ < 1, γ−1 ∈ Log. Then

i) X �γ Y or Y �γ X,
ii) s �ε X �δ t⇒ s < t+ (ε+ δ + γ)2n,
iii) X �ε Y ⇒ 2n\Y �ε+γ 2n\X,
iv) X ≈ε s ∧ Y ≈δ t ∧X ∩ Y ≈θ u⇒ X ∪ Y ≈ε+δ+θ+γ s+ t− u.

2. (Disjoint union) Let Xi ⊆ 2n, i < m be defined by a sequence of circuits and ε, δ ≤ 1,
δ−1 ∈ Log. If Xi �ε si for every i < m, then

⋃
i<m(Xi × {i}) �ε+δ

∑
i<m si.

3. (Averaging) Let X ⊆ 2n×2m and Y ⊆ 2m be definable by circuits, Y �ε t and Xy �δ s
for every y ∈ Y , where Xy := {x| 〈x, y〉 ∈ X}. Then for any γ−1 ∈ Log,

X ∩ (2n × Y ) �ε+δ+εδ+γ st.

It is practical to observe that for proving Σb
1 statements in APC1 we can afford to work

in S1
2 + dWPHP (PV) + BB(Σb

2) and, in fact, assuming the existence of a single hard
function in PV1 gives us the full power of APC1.

Lemma 4.1. Suppose S1
2 + dWPHP (PV) + BB(Σb

2) ` ∃yA(x, y) for A ∈ Σb
1. Then, for

every ε < 1, there is k and g, h ∈ PV such that PV1 proves

|f | ≥ |x|k ∧ ∃y, |y| = ||f ||, Ch(y) 6= f(y)→ A(x, g(x, f))

where Ch is a circuit of size ≤ 2ε||f || generated by h on f, x. Moreover, APC1 ` ∃yA(x, y).
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Proof. By [12, Corollary 4.12], S1
2 + dWPHP (PV) + BB(Σb

2) ` ∃yA(x, y) implies S1
2 +

dWPHP (PV) ` ∃yA(x, y). Then, following Thapen’s proof of [32, Theorem 4.2] (cf. also
[12, Proposition 1.14]), there is ` and h ∈ PV such that S1

2 proves

(∀v ≤ 28|x|`∃u ≤ 24|x|` , h(u) = v) ∨ ∃yA(x, y).

By Buss’s witnessing theorem it now suffices to show that for every ε < 1 there is k such
that S1

2 proves

(∀v ≤ 28|x|`∃u ≤ 24|x|` , h(u) = v)→
(|f | ≥ |x|k → ∃ circuit C of size ≤ 2ε||f || ∀y, |y| = ||f ||, C(y) = f(y)).

Argue in S1
2. The surjection h : 2m → 22m, where m = 4|x|`, is computed by a circuit

of size m`′ for a standard `′. Following Jeřábek’s S1
2-proof of [12, Proposition 3.5], this

implies that every (number) f viewed as a truth-table of length |f | is computed by a
size O(m|m| + m`′ |d|f |/me|) circuit with ||f || inputs. For sufficiently large k, |f | ≥ |x|k
implies that this size is ≤ 2ε||f ||.

The “moreover” part is a consequence of APC1 ` ∀n ∈ LogLog ∃f : 2n → 2, LBtt(f, 2
n/4),

cf. [12, Corollary 3.3].

Lemma 4.1 allows us to use the BB(Σb
2) collection scheme for proving Σb

1-statements
in APC1. Unfortunately, when collecting circuits witnessing �ε predicates given by ∃Πb

2

formulas the BB(Σb
2) collection is a priori not sufficient. To overcome this complication

the quantifier complexity of �ε can be pushed down to Σb
2 because the circuits counting

sizes of sets in APC1 are invertible.

Lemma 4.2. (in APC1) Let X ⊆ 2n be defined by a circuit and ε−1 ∈ Log. Suppose
X �ε s. Then, X �ε s+ 3ε2n is expressible by a provable Σb

2 formula.

Proof. By [14, Theorem 2.7], there exists t such that X ≈ε t is witnessed by invert-
ible circuits of size poly(nε−1S) where S is the size of the circuit defining X. Applying
Proposition 4.2 1.ii) we get t < s+ 3ε2n.

5 Standard inequalities in PV1

For a PV-function symbol f and n ∈ Log, in PV1 we can define inductively
∑n

i=0 f(i).
Similarly, we can define iterated products, factorials, and binomial coefficients. It is easy
to see that, by induction, PV1 proves: n ∈ Log →

∑n
i=0

(
n
i

)
= 2n.

10



Proposition 5.1 (Stirling’s bound, cf. Jeřábek [12]). There is a c > 1 such that PV1

proves:

0 < k < n ∈ Log → 1

c

(
n

k

)
<

nn

kk(n− k)n−k

(⌊√
k(n− k)

n

⌋
+ 1

)−1
< c

(
n

k

)
.

Proposition 5.2. For each ε > 0 there is an n0 such that PV1 proves:

n0 < n ∈ Log →
bn/2+n1/3c∑

i=0

(
n

i

)
<

(
1

2
+ ε

)
2n.

Proof.
∑bn/2c−1

i=0

(
n
i

)
= 1

2

(∑bn/2c−1
i=0

(
n
i

)
+
∑bn/2c−1

i=0

(
n
n−i

))
< 2n−1 and by Stirling’s bound,

for some constant c > 1,

bn/2+n1/3c∑
i=bn/2c

(
n

i

)
< (n1/3 + 1)

(
n

bn/2c

)
< 2n4c

(
n1/3

bn1/2/2c
+

1

bn1/2/2c

)

where to verify the last inequality for odd n we used also the provability of a, b ∈ Log,
b > 0→ (1 + a/b) ≤ 4a/b shown in [12, Stirling’s bound, Claim 1].

Proposition 5.3. PV1 proves:

a, b ∈ Log, b > a+ 1→ (b− a)b ≤ bb/2a.

Note that the conclusion implies (1− a/b) ≤ 2−a/b.

Proof. Proceed as in the proof of Claim 2 in the proof of Stirling’s bound [12] but instead
of Claim 1 use the inequality bb ≤ (b+ 1)b/2.

6 Known circuit lower bounds

6.1 Random restrictions

In APC1, for any n ∈ Log and 0 ≤ a
b
≤ 1 we code a restriction of n variables x1, . . . , xn

by ρ =
∑n−1

i=0 ri+1(2b)
i, ri ∈ [0, 2b) with the following interpretation: if ri ∈ [0, 2a), then

ρ(xi) = xi, if ri ∈ [2a, b+a) then ρ(xi) = 1, if ri ∈ [b+a, 2b) then ρ(xi) = 0. The notation
ρ ∈ Ra/b stands for ρ < (2b)n. It is straightforward to construct the circuits witnessing

Prρ∈Ra/b [ρ(xi) = xi] ≈0
a
b

and Prρ∈Ra/b [ρ(xi) = 1] ≈0
1−a/b

2
≈0 Prρ∈Ra/b [ρ(xi) = 0] for each

xi ∈ X.

11



When considering predicates of the form Prρ1,ρ2 [. . . ] �ε a where ρ1 < (2b1)
n, ρ2 <

(2b2)
n, the subscript ρ1, ρ2 represents x < (2b1)

n(2b2)
n with x interpreted as a pair ρ1, ρ2.

Similar conventions are applied in the rest of the paper as well.
Given restrictions ρ, ρ1, ρ2 and a circuit C with n inputs, we denote by C|ρ the circuit

C(ρ(x1), . . . , ρ(xn)) and by C|ρ1ρ2 the circuit C|ρ1|ρ2. By the size of a circuit we mean
the number of its (internal) gates. Irrational terms are assumed to be rounded down on
the innermost level, e.g. (1/n1/2)c is (1/bn1/2c)c and 2 log n is 2blog nc, unless specified
otherwise.

Definition 6.1. A DNF depends on > b inputs if no ≤ b-tuple of inputs has the property
that every its assignment either sets every literal in some disjunct to 1 or sets some literal
in every disjunct to 0. Analogously for CNFs.

Lemma 6.1 (H̊astad’s switching lemma). For each k, there is b and n0 such that APC1

proves: for each n0 < n, ε−1 ∈ Log and DNF or CNF Dn(x1, . . . , xn) of size nk,

Pr
ρ1,ρ2

[Dn|ρ1ρ2 depends on > b inputs] �ε 1/n2k

where ρ1, ρ2 are random restrictions from R1/n1/2 , R1/n1/4 respectively. Note that the event
is defined by a circuit.

Proof. We follow a familiar proof of the switching lemma estimating the probabilities that
formulas are reduced under random restrictions. The probabilities are approximated by
Jeřábek’s notion of �ε. The extra work then boils down mainly to the construction of
surjections witnessing the inequalities �ε. These constructions are postponed to the end
of the proof. We prove the lemma for DNFs. The CNF case is derived analogously.

Let n be sufficiently big and n, ε−1 ∈ Log. For d = 12k we have,

Pr
ρ1

[ρ1 does not falsify all disjuncts in Dn of size ≥ d log n] �0

nk
(

1− 1− 1/n1/2

2

)d logn
≤ nk

(
3

4

)d logn
≤ 1

n3k
.

(6.1)

For c = 12k + 3d+ 3,

Pr
ρ1

[ρ1 leaves ≥ c inputs unassigned in some disjunct in Dn of size ≤ d log n] �0

nk
(

1

n1/2

)c
2d logn ≤ 1

n3k
.

(6.2)

Therefore, by Proposition 4.1 iv), the probability that Dn|ρ1 after a trivial simplifica-
tion is not a c-DNF is �0 2/n3k. Now it suffices to derive the following claim.

12



Claim 6.1. For any c′ ≤ c, there are n0, bc′ such that APC1 proves: for n0 ≤ n, ε−1 ∈ Log
and each c′-DNF D′n(x1, . . . , xn),

Pr
ρ2

[D′n|ρ2 depends on > bc′ inputs] �bc′ε bc′/n
3k.

To prove the claim we proceed by induction on c′. If c′ = 0, the claim holds trivially.
Assume that the claim holds for (c′−1)-DNFs, we want to show that it holds for c′-DNFs.
Let S be a sequence of disjuncts with disjoint variables in D′n which is maximal in the
sense that adding any other disjuncts to S would break the disjointness property. (Note
that constructing the maximal set among all such sequences S could be hard for APC1.)
If the number of disjuncts in S is ≥ d′ log n with d′ = 4c

′
4k, we have,

Pr
ρ2

[no disjunct in D′n|ρ2 equals 1] �ε

(
1−

(
1− 1/n1/4

2

)c′)d′ logn

≤ 2
−d′ logn

4c
′ ≤ 1

n3k
(6.3)

where we used the provability of 1− x ≤ 2−x (Proposition 5.3). Otherwise, for b′c′ = 15k,

Pr
ρ2

[ρ2 leaves > b′c′ variables in S unassigned] �0

(
1

n1/4

)b′
c′+1(

c′d′ log n

b′c′ + 1

)
≤ 1

n3k
. (6.4)

As every disjunct outside S shares a variable with some disjunct from S, by setting all
variables in S we get a (c′−1)-DNF which by the induction hypothesis depends on > bc′−1
inputs with probability �bc′−1ε

bc′−1/n
3k. Hence, by Proposition 4.1 iv), D′n|ρ2 depends

on > bc′ = b′c′ + 2b
′
c′ bc′−1 inputs with probability �

2
b′
c′ bc′−1ε

2b
′
c′ bc′−1/n

3k + 1/n3k ≤ bc′/n
3k.

It remains to describe p-time algorithms witnessing the estimations (6.1)-(6.4). For ex-
ample, in case of inequality (6.1), we want to map every z < nk(n1/2+1)d logn(2n1/2)n−d logn

to a restriction ρ1 < (2n1/2)n in such a way that any ρ1 which does not falsify all disjuncts
in Dn of size ≥ d log n is provably in the image of the mapping. Such surjections can be
constructed in the following way:

(6.1) Given z < nk(n1/2 + 1)d logn(2n1/2)n−d logn find the triple 〈s, p, r〉 represented by z
with s < nk, p =

∑d logn−1
i=0 εi(n

1/2 + 1)i, εi < n1/2 + 1 and r =
∑n−d logn−1

i=0 ri(2n
1/2)i,

ri < 2n1/2. Then output ρ assigning the first d log n variables in the sth disjunct
of Dn according to ε0, . . . , εd logn−1 so that the disjunct is not falsified and the rest
according to r0, . . . , rn−d logn−1.

(6.2) Given z < nk−c/22d logn(2n1/2)n representing 〈s, t, p, r〉 ∈ nk×2c×2d logn×(2n1/2)n−c

output ρ assigning the first c0 ≤ c variables in the sth disjunct of Dn on the po-
sitions specified by p according to t (these variables remain unassigned by ρ), for
the maximal c0 possible, and the rest of variables according to r together with the
unused part of t.
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(6.3) First observe that for every j, Prρ3 [jth disjunct in D′n|ρ3 = 1] �0

(
1−1/n1/4

2

)c′
where

ρ3 < (2n1/4)sj are from R1/n1/4 and restricted only to the sj variables of the jth dis-
junct in D′n. By Proposition 4.2 1.iii) (comprising dWPHP (PV)), there is a circuit

Sj certifying Prρ3 [jth disjunct in D′n|ρ3 6= 1] �ε/(d′ logn) 1−
(

1−1/n1/4

2

)c′
. We can now

witness Prρ2 [no disjunct in D′n|ρ2 equals 1] �ε
(

1−
(

1−1/n1/4

2

)c′)d′ logn
by mapping

each z coding the tuple 〈z0, . . . , zd′ logn−1, r〉, where zj <

(
1−

(
1−1/n1/4

2

)c′)
(2n1/4)sj ,

r < (2n1/4)n−
∑
sj , to ρ2 given by Sj(zj)’s and r. The construction of the last wit-

nessing circuit uses a collection scheme which can be sidestepped by realizing that
there is actually only a constant number of Sj’s needed - one for each disjunct on c′

variables.

(6.4) Given z coding the triple 〈s, t, r〉 ∈ 2b
′
c′+1 ×

(
c′d′ logn
b′
c′+1

)
× (2n1/4)n−b

′
c′−1, output ρ

assigning the first c0 ≤ b′c′+1 variables in S specified by the t-th (b′c′+1)-size subset
of c′d′ log n, for the maximal c0 possible, according to s (these variables remain
unassigned) and the rest according to r together with the unused part of s.

Theorem 6.1. For any k, d there is n0 such that APC1 proves: for all n0 < n ∈ Log
and each depth d size nk circuit Cn with n inputs there is y ∈ {0, 1}n such that Cn(y) 6=∑n

i=1 yi (mod 2).

Proof. There is a PV-function transforming any nk-size circuit Cn of depth d into an
equivalent C ′n circuit of size n2k, depth d and with negations appearing only at the inputs.
This is proven by Σb

0(PV)-induction on the number of gates in Cn, hence, already in PV1.
By Lemma 6.1, random restrictions ρ1, ρ2 simplify any DNF and CNF at the bottom level
of C ′n so that it depends on > b inputs with probability �ε 1/n4k. Such DNFs, resp.
CNFs, are equivalent to CNFs, resp. DNFs, of size ≤ (b+ 1)2b + 1. Furthermore, we have

Pr
ρ1,ρ2

[
ρ1ρ2 leave < n1/8 inputs unassigned

]
�0 n

n1/8

(
1− 1

n3/4

)n−n1/8

≤ nn
1/8

2
−(n−n1/8)

n3/4 ≤ nn
1/8

21−n1/4 ≤ 1

n2k

where we used the provability of 1 − x ≤ 2−x from Proposition 5.3. The inequality �0

is witnessed by mapping z = 〈s, p, r〉 ∈ nn
1/8 × (4n3/4 − 4)n−n

1/8 × (4n3/4)n
1/8

to ρ1, ρ2

which set the variables of xs0+1, . . . , xs
n1/8−1

+1 where s =
∑n1/8−1

i=0 sin
i, si < n, according
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to r (in particular, xs0+1, . . . , xs
n1/8−1

+1 might be left unassigned by ρ1, ρ2) and the rest

of variables according to p.
Therefore, applying Proposition 4.2 (Disjoint union) and Proposition 4.2 1.iii), the

probability that ρ1, ρ2 simplify all CNFs and DNFs at the bottom while preserving at
least n1/8 variables free is �3ε 1− 2

n2k . By Proposition 4.2 1.ii) this shows that there exist

restrictions ρ1, ρ2 such that C ′n|ρ1ρ2 is equivalent to a circuit with ≥ n1/8 inputs, depth
d − 1 and size ≤ ((b + 1)2b + 1)n4k. Iterating this reduction we obtain a CNF C with
≥ n1/O(1) inputs and size poly(n). If C computed the parity function or its negation we
would get a contradiction: the parity function depends on each input, so w.l.o.g. each
input appears in each conjunct of C, but this means that any O(log n) inputs can make
C evaluate to 1 independently of the rest of the inputs.

Corollary 6.1. For any k, d there are n0, k0 and w, h ∈ PV such that EF has p-size proofs
of tautologies ∨

y∈{0,1}k0 logn

Ch(y) 6= f(y)→ lbw(PARITY,AC0
d, n

k)

where f is a Boolean function with k0 log n inputs represented by 2k0 logn variables, w is
a p-time witnessing function with an access to f , and Ch is a circuit of size 2(k0 logn)/2

generated by h on the inputs of w.
Tautologies tt(PARITY,AC0

d, n
k) have p-size WF proofs and 2O(n logn)-size EF proofs.

Proof. Apply Theorem 6.1, Lemma 4.1 and observe that |f | ≥ |x|k0 translates to propo-
sitional formulas with short EF proofs.

If n ∈ LogLog, the AC0 lower bound from Theorem 6.1 becomes the Πb
1 formula

LBtt(PARITY,AC
0
d, n

k) which for any constant ` translates to tautologies 2n = ` →
tt(PARITY,AC0

d, n
k) with p-size WF proofs, cf. [12]. Moreover, if the assumption 2n = `

holds for constants n and `, it has a trivial WF proof.
If 2n logn ∈ Log, it is feasible to list all elements of sets X ⊆ 2O(n logn) which are all the

sets we need to count in Theorem 6.1.

Strengthening Corollary 6.1 to p-size WF proofs of lbw(PARITY,AC0
d, n

k) for some wit-
nessing functions w, could be achieved by a derandomization of the witnessing of the exis-
tential quantifiers in LB(PARITY,AC0

d, n
k) within APC1. More precisely, the derandomized

algorithm would need to be built without the need for the existence of a hard function
while the proof of its properties could use APC1. This might be doable at least in quasi-
polynomial time by formalizing the derandomized switching lemma from [33]. In Section
7 we give a quasi-polynomial algorithm generating WF proofs of lbAn(PARITY,AC0

d, n
k)

for some An by formalizing a naturalization of Razborov-Smolensky’s lower bound.
Is it possible to formalize AC0 lower bounds in PV1 or perhaps even in V0? For this we

would need to design surjections witnessing the probabilities considered in the switching
lemma and Theorem 6.1 without using dWPHP (PV). In particular, we would need to
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give a p-time algorithm which generates the ith restriction ρ eliminating all log n-size
disjuncts in Dn for a given DNF Dn and i ≤ (1− 1/n3k)(2b)n.

6.2 Razborov-Smolensky method

Jeřábek [13, Section 4.3] gave a formalization of finite fields with their basic properties
in bounded arithmetic. In particular, if p ∈ Log is a prime, we can construct in PV1 the
finite field Fp and prove that for a ∈ Fp\{0}, ap−1 = 1 (mod p) [13, Lemma 4.3.11].

In Theorem 6.2 we want to approximate each AC0[p] circuit by a polynomial p(x) ∈
Fp[x1, . . . , xn]. Unfortunately, the sequence of coefficients coding such a polynomial p(x)
can be infeasible (even if the cardinality of Fp is constant). For this reason, we repre-
sent polynomials by arithmetic circuits. The degree of an arithmetic circuit is defined
inductively: the degree of a constant is 0, deg(xi) = 1, deg(

∑
iCi) = max{deg(Ci)},

deg(
∏

iCi) =
∑

i deg(Ci) where Ci’s are arithmetic circuits.

Theorem 6.2 (Approximation by low-degree polynomials). For any d, S1
2+dWPHP (PV)+

BB(Σb
2) proves: for each 0 < ` ∈ LogLog, prime p ∈ Log, ε−1 ∈ Log, each depth d size

s ∈ Log circuit C with n inputs and MODp gates, there is an arithmetic circuit of degree
((p− 1)`)d representing a polynomial p(x) ∈ Fp[x1, . . . , xn] such that

Pr
x<2n

[p(x) 6= C(x)] �ε s(1/2`−1 + ε).

Proof. As p ∈ Log, applying Fermat’s little theorem, MODp with m ≤ s inputs can be
computed by an arithmetic circuit of degree p− 1,

MODp(x1, . . . , xm) = 1−

(
m∑
i=1

xi

)p−1

(mod p).

We want to define polynomials approximating also Boolean connectives. First, observe
that for any nonzero x ∈ {0, 1}m, PrS⊆[m][

∑
i∈S xi = 0 mod p] �0

1
2
. Consequently,

Pr
x∈{0,1}m,S1,...,S`⊆[m]

OR(x1, . . . , xm) 6= 1−
∏̀
j=1

1−

∑
i∈Sj

xi

p−1 �0
1

2`
.

By an averaging argument (Propositon 4.2), we can fix some sets S1, . . . , S` ⊆ [m] preserv-
ing the probability �ε 1/2`−1 (trading a factor 1/2 for the error in approximate counting).

Analogously, there are sets S1, . . . , S` such that

Pr
x∈{0,1}m

AND(x1, . . . , xm) 6=
∏̀
j=1

1−

∑
i∈Sj

(1− xi)

p−1 �ε 1

2`−1
.
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Given a circuit C(x) of depth d and size s we now construct an arithmetic circuit of
degree ((p− 1)`)d representing polynomial p(x) by replacing NOT (x) gates by 1− x and
the other gates by their approximating polynomials of degree (p − 1)` described above.
This is possible because by Lemma 4.2 the probabilities of errors on the respective gates
of C can be expressed by Σb

2 formulas with extra error 3ε so we can collect sets S1, . . . , Sl
for all gates with BB(Σb

2) and use the resulting sequence in the inductive construction
of p(x). The fact that p(x) errs in computing C(x) with probability �ε s/2`−1 + 3sε is
witnessed by mapping z = z0

(
1

2`−1 + 3ε
)

2n + r < s
(

1
2`−1 + 3ε

)
2n, r <

(
1

2`−1 + 3ε
)

2n to
B(r) where B is the circuit witnessing the probability of error on the (z0 +1)th gate. The
collection of circuits B applied in the last step is also BB(Σb

2).

To derive an AC0[p] lower bound, one usually proceeds further by showing that any
polynomial approximating MODq with high probability must have degree Ω(n1/2). The
simplest proof of this theorem is obtained by comparing the number of all functions on
n variables to the number of low-degree polynomials. As this argument is infeasible, we
reproduce it on functions with only logO(1) n inputs. This results in a weaker degree lower
bound which, however, still suffices for an AC0[p] lower bound.

Theorem 6.3 (Degree lower bound). For any d and primes p 6= q, there is an n0 such

that APC1 proves: if n0 < 2log3d n, ε−1 ∈ Log, every arithmetic circuit representing a
polynomial p(x) ∈ Fp[x1, . . . , xn] such that

Pr
x<2n

[p(x) 6= MODq(x1, . . . , xn)] �ε 1/5q2q

must have degree ≥ logd n.

Proof. If p 6= q are primes, then pq−1 = 1 (mod q) and the field Fpq−1 contains (a multi-
plicative subgroup of order pq−1 − 1 and) the q-th root of unity ω 6= 1, i.e. ωq = 1. This
is trivially PV1 provable because p, q are constant.

Assume that an arithmetic circuit of degree logd n fails to compute MODq with prob-
ability �ε 1/5q2q. Using the substitution y = x−1

ω−1 (which maps ω 7→ 1 and 1 7→ 0) we can

construct arithmetic circuits pi(x1, . . . , xn−q) of degree logd n such that for x ∈ {ω, 1}n,
pi(x) = 1 if

∏n−q
j=1 xj = ωi and pi(x) = 0 otherwise, with probability �ε 1 − 1/4q. Then

the polynomial p′(x1, . . . , xn−q) =
∑q−1

i=0 piω
i of degree logd n satisfies p′(x) =

∏n−q
i=1 xi for

x ∈ {ω, 1}n with probability �2qε 3/4. Let m = log3d n. By an averaging argument fix
a ∈ {ω, 1}n−q−m and S ⊆ {ω, 1}m, |S| ≥ 2

3
2m such that p′(x, a) =

∏m
i=1 xi

∏n−q−m
i=1 ai for

x ∈ S. Define p′′(x) := p′(x, a)(
∏n−q−m

i=1 ai)
−1.

Now, consider an arbitrary function f : {ω, 1}m → Fpq−1 . We can express f as

f(x) =
∑

y∈{ω,1}m
f(y)

m∏
i=1

2xiyi − (1 + ω)(xi + yi) + 1 + ω2

(1− ω)2︸ ︷︷ ︸
equals 1 if x = y and 0 otherwise

=
∑

y∈{ω,1}m
f(y)

m∏
i=1

xiti,1 + ti,2
(1− ω)2
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where ti,1 = 2yi − (1 + ω) and ti,2 = −(1 + ω)yi + 1 + ω2. Since, for x ∈ S,

m∏
i=1

(xiti,1 + ti,2) =
∑

T⊆[m],|T |≤m
2

∏
i∈T

xiti,1
∏

i∈[m]\T

ti,2 + p′′(x)
∑

T⊆[m],|T |>m
2

∏
i∈T

ti,1
∏

i∈[m]\T

ti,2x
q−1
i︸ ︷︷ ︸

applies xqi = 1 and p′′(x) = x1 . . . xm

and xq−1i =
∑

z∈{ω,1} z
q−1 2xiz−(1+ω)(xi+z)+1+ω2

(1−ω)2 , we conclude that f can be defined by a

polynomial of degree bm
2
c+m1/3 + 1. Note that the arithmetic circuit representing poly-

nomial p′′(x) can be expanded to the sum of ≤ 2m ∈ Log monomials so the polynomial
representing f can be coded by the sequence of its coefficients. By Proposition 5.2, the
number of such polynomials is �0

|Fpq−1|
∑bm/2+m1/3c+1
i=0 (mi ) < |Fpq−1|(5/9)2m

while the number of all functions f : S → Fpq−1 is �0 |Fpq−1|(2/3)2m .

Corollary 6.2. For any d and primes p 6= q, there is an n0 such that APC1 proves: if
2log9d n ∈ Log and n > n0, no depth d circuit with MODp gates and size nlogn computes
MODq(x1, . . . , xn).

Proof. As the statement we want to prove in APC1 is ∀Σb
1, by Lemma 4.1, we are free to

work in S1
2 +dWPHP (PV)+BB(Σb

2). Let C be a circuit with MODp gates, depth d, and
size s(n) ∈ Log computing MODq(x1, . . . , xn). By Theorem 6.2 with ` = 12q + log s(n),
there is an arithmetic circuit representing a polynomial p(x) ∈ Fp[x1, . . . , xn] of degree
((12q + log s(n))(p− 1))d such that for ε ≤ 1/(10q2qs),

Pr
x

[p(x) 6= C(x)] �ε 1/5q2q.

By Theorem 6.3, ((12q + log s(n))(p− 1))d ≥ log3d n.

Corollary 6.3. For any d and primes p 6= q, there are n0, k0 and w, h ∈ PV such that EF
has p-size proofs of nO(log9d−1 n)-size tautologies∨

y∈{0,1}k0 log9d n

Ch(y) 6= f(y)→ lbw(MODq,AC
0
d[p], n

logn)

where f is a Boolean function with k0 log9d n inputs represented by 2k0 log9d n variables, w
is a p-time witnessing function with an access to f , and Ch is a circuit of size 2(k0 log9d n)/2

generated by h on the inputs of w.
WF has p-size proofs of tautologies tt(MODq,AC

0
d[p], n

logn).
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Proof. Proceed as in Corollary 6.1.

A weakness of Theorem 6.3 and Corollary 6.2 is in the assumption 2logO(1) n ∈ Log.
This results in nO(logn)-size EF proofs in Corollary 6.3. If nk-size AC0[p] lower bounds were
obtained assuming just n ∈ Log, we would get nO(1)-size EF proofs

∨
y∈{0,1}k0 logn Ch(y) 6=

f(y) → lbw(MODq,AC
0
d[p], n

k) for some constant k0. In Section 7 we give a quasi-
polynomial algorithm generating WF proofs of lbAn(MODq,AC

0
d[p], n

logn) for some An.

6.3 Monotone circuits

Theorem 6.4. There is an n0 such that APC1 proves: for any n > n0 and k ≤ n1/4

such that nk ∈ Log, no monotone circuit of size 2
√
k with

(
n
2

)
inputs accepts exactly (the

adjacency matrices of) the n-vertex graphs containing a clique of size k.

Proof. We follow the presentation from [1]. The only difference is that we need to observe
that all surjections witnessing the estimated probabilities can be constructed in APC1.

Denote by CS a function on
(
n
2

)
inputs which outputs 1 on a graph G if and only if

S is a clique in G. Let P be a set of all graphs containing a clique on some K ⊆ [n] of
size k and no other edges, and let N be the multiset of all graphs Gc given by functions
c : [n]→ [k−1] so that Gc has an edge between the vertex i and j if and only if c(i) 6= c(j).
Further, for a p-time predicate A, let PrG∈P [A(G)] �0 p denote {G;G ∈ P ∩ A} �0 p

(
n
k

)
and let PrG∈N [A(G)] �0 p denote {c : [n]→ [k − 1];Gc ∈ A} �0 p(k − 1)n.

Claim 6.2. There is an n0 such that PV1 proves: if n0 < n ∈ Log, k ≤ n1/4, nk ∈ Log
and S ⊆ [n], then PrG∈N [CS(G) = 1] �0 0.9 or PrG∈P [CS(G) = 1] �0 n

−
√
k/20.

Claim 6.2 is derived by considering two cases. If |S| ≤ l :=
√
k − 1/10 then the probability

that a random f : S → [k − 1] contains a collision is ≤
(|S|

2

) (k−1)|S|−1

(k−1)|S| < 0.1. Since

k|S| ∈ Log, it is feasible to list all functions f : S → [k − 1], what allows us to construct
also the surjection witnessing PrG∈N [CS(G) = 1] �0 0.9. If |S| > l, the probability that

S ⊆ K for a random set K of size k is �0

(
n−l
k−l

)
/
(
n
k

)
<
(
k
n

)l
< n−

√
k/20 for sufficiently big

n. Again, as nk ∈ Log, we can count the probability precisely.

Claim 6.3. There is an n0 such that S1
2 + dWPHP (PV1) proves: if nk, ε−1 ∈ Log, then

for any monotone circuit C of size s ≤ 2
√
k where k ≤ n1/4, there exist m < n

√
k/20 sets

Si of size ≤ l such that

Pr
G∈P

[
∨
i

CSi(G) ≥ C(G)] �0 0.9

Pr
G∈N

[
∨
i

CSi(G) ≤ C(G)] �ε 0.9

where empty
∨
iCSi(G) with m = 0 is defined as the constant 0.
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Claims 6.2 and 6.3 imply Theorem 6.4: The statement we want to prove in APC1

is ∀Σb
1 so by Lemma 4.1 we are free to work in S1

2 + dWPHP (PV1). If m = 0, then
PrG∈P [

∨
iCSi(G) ≥ C(G)] �0 0.9 forces C to err on some G ∈ P by Proposition 4.2

1.ii). Otherwise, using Proposition 4.2 1.iv) and 1.ii), PrG∈N [
∨
iCSi(G) = 1] �0 0.9 and

PrG∈N [
∨
iCSi(G) ≤ C(G)] �ε 0.9 imply that C errs on some G ∈ N .

In the rest of the proof we derive Claim 6.3.

Let l =
√
k − 1/10, p = 10

√
k log n and m = (p− 1)ll! ∈ Log. The gates of the circuit

C compute functions f1, . . . , fs from {0, 1}(
n
2) to {0, 1}. We will approximate f1, . . . , fs by

functions f̃1, . . . , f̃s such that each f̃k is an (l,m)-function: i.e. a disjunction of at most
m functions CSi with |Si| ≤ l.

The functions f̃1, . . . , f̃s are constructed by induction. For 1 ≤ k ≤ s, if fk is an input,
then f̃k = fk. If fk = fk′∨fk′′ , then f̃k = f̃k′t f̃k′′ , and if fk = fk′∧fk′′ , then f̃k = f̃k′u f̃k′′
where the operations t,u are defined as follows.

f t g: for (m, l)-functions f =
∨≤m
i=1 CSi , g =

∨≤m
i=1 CTi , let h =

∨≤2m
i=1 CZi where Zi = Si

and Zm+j = Tj for 1 ≤ i, j ≤ m. Next we make h into an (m, l)-function: as long as
there are more than m distinct sets, find p subsets Zi1 , . . . , Zip that form a sunflower,
i.e. there exists a set Z such that for j 6= j′, Zij ∩ Zij′ = Z. Replace CZi1 , . . . , CZip
in h by CZ . Once we obtain an (m, l)-function h′, we define f t g to be h′. By the
Sunflower lemma (below) we will not get stuck.

f u g: for (m, l)-functions f =
∨≤m
i=1 CSi , g =

∨≤m
i=1 CTi , let h =

∨
1≤i,j≤mCSi∪Tj . Discard

from h every CZ with |Z| > l and reduce the number of disjuncts to m by applying
the Sunflower lemma as above.

Lemma 6.2 (Sunflower lemma). PV1 proves: let Z be a collection of distinct sets each
of cardinality at most l with |Z| ∈ Log. If |Z| > (p − 1)ll!, then there exist p sets
Z1, . . . , Zp ∈ Z and a set Z0 such that Zi ∩ Zj = Z0 for 1 ≤ i 6= j ≤ p.

Lemma 6.2 is proven by induction on l. The case l = 1 is trivial since distinct sets
of size 1 form a sunflower with an empty center. For l > 1, let M be a set of disjoint
sets from Z such that

⋃
N∈M N ∩ Zi 6= ∅ for every Zi ∈ Z. We can assume that |M | < p

since otherwise M is a sufficiently large sunflower. As |
⋃
N∈M N | ≤ (p − 1)l, there is

an x that appears in at least 1/((p − 1)l) of all sets in Z. Let Z1, . . . , Zt be the sets
containing x. Note that t > (p − 1)l−1(l − 1)!. Thus, by the induction hypothesis, there
are p sets among Z1\{x}, . . . , Zt\{x} forming a sunflower. Adding back x we get the
desired sunflower among the original sets. This completes the proof of Lemma 6.2.

Now we show that the operations t and u approximate ∨ and ∧, respectively:

• PrG∈P [f t g < f ∨ g] �0 0

If Z ⊆ Zi, then for any G, CZ(G) = 0 implies CZi(G) = 0, and therefore, t cannot
introduce any “false 0”.
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• PrG∈P [f u g < f ∧ g] �0 1/(10s)

A graph G ∈ P is a clique over some set K. Thus, CSi(G)∧CTj(G) = 1⇔ Si, Tj ⊆
K ⇔ CSi∪Tj(G) = 1. This means that f ∧ g =

∨
1≤i,j≤mCSi∪Tj . Discarding CZ with

|Z| > l might introduce “false 0s”. However, by Claim 6.2, for any Z with |Z| > l,

PrG∈P [CZ(G) = 1] �0 n
−
√
k/20 < 1/(10sm2) for big enough n. As we discard at

most m2 such sets and applying the Sunflower lemma cannot introduce any “false
0”, the inequality follows. The last step collects ≤ m2 circuits. This is just BB(Σb

1)
collection because all the respective probabilities can be counted precisely and the
circuits witnessing them are efficiently invertible.

BB(Σb
1) can be used again to compose the circuits witnessing the probability of error

on the respective gates of C and conclude that PrG∈P [
∨
iCSi(G) < C(G)] �0 0.1 for some

≤ m sets Si of size ≤ l. As nk ∈ Log, the circuits count the probability precisely and can
be turned into witnessing of PrG∈P [

∨
iCSi(G) ≥ C(G)] �0 0.9.

It remains to show that a similar approximation holds for graphs in N :

• PrG∈N [f t g > f ∨ g] �ε 1/(10s)

Replacing CZ1 , . . . , CZp with CZ can introduce a “false 1” if CZ(G) = 1 while
CZi(G) = 0 for every i. Each G ∈ N is specified by a function c : [n]→ [k−1]. Thus,
we get a “false 1” only if c is one-to-one on Z but not one-to-one on Zi’s. Denote
this event by A. For every i, since |Zi| ≤ l, Prc[c is not one-to-one on Zi\Z] �0 1/2.
As Zi\Z’s are disjoint sets, PrG∈N [A] �0 2−p < 1/(10sm) for big enough n. We
apply the reduction step at most m times so the inequality follows by Proposition
4.2 (Disjoint union).

• PrG∈N [f u g > f ∧ g] �ε 1/(10s)

Since CS∪T (G) = 1 implies CS(G) = 1 and CT (G) = 1, a “false 1” can be introduced
only when we apply the Sunflower lemma. We bound the probability of such error
in the same way as in the previous case.

Applying Proposition 4.2 (Disjoint union), the estimated probabilities can be used to
conclude PrG∈N [

∨
iCSi(G) > C(G)] �2ε 0.1 for some ≤ m sets Si. Hence, by Proposition

4.2 1.iii), PrG∈N [
∨
iCSi(G) ≤ C(G)] �3ε 0.9.

It is not hard to see that Theorem 6.4 scales down so that poly-size lower bounds
are provable assuming only n ∈ Log. More precisely, for every k there is an n0 such
that PV1 proves that for any n0 < n ∈ Log, no monotone circuit of size nk with

(
n
2

)
inputs accepts exactly the n-vertex graphs containing a clique of size 20k3. Denote by
lbw(Clique(n, 20k3),monotone, nk) the propositional translation of this Σb

1 formula wit-
nessed by a p-time function w. Similarly as in Corollary 6.1 we get
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Corollary 6.4. For any k there are n0, k0 and w, h ∈ PV such that EF has p-size proofs
of tautologies ∨

y∈{0,1}k0 logn

Ch(y) 6= f(y)→ lbw(Clique(n, 20k3),monotone, nk)

where f is a Boolean function with k0 log n inputs represented by 2k0 logn variables, w is
a p-time witnessing function with an access to f , and Ch is a circuit of size 2(k0 logn)/2

generated by h on the inputs of w.
Tautologies tt(Clique(n, 20k3),monotone, nk) have p-size EF proofs.

A complication in improving Theorem 6.4 to PV1 is that it is unclear how to efficiently
generate some G satisfying

∨
iCSi(G) ≤ C(G).

7 Natural proofs

7.1 Naturalization of AC0 and AC0[p] lower bound
(Automatizability of EF on AC0 and AC0[p] lower bounds)

Razborov and Rudich [30] showed that the known circuit lower bounds on explicit Boolean
functions actually work for a random function with high probability. Moreover, there are
p-size circuits recognizing truth-tables of the functions for which the lower bounds work.

We are interested in a more constructive version of circuit lower bounds, so we formalize
their naturalization on functions f given by sequences of input/output tuples 〈x, f(x)〉,
not necessarily by the whole truth-table of f . That is, instead of proving formulas tt(f, nk)
we want to prove lbAn(f, nk). We present the formalization already on propositional level.
As a consequence, in case of Razborov-Smolensky’s method we obtain short WF proofs
of formulas lbAn(MODq,AC

0
d[p], n

k) for some small sets An and p 6= q, thus getting rid of
the implicational form of Corollary 6.3.

To further motivate the quest for automatizing the provability of formulas lbAn(f, s)
consider a basic learning task. Given bits f(x1), . . . , f(xk) for k n-bit strings x1, . . . , xk we
want to predict the value of f on a new input xk+1 ∈ {0, 1}n. Predicting f(xk+1) makes
sense only if the minimal circuit C coinciding with f on x1, . . . , xk determines the value
f(xk+1). Say that the size of the minimal circuit C is s. Then the task to predict the
value f(xk+1) can be formulated as the task to prove an s-size circuit lower bound of the
form

∨
i=1,...,k C(xi) 6= f(xi)∨C(xk+1) 6= ε for ε ∈ {0, 1}. A more sophisticated connection

between circuit lower bounds and learning algorithms was recently demonstrated in [5].

Our naturalization of AC0 lower bounds contains an extra assumption stating that a
function g1 with m inputs is hard on average for circuits of size 2m/4, i.e. no circuit of size
2m/4 computes g1 on ≥ 2m/2 + 2(1−1/4)m inputs. The assumption might be reducible to
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the worst-case hardness of g1 but we omit a deeper analysis of the approximate counting
and hardness amplification in PV1. In fact, the proof of Theorem 7.1 already asks for a
slightly deeper knowledge of approximate counting so we give just a sketch. Further, it
is also unclear for how many functions the lower bound actually works. These issues do
not arise in the naturalization of AC0[p] lower bounds in Theorem 7.2.

Theorem 7.1. For any k, d, there are constants k0, k1, b such that

1. There is a probabilistic p-time algorithm which for any string of the length n with
probability ≥ 3/4 generates (i.e. lists all elements of) a set Sn of restrictions of n
variables leaving at least n1/b variables unassigned.

2. There is a p-time algorithm which given tuples 〈x, f(x)〉, where x ∈ An ⊆ {0, 1}n,
f(x) ∈ {0, 1}, n sufficiently big, such that for any ρ ∈ Sn there are x1, x2 ∈ An
extending ρ and satisfying f(x1) 6= f(x2), outputs an EF proof of

Ch1 6∼ g1 ∧
∨

y∈{0,1}k0 logn

Ch0(y) 6= g0(y)→ lbAn(f,AC0
d, n

k)

where g0 is a Boolean function with k0 log n inputs represented by 2k0 logn variables, g1
is a Boolean function with k1 log(n log n) inputs represented by 2k1 log(n logn) constants
which is hard on average for circuits of size 2(k1 log(n logn))/4, Ch0 is a circuit of size
2(k0 logn)/2 generated by a p-time algorithm h0 on g0, g1 together with the variables of
lbAn, Ch1 is a circuit of size 2(k1 log(n logn))/4 generated by a p-time algorithm h1 on
g0, g1 together with the variables of lbAn, and Ch1 6∼ g1 is a propositional formula
stating that Ch1 does not compute g1 on ≥ 2(k1 log(n logn))/2 + 2(1−1/4)(k1 log(n logn))

inputs.

Proof (Sketch). The proof of Theorem 6.1 shows that for every k, d, APC1 proves: if n is
sufficiently big, then for any nk-size circuit Cn of depth d there is an equivalent n2k-size cir-
cuit C ′n such that for some constant b, a random sequence of restrictions ρ1, . . . , ρ2d, where
ρ2i+1 ∈ R1/n1/2 , ρ2i ∈ R1/n1/4 , leaves < n1/b variables unassigned or makes C ′n|ρ1 . . . ρ2d de-

pend on > b inputs with probability �2dε
2d
n2k . Applying one more restriction ρ0 ∈ R1/n1/2 ,

Pr
ρ0,...,ρ2d

[C ′n|ρ1 . . . ρ2dρ0 depends on 0 inputs and ≥ n1/8b inputs remain unassigned] �(2d+1)ε

1−
(

2d

n2k
+

b

n1/2
+

1

n2k/b

)
.

In APC1 the probability is approximated by generating random restrictions ρ = ρ1 . . . ρ2dρ0
using a Nisan-Wigderson generator with a seed of the length O(log(n log n)), cf. [14, The-
orem 2.7]. The Nisan-Wigderson generator is based on a function g1 with k1 log(n log n)
inputs which is hard on average for circuits of size 2k1 log(n logn)/4. Therefore, by Lemma
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4.1, we can generate in p-time EF proofs of tautologies stating that if Ch1 6∼ g1 ∧∨
y∈{0,1}k0 logn Ch0(y) 6= g0(y) where both g0, g1 are given by free variables, then a p-time

algorithm with access to g1 generates a restriction ρ collapsing C ′n to a constant while
leaving ≥ n1/8b inputs unassigned. The restrictions ρ are generated by an algorithm
which does not depend on C ′n. As a random boolean function on k1 log(n log n) inputs
is hard on average for circuits of size 2(k1 log(n logn))/2 with probability ≥ 3/4, this defines
the set Sn and yields a p-time algorithm generating EF proofs of tautologies stating that
if Ch1 6∼ g1 ∧

∨
y∈{0,1}k0 logn Ch0(y) 6= g0(y) where now g1 are fixed constants, then any

n2k-size circuit C ′n is collapsed by some restriction ρ ∈ Sn. Hence, any function f which
is not collapsed by any restriction ρ ∈ Sn when considering inputs from An extending ρ
satisfies lbAn(f,AC0

d, n
k).

If An = {0, 1}n, i.e. the whole truth-table of f is given as input, we get a p-time
algorithm generating WF proofs of tautologies tt(f,AC0

d, n
k) for 22n−O(n) functions f .

Corollary 7.1. For any k, d, there is b and a p-time algorithm which given the truth-table
of a function f : {0, 1}n → {0, 1}, n sufficiently big, such that for any restriction ρ leaving
at least n1/b variables unassigned there are x1, x2 ∈ {0, 1}n exstending ρ with f(x1) 6=
f(x2), outputs a WF proof of tt(f,AC0

d, n
k). Analogously, EF proofs can be generated in

2O(n logn)-time.

Proof. Proceed as in the proof of Theorem 7.1 with n ∈ LogLog resp. 2O(n logn) ∈ Log
and the set Rn being the set of all restrictions leaving ≥ n1/8b variables unassigned.

Theorem 7.2. For any d and primes p 6= q, there is a constant k and an nO(m)-time
algorithm, m = log9d n which

• given tuples 〈x, f(x)〉, where x ∈ An ⊆ {0, 1}n, f(x) ∈ {0, 1}, such that for some
restriction ρ leaving m + q variables unassigned, An contains all x ∈ {0, 1}n ex-
tending ρ, and for the multilinear polynomial p(x) satisfying p(x) = f ′(x) where
x ∈ {ω, 1}m+q, ω 6= 1 is the q-th root of unity in Fpq−1 and f ′ is f |ρ under the
inputwise substitution y = x−1

ω−1 , the 2m+q × 2m+q matrix P := {P (x)}x,P where
x ∈ {ω, 1}m+q and P is a term from{∏

i∈T

xi

}
T⊆[m+q],|T |≤m+q

2

∪
{
p(x)

∏
i∈[m+q]\T

xi

}
T⊆[m+q],|T |>m+q

2

has rank ≥ 3
4
2m,

• outputs an EF proof of∨
y∈{0,1}km

Ch(y) 6= g(y)→ lbAn(f,AC0
d[p], n

logn)
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where g is a Boolean function with km log n inputs represented by 2km logn variables,
and Ch is a circuit of size 2km logn/2 generated by an nO(m)-time algorithm h on g, f
and the variables of lbAn. Moreover, the algorithm outputs a WF proof of

lbAn(f,AC0
d[p], n

logn).

Note that for f being the MODq function, it is easy to construct a suitable set
An so that Theorem 7.2 gives a quasi-polynomial algorithm generating WF proofs of
lbAn(MODq,AC

0
d[p], n

k) for p 6= q.

Proof. We reason in S1
2 + dWPHP (PV). Let a sequence of tuples 〈x, f(x)〉 satisfy the

assumptions of Theorem 7.2, so ρ can be found in time nO(m) and f ′ can be expressed by
a multilinear polynomial p(x). If f can be computed on An by a circuit C with MODp

gates, depth d and size nlogn ∈ Log, then as in Corollary 6.2 we obtain a polynomial p′(x)
of degree ((5 + q + log2 n)(p− 1))d such that,

Pr
x<2m+q

[p′(x) 6= f |ρ(x)] ≤ 1/2q+4.

The probability can be counted exactly assuming 2m ∈ Log so BB(Σb
2) is not needed.

Consequently, there is a polynomial p′′(x) of degree ((5 + q + log2n)(p − 1))d and a set
S ′ ⊆ {ω, 1}m+q of size (1− 1/2q+4)2m+q such that p′′(x) = p(x) for x ∈ S ′.

Jeřábek [13, Theorem 4.3.19] showed that a PV function PV1-provably computes a
solution to a system of linear equations over a finite field if one exists, and a basis for
the space of solutions of a homogeneous linear system over a finite field. Hence, we can
conclude in S1

2 +dWPHP (PV) that if the rank of P is ≥ 3
4
2m, all functions h : S → Fpq−1 ,

where S ⊆ {ω, 1}m is a set of size ≥ 2
3
2m, are expressible by a polynomial of degree

bm
2
c + m1/3 + 1. This is a contradiction (and the only place where it is crucial to apply

dWPHP (PV)).
Theorefore, by Lemma 4.1, we can generate in p-time EF proofs of tautologies stating

that if
∨
y∈{0,1}km Ch(y) 6= g(y), than a function f given by tuples 〈x, f(x)〉 either satisfies

lbAn(f,AC0
d[p], n

logn), or the rank of P is < 3
4
2m. Since we assume that P has rank ≥ 3

4
2m

we obtain EF proofs of
∨
Ch(y) 6= g(y)→ lbAn(f,AC0

d[p], n
logn).

The WF proof is obtained by realizing that the antecedent
∨
y Ch(y) 6= g(y) has the

form of a special axiom in WF, cf. [12, Definition 2.6], and its variables do not occur in
lbAn(f,AC0

d[p], n
logn).

Unlike in the case of Theorem 7.1, we can observe that the proofs of lbAn(f,AC0
d[p], n

logn)
with p 6= 2 can be generated for many functions f : for at least half of all functions f de-
fined on An with the property that An contains all x ∈ {0, 1}n extending some restriction
ρ which leaves m+ q variables unassigned. Here we fix q = 2.

Specifically, we claim that for any function f and the multilinear polynomial p(x)
defined as in Theorem 7.2, either the rank of P0 defined as P in Theorem 7.2 but with
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p(x) substituted by r(x) := (ω − 1)p(x) + 1, or the rank of P1 defined as P with p(x)
substituted by rq−1

∏
i∈[m+q] xi, is ≥ 3

4
2m+q. As q = 2, ω = −1, polynomials rq−1

∏
xi

represent Boolean functions, and hence, at least half of all functions f on An are hard.
To see this, identify a set of polynomials U with the vector space generated by the

column vectors of the 2m+q×|U | matrix {u(x)}x∈{ω,1}m+q ,u∈U . For a polynomial p, denote
by pU the set {pu, u ∈ U} and put L := {

∏
i∈T xi}T⊆[m+q],|T |≤m+q

2
. If the dimension

dim(L∪rL) of the vector space L∪rL, which is equal to the rank of P0, is < 3
4
2m+q, then

dim
((
rq−1

∏
i∈[m+q]

xiL ∪ L
)
/L
)
≥ dim

(( ∏
i∈[m+q]

xiL ∪ rL
)
/rL

)
≥ dim

(( ∏
i∈[m+q]

xiL ∪ rL ∪ L
)
/(rL ∪ L)

)
≥ 2m+q

4

where the first inequality follows because we multiply every row vector in the matrix rL
resp.

∏
xiL ∪ rL by a nonzero constant (r(x))q−1 which does not change the dimension

of the vector space generated by the row vectors and hence neither the dimension of the
collumn vectors. Therefore, the rank of P1 is dim(L ∪ rq−1

∏
xiL) ≥ 3

4
2m+q.

If An = {0, 1}n, we get in particular a p-time algorithm generating WF proofs of
tautologies tt(f,AC0

d[p], n
logn) for 22n−O(n) functions f .

7.2 Natural proofs barrier

Theorem 7.3. For any c′, d′ ≥ 1; c, δ > 0 there is an m0 such that the theory HARDA

proves: given any ε−1, 2k
δ ∈ Log, ε ≤ 1/(18(2d

′m)), m = dkδ/2e ≥ m0, if a circuit C2m

defines a P/poly-natural property useful against circuits of size (c+ 4)m(1+2c/δ), meaning

1. (Constructivity) C2m has 2m inputs and size 2c
′m,

2. (Largeness) Prx[C2m(x) = 1] �ε 1/2d
′m,

3. (Usefulness) for C2m(x) = 1, x is a truth-table of a function on m inputs which is
not computable by a circuit of size (c+ 4)m1+2c/δ,

then no ckc-size circuit Gk defines a strong pseudorandom generator safe against circuits
of size 2k

δ
, meaning that no ckc-size circuit Gk : {0, 1}k 7→ {0, 1}2k satisfies that for all

circuits C of size 2k
δ
, ∣∣∣∣Pr

x
[C(Gk(x)) = 1]ε − Pr

y
[C(y) = 1]ε

∣∣∣∣ ≤ 1

2kδ
.
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Proof. Let c′, d′ ≥ 1; c, δ > 0; ε−1, 2k
δ ∈ Log, ε ≤ 1/(18(2d

′m)) and m = dkδ/2e. Suppose
C2m defines a P/poly-natural property against circuits of size (c + 4)m1+c/δ and Gk :
{0, 1}k 7→ {0, 1}2k is a ckc-size circuit. We will show that there is a circuit C of size
2(d′+d0)m recognizing Gk with advantage > 1/2(d′+d0)m for an absolute constant d0.

Let G0, G1 : {0, 1}k 7→ {0, 1}k be the first and the last k bits of Gk, respectively. For
any y ∈ {0, 1}m define Gy : {0, 1}k 7→ {0, 1}k by Gym ◦Gym−1 ◦ · · · ◦Gy1 and for x ∈ {0, 1}k
let f(x)(y) be the first bit of Gy(x).

For any fixed x ∈ {0, 1}k, f(x)(y) is computable by circuits of size (c + 4)m(1+2c/δ),
more precisely, by m copies of Gk with m circuits of size 4k chosing between the first
resp. last k bits of Gk. Hence, Prx[C2m(f(x)) = 1]ε ≈ε 0. As the circuit C2m of size 2c

′m

defining a natural property satisfies Prz[C2m(z) = 1]ε �2ε 1/2d
′m, it distinguishes f(x)

from random functions:

Pr
z

[C2m(z) = 1]ε − Pr
x

[C2m(f(x)) = 1]ε ≥ 1/2d
′m − 3ε. (7.1)

Consider now the binary tree T of height m. Its internal nodes v1, . . . , v2m−1 are
arranged so that if vi is a son of vj, then i < j. The last level of T contains 2m leaves
corresponding to the elements of {0, 1}m. Let Ti be the union of subtrees of T whose
nodes are {v1, . . . , vi} along with all the leaves. For a leaf y, let vi(y) be the root of the
subtree in Ti containing y. Denote by h(i, y) the distance between y and vi(y).

For xvi(y) ∈ {0, 1}k, define fi,m(y) to be the first bit of Gym ◦ · · · ◦ Gym−h(i,y)+1(xvi(y)).
Given a random assignment xv0(y) ∈ {0, 1}k, f0,m is a random function.

Since f2m−1,m is f(x), by (7.1), for some i,

Pr
{xvi(y)}

[C2m(fi,m) = 1]ε − Pr
{xvi+1(y)}

[C2m(fi+1,m) = 1]ε ≥ 1/2(d′+1)m − 3ε/2m

where {xvi(y)} is the set of all assignments xvj(y) ∈ {0, 1}k with vj(y) a root in Ti.
Fix all xvi(y) other than those with vi(y) ∈ {vi+1, v

′, v′′} where (v′, v′′) are the two
sons of vi+1, so that the bias 1/2(d′+1)m − 9ε/2m is preserved. The existence of such
a fixation Fix follows from an application of Proposition 4.2 (averaging), which implies
Pr{xvi(y)}⊆Fix[C2m(fi,m) = 1]ε ≥ Pr{xvi (y)}[C2m(fi,m) = 1]ε − 3ε and a similar approxima-

tion of Pr{xvi+1(y)}⊆Fix[C2m(fi+1,m) = 1]ε. This gives us a circuit of size 2(d′+d0)m with a

sufficiently big d0, distinguishing between Gk(xvi+1
) and (xv′ , xv′′).

8 Conclusion

We showed that AC0, AC0[p] and monotone circuit lower bounds are provable in APC1.
By Lemma 4.1 our formalizations imply randomized p-time (resp. quasipolynomial-time
in case of AC0[p]) algorithms witnessing errors of AC0, AC0[p], monotone circuits of small
size attempting to compute the corresponding hard function.
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If it was possible to derandomize these witnessing algorithms provably in APC1 we
could express AC0, AC0[p] and monotone circuit lower bounds by Σb

0 formulas and derive
short WF proofs of their propositional translations, thus getting rid of the extra assump-
tion on the hardness of some function in Corollaries 6.1, 6.3, 6.4 at the cost of moving from
EF just to WF. In Theorem 7.2 we managed to generate such WF proofs of AC0[p] lower
bounds in quasi-polynomial time. It seems that quasipolynomial-size WF proofs of tau-
tologies lbw(PARITY,AC0

d, n
k) could be obtained also by formalizating the derandomized

switching lemma from [33].
A more challenging problem is a derandomization of AC0, AC0[p] and monotone circuit

lower bounds, that is proving them in the theory PV1. Eventually, we would like to know
if it is possible to derive e.g. AC0 circuit lower bounds within AC0 reasoning, i.e. in the
theory V0, cf. [8].

Another natural question is the improvement of the quasipolynomial-size proofs of
AC0[p] lower bounds from Corollary 6.3 to polynomial-size proofs, resp. proving Corollary
6.2 assuming just n ∈ Log.
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[18] Kraj́ıček J.; A note on SAT algorithms and proof systems, Information Processing
Letters, 112:490-493, 2012.
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