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Problems for Solid State Physics
(3rd year course B.VI)
A. Ardavan and T. Hesjedal

These problems are based substantially on those prepared and distributed by Prof S.H. Simon in
Hilary Term 2015.

Suggested schedule:

• Problem Set 1: Hilary Term Week 3

• Problem Set 2: Hilary Term Week 5

• Problem Set 3: Hilary Term Week 7

• Problem Set 4: Hilary Term Vacation

‡ Denotes crucial problems that you need to be able to do in your sleep.
* Denotes problems that are slightly harder.
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Problem Set 1

Einstein, Debye, Drude, and Free Electron Models

1.1. Einstein Solid

(a) Classical Einstein Solid (or “Boltzmann” Solid)

Consider a single harmonic oscillator in three dimensions with Hamiltonian

H =
p2

2m
+

k

2
x2

⊲ Calculate the classical partition function

Z =

�
dp

(2π�)3

�
dx e−βH(p,x)

Note: in this problem p and x are three dimensional vectors (they should appear bold to
indicate this unless your printer is defective).

⊲ Using the partition function, calculate the heat capacity 3kB .

⊲ Conclude that if you can consider a solid to consist of N atoms all in harmonic wells, then
the heat capacity should be 3NkB = 3R, in agreement with the law of Dulong and Petit.

(b) Quantum Einstein Solid

Now consider the same Hamiltonian quantum mechanically.

⊲ Calculate the quantum partition function

Z =
�

j

e−βEj

where the sum over j is a sum over all Eigenstates.

⊲ Explain the relationship with Bose statistics.

⊲ Find an expression for the heat capacity.

⊲ Show that the high temperature limit agrees with the law of Dulong of Petit.

⊲ Sketch the heat capacity as a function of temperature.

1.2. Debye Theory

(a)‡ State the assumptions of the Debye model of heat capacity of a solid.

⊲ Derive the Debye heat capacity as a function of temperature (you will have to leave the
final result in terms of an integral that cannot be done analytically).

⊲ From the final result, obtain the high and low temperature limits of the heat capacity
analytically.

You may find the following integral to be useful�∞

0
dx x3

ex−1 =
�∞

n=1

�∞

0
x3e−nx = 6

�∞
n=1

1
n4 = π4

15

By integrating by parts this can also be written as
�∞

0
dx x4ex

(ex−1)2 = 4π4

15

(b) The following table gives the heat capacity C for potassium iodide (KI) as a function of
temperature.

⊲ Discuss, with reference to the Debye theory, and make an estimate of the Debye temper-
ature.



3

T (K) 0.1 1.0 5 8 10 15 20

C (J K −1 mol −1) 8.5× 10−7 8.6× 10−4 1.2× 10−1 5.9× 10−1 1.1 2.8 6.3

1.3. Drude Theory of Transport in Metals

(a) Assume a scattering time τ and use Drude theory to derive an expression for the conduc-
tivity of a metal.

(b) Define the resistivity matrix ρ
�
as �E = ρ

�
�j.

⊲ Use Drude theory to derive an expression for the matrix ρ
�
for a metal in a magnetic field.

(You might find it convenient to assume �B parallel to the ẑ axis. The under-tilde notation
means that the quantity ρ

�
is a matrix.)

⊲ Invert this matrix to obtain an expression for the conductivity matrix σ
�
.

(c) Define the Hall coefficient.

⊲ Estimate the magnitude of the Hall voltage for a specimen of sodium in the form of a
rod of rectangular cross section 5 mm by 5 mm carrying a current of 1 A in a magnetic field
of 1T orthogonal to the direction of the current. The density of sodium atoms is roughly 1
g/cm3, and sodium has atomic mass of roughly 23 u. You may assume that there is one free
electron per sodium atom (Sodium has valence one).

⊲ What practical difficulties would there be in measuring the Hall voltage and resistivity
of such a specimen (and how might these difficulties be addressed).

(d) What properties of metals does Drude theory not explain well?

(e)* Consider now an applied AC field �E ∼ eiωt which induces an AC current �j ∼ eiωt.
Modify the above calculation (in the presence of a magnetic field) to obtain an expression for
the complex AC conductivity matrix σ

�
(ω). For simplicity in this case you may assume that

the metal is very clean, meaning that τ → ∞, and you may assume that �E ⊥ �B. You might

again find it convenient to assume �B parallel to the ẑ axis. (This problem might look hard,
but if you think about it for a bit, it isn’t really much harder than what you did above!)

⊲ At what frequency is there a divergence in the conductivity?

⊲ What does this divergence mean? (When τ is finite, the divergence is cut off).

⊲ Explain how could one use this divergence (known as the cyclotron resonance) to measure
the mass of the electron. ( In fact, in real metals, the measured mass of the electron is
generally not equal to the well known value me = 9.1095× 10−31 kg. This is a result of band
structure in metals, which we will explain later in the course. )

1.4. Fermi Surface in the Free Electron (Sommerfeld) Theory of Metals

(a)‡ Explain what is meant by the Fermi energy, Fermi temperature and the Fermi surface
of a metal.

(b)‡ Obtain an expression for the Fermi wavevector and the Fermi energy for a gas of electrons
(in 3D).

⊲ Show that the density of states at the Fermi surface, dN/dEF can be written as 3N/2EF .

(c) Estimate the value of EF for sodium [As above, the density of sodium atoms is roughly
1 g/cm3, and sodium has atomic mass of roughly 23 u. You may assume that there is one
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free electron per sodium atom (Sodium has valence one)]

(d) Now consider a two dimensional Fermi gas. Obtain an expression for the density of states
at the Fermi surface.

1.5. Velocities in the Free Electron Theory

(a) Assuming that the free electron theory is applicable: show that the speed vF of an electron
at the Fermi surface of a metal is vF = �

m (3π2n)1/3 where n is the density of electrons.

(b) Show that the mean drift speed vd of an electron in an applied electric field E is vd =
|σE/(ne)|, where σ is the electrical conductivity, and show that σ is given in terms of the
mean free path λ of the electrons by σ = ne2λ/(mvF ).

(c) Assuming that the free electron theory is applicable to copper:

(i) calculate the values of both vd and vF for copper at 300 K in an electric field of
1 V m−1 and comment on their relative magnitudes.

(ii) estimate λ for copper at 300 K and comment upon its value compared to the
mean spacing between the copper atoms.

Copper is monovalent, meaning there is one free electron per atom. The density of atoms
in copper is n = 8.45 × 1028 m−3. The conductivity of copper is σ = 5.9 × 107 Ω−1m−1 at
300 K.

1.6. Physical Properties of the Free Electron Gas

In both (a) and (b) you may always assume that the temperature is much less than the Fermi
temperature.

(a)‡ Give a simple but approximate derivation of the Fermi gas prediction for heat capacity
of the conduction electrons in metals

(b)‡ Give a simple (not approximate) derivation of the Fermi gas prediction for magnetic
susceptibility of the conduction electrons in metals. Here susceptibility is χ = dM/dH =
µ0dM/dB at small H and is meant to consider the magnetization of the electron spins only.

(c) How are the results of (a) and (b) different from those for a classical gas of electrons?

⊲ What other properties of metals may be different from the classical prediction?

(d) The experimental heat capacity of potassium metal at low temperatures has the form:

C = (γ T + αT 3)

where γ = 2.08 mJmol−1 K−2 and α = 2.6 mJmol−1 K−4.

⊲ Explain the origin of each of the two terms in this expression.

⊲ Make an estimate of the Fermi energy for potassium metal.
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Problem Set 2

Chemical Bonding, Thermal Expansion, Normal Modes, Phonons in 1d

2.1. Chemical Bonding

(a) Qualitatively describe five different types of chemical bonds and why they occur.

⊲ Describe which combinations of what types of atoms are expected to form which types
of bonds (make reference to location on the periodic table).

⊲ Describe some of the qualitative properties of materials that have these types of bonds.

(Yes, you can just copy the table out of the notes, but the point of this exercise is to learn
the information in the table!)

(b) Describe qualitatively the phenomenon of Van der Waals forces. Explain why the force
is attractive and proportional to 1/R7 where R is the distance between two atoms.

(c) The ionization energy of a sodium (Na) atom is 5.14 eV. The electron affinity of a chlorine
(Cl) atom is 3.62 eV. The bond length of a sodium-chloride molecule (i.e., one Na atom and
one Cl atom) is 0.236 nm. Assuming the cohesive energy is purely Coulomb energy, calculate
the total energy released when a Na atom and a Cl atom come together to form an NaCl
molecule. The actual experimental value is 4.26 eV. Qualitatively account for the sign of
your error.

2.2. Covalent Bonding in Detail*

(a) Linear Combination of Atomic Orbitals (LCAO) In class we considered two atoms
each with a single atomic orbital. We called the orbital |1� around nucleus 1 and |2� around
nucleus 2. More generally we may consider any set of wavefunctions |n� for n = 1, . . . , N .
For simplicity, let us assume this basis is orthonormal �n|m� = δn,m

Let us write a trial wavefunction for our ground state as

|Ψ� =
�

n

φn|n�

This is known as a linear combination of atomic orbitals (LCAO). We would like to find the
lowest energy wavefunction we can construct in this form, that is the best approximation to
the actual ground state wavefunction. (The more states we use in our basis, generally, the
more accurate our results will be).

We claim that the the ground state is given by the solution of the effective Schroedinger
equation

Hφ = E φ (1)

where φ is the vector of N coefficients φn, and H is the N by N matrix

Hn,m = �n|H|m�

with H the Hamiltonian of the full system we are considering.

To prove this, let us construct the energy

E =
�ψ|H|ψ�
�ψ|ψ�
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⊲ Show that minimizing this energy with respect to each φn gives the same eigenvalue
equation, Eq. (1). (Caution: φn is generally complex! If you are not comfortable with complex
differentiation, write everything in terms of real and imaginary parts of each φn). Similarly,
the second eigenvalue of the effective Schroedinger equation will be an approximation to the
first excited state of the system.

This technique is know as the molecular orbital approach, or the LCAO (linear combination of
atomic orbitals) approach. It is used heavily in numerical simulation of molecules. However,
more generally, one cannot assume that the basis set of orbitals is orthonormal. (See problem
6.5 from the book for handling the LCAO without this assumption.)

(b) Two-orbital covalent bond Let us return to the case where there are only two orbitals
in our basis. This pertains to a case where we have two identical nuclei and a single electron
which will be shared between them to form a covalent bond. We write the full Hamiltonian
as

H =
p2

2m
+ V (r−R1) + V (r−R2) = K + V1 + V2

where V is the Coulomb interaction between the electron and the nucleus, R1 is the position
of the first nucleus and R2 is the position of the second nucleus. Let ǫ be the energy of the
atomic orbital around one nucleus in the absence of the other. In other words

(K + V1)|1� = ǫ|1�
(K + V2)|2� = ǫ|2�

Define also the cross-energy element

Vcross = �1|V2|1� = �2|V1|2�

and the hopping matrix element

t = −�1|V2|2� = −�1|V1|2�

These are not typos!

⊲ Why can we write Vcross and t equivalently using either one of the expressions given on
the right hand side?

⊲ Show that the eigenvalues of our Schroedinger equation Eq. 1 are given by

E = ǫ+ Vcross ± |t|

⊲ Argue (perhaps using Gauss’s law) that Vcross should roughly cancel the repulsion between
nuclei, so that, in the lower eigenstate the total energy is indeed lower when the atoms are
closer together.

⊲ This approximation must fail when the atoms get sufficiently close. Why?
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2.3. Potentials Between Atoms

As a model of thermal expansion, we study the distance between two nearest neighbour
atoms in an anharmonic potential that looks roughly like this

✻

✲
✻kBT

V (x)

x
x0

where x is the distance between the two neighbouring atoms. This potential can be expanded
around its minimum as

V (x) =
κ

2
(x− x0)

2 − κ3

3!
(x− x0)

3 + . . . (2)

where the minimum is at position x0 and κ3 > 0. For small energies, we can truncate the
series at the cubic term. (Note we are defining the energy at the bottom of the well to be
zero here).

A very accurate approximate form for inter-atomic potentials (particularly for inert atoms
such as helium or argon) is given by the so-called Lennard-Jones potential

V (x) = 4ǫ

��σ
x

�12

−
�σ
x

�6
�
+ ǫ (3)

where ǫ and σ are constants that depend on the particular atoms we are considering.

⊲ What is the meaning of the exponent 6 in the second term of this expression (i.e., why is
the exponent necessarily chosen to be 6).

⊲ By expanding Eq. (3) around its minimum, and comparing to Eq. (2), calculate the values
of the coefficients x0, κ, and κ3 for the Lennard-Jones potential in terms of the constants ǫ
and σ.

2.4. Classical Model of Thermal Expansion

In classical statistical mechanics, we write the expectation of x as

�x�β =

�
dx x e−βV (x)

�
dx e−βV (x)

Although one cannot generally do such integrals for arbitrary potential V (x) as in Eq. 2, one
can expand the exponentials as

e−βV (x) = e−
βκ
2

(x−x0)
2

�
1 +

βκ3

6
(x− x0)

3 + . . .

�
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and let limits of integration go to ±∞.

⊲ Why is this expansion of the exponent and the extension of the limits of integration
allowed?

⊲ Use this expansion to derive �x�β to lowest order in κ3, and hence show that the coefficient
of thermal expansion is

α =
1

L

dL

dT
≈ 1

x0

d�x�β
dT

=
1

x0

kB κ3

2κ2

with kB Boltzmann’s constant.

⊲ In what temperature range is the above expansion valid?

⊲ While this model of thermal expansion in a solid is valid if there are only two atoms, why
is it invalid for the case of a many-atom chain? (Although actually it is not so bad as an
approximation!)

2.5. Normal Modes of a One Dimensional Monatomic Chain

(a)‡ Explain what is meant by “normal mode” and by “phonon”.

⊲ Explain briefly why phonons obey Bose statistics.

(b)‡ Derive the dispersion relation for the longitudinal oscillations of a one dimensional mass-
and-spring crystal with N identical atoms of mass m, lattice spacing a, and spring constant
κ. (Motion of the masses is restricted to be in one dimension).

(c)‡ Show that the mode with wavevector k has the same pattern of mass displacements as
the the mode with wavevector k+ 2π/a. Hence show that the dispersion relation is periodic
in reciprocal space (k-space).

⊲ How many different normal modes are there?

(d)‡ Derive the phase and group velocities and sketch them as a function of k.

⊲ What is the sound velocity?

⊲ Show that the the sound velocity is also given by vs =
�

β−1/ρ where ρ is the chain
density and β is the compressibility.

(e) Find the expression for g(ω), the density of states of modes per angular frequency.

⊲ Sketch g(ω).

(f) Write an expression for the heat capacity of this one dimensional chain. You will inevitably
have an integral that you cannot do analytically.

(g) Show that at high temperature the law of Dulong-Petit (for one dimension) is recovered.



9

2.6. Normal modes of a One Dimensional Diatomic Chain

a

m1 m2

κ κ

(a) What is the difference between an acoustic mode and an optical mode?

⊲ Describe how particles move in each case.

(b) Derive the dispersion relation for the longitudinal oscillations of a one dimensional di-
atomic mass-and-spring crystal where the unit cell is of length a and each unit cell contains
one atom of mass m1 and one atom of mass m2 connected together by springs with spring
constant κ (all springs are the same, and motion of particles is in one dimension only).

(c) Determine the frequencies of the acoustic and optical modes at k = 0 as well as at the
Brillouin zone boundary.

⊲ Determine the sound velocity and show that the group velocity is zero at the zone bound-
ary.

⊲ Show that the the sound velocity is also given by vs =
�
β−1/ρ where ρ is the chain

density and β is the compressibility.

(d) Sketch the dispersion in both reduced and extended zone scheme.

⊲ If there are N unit cells, how many different normal modes are there?

⊲ How many branches of excitations are there? (I.e., in reduced zone scheme, how many
modes are there there at each k).

(e) What happens when m1 = m2 ?

2.7. One Dimensional Tight Binding Model

(a)Monatomic Solid: Consider a one-dimensional tight binding model of electrons hopping
between atoms. Let the distance between atoms be called a, and here let us label the atomic
orbital on atom n as |n� for n = 1 . . . N (and you may assume periodic boundary conditions,
and you may assume �n|m� = δnm). Suppose there is an on-site energy ǫ and a hopping
matrix element −t. In other words, suppose �n|H|m� = ǫ for n = m and �n|H|m� = −t for
n = m± 1.

⊲ Derive and sketch the dispersion curve for electrons. (Hint: Use the effective Schroedinger
equations of problem 2.2.a. The resulting equation should look very similar to that of problem
2.5. above.)

⊲ How many different eigenstates are there in this system?

⊲ What is the effective mass of the electron near the bottom of this band?

⊲ What is the density of states?

⊲ If each atom is monovalent (it donates a single electron) what is the density of states at
the fermi surface?
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⊲ Estimate the heat capacity of the system at low temperature.

⊲ What is the heat capacity if each atom is divalent? What about the spin susceptibility?

(b) Diatomic Solid: Now consider a model of a diatomic solid as such

−A−B −A−B −A−B−

Suppose that the onsite energy of type A is different from the onsite energy of type B. I.e,
�n|H|n� is ǫA for n being on a site of type A and is ǫB for n being on a site of type B. (All
hopping matrix elements −t are still identical to each other).

⊲ Calculate the new dispersion relation. (This is extremely similar to problem 2.6. above.
If you are stuck, try studying that problem again.)

⊲ Sketch this dispersion relation in both the reduced and extended zone schemes.

⊲ What happens in the “atomic” limit when t becomes very small.

⊲ What is the effective mass of an electron near the bottom of the lower band?

⊲ If each atom (of either type) is monovalent, is the system a metal or an insulator?

⊲ What happens if ǫA = ǫB ?


