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Recent models have suggested an unusual anisotropy in the antiferromagnetic phase of CoTiO3 . This ’clock’
anisotropy has sixfold symmetry within an easy plane. In this report I lay out what the effects of such an
anisotropy might be and try to identify key features that could demonstrate its existence. Then I describe experi-
mental probes to identify these effects. Finally I present experimental results using magnetisation measurements
and angular dependence of magnetic torque of CoTiO3 as a function of temperature and field.

INTRODUCTION

Much of modern condensed matter physics involves it-
self with searching for interesting, non-trivial band struc-
tures. This is in part because many of the more recently
predicted properties of crystals are caused directly by band
structure[1] including topological insulators [2, 3], magic-
angle graphene[4], and Weyl semi-metals [5]. Another area
that can be explored is the magnon band structure in magnetic
materials. In these too, a number of non-trivial topologies
have been discovered or predicted [5–8].

The honeycomb quantum magnet CoTiO3 is of particu-
lar interest because its layered honeycomb structure makes
it a magnetic analogue of graphene. The discovery of
graphene’s massless Dirac electrons resulted in an explosion
of publications[1, 9–11] and so there is much interest in other
materials with Dirac points, or Dirac nodal lines. Recent neu-
tron diffraction studies on CoTiO3 have shown an rich com-
plexity in magnon band structure [12, 13], including Dirac
nodal lines which wind around the ~c axis. CoTiO3 has stacked
honeycomb layers (Fig 1) of magnetic Co2+ ions located in
the centre of oxygen octahedra.

The neutron scattering experiments [12] suggest a Hamilto-
nian with bond-dependent anisotropic exchange interactions,
resulting in a low energy spectral gap in magnon diffraction.
This suggests the existence of an anisotropy in the orientation
of ordered spins within the ab easy plane of the crystal. This
would result in a weakly anisotropic magnetisation which can
be explored with magnetometry techniques. This report seeks
to explore the effects of such an anisotropy and how it might
be detected experimentally.

MODEL

A minimal model proposed to capture the observed mag-
netic structure and key features of the dispersions in CoTiO3 is
[12]
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where the sum is over pairs of spins 〈i, j〉n of the n’th nearest
neighbours, with J1,2,3 for intralayer bonds and J2,4,6 for in-
terlayer bonds. Here Sx,y,z are components along a Cartesian
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FIG. 1. Crystal Structure of CoTiO3 rhombohedral unit cell (R3̄). a)
Schematic of the structural hexagonal unit cell (solid outline) show-
ing TiO6 and CoO6 octahedra shaded in dark/light blue with oxy-
gens as red balls. b) Honeycomb arrangement of cobalt ions in the
ab plane.

frame (~x ‖ ~a, ~z ‖ ~c) of the pseudo-spin S = 1
2 that defines the

ground state Kramers doublet of the Co2+ ions (3d7) after in-
cluding the effects of the octahedral trigonal crystal field and
the spin-orbit coupling [12].
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This is combined with a Zeeman term

ĤZ =
∑
i

µB
~B g ~Si (2)

where the g-tensor has the uniaxial form

g = diag(g⊥, g⊥, g‖) (3)

due to a 3-fold point group symmetry at the Co sites, with g‖
along the ~c -axis.

The magnetic structure of CoTiO3 , as measured by neutron
diffraction [14] has spins aligned ferromagnetically in layers
in the ab plane. Adjacent layers are antiparallel due to anti-
ferromagnetic couplings between layers. This is captured in
Eq. (1) with the dominant intralayer ferromagnetic nearest-
neighbour couplings (J⊥1 < 0) and antiferromagnetic inter-
layer couplings. Eq. (1) is a simplification as it assumes no
dependence on the orientation of the spins in the ab plane.
This would manifest experimentally as a gapless Goldstone
(magnon) mode associated with spin rotations in the ab plane.
However, inelastic neutron scattering experiments [12] show
a clear gap in this mode ∆ ∼ 1 meV. This indicates an
anisotropy within the ab plane. The total energy is expected to
be invariant under all point group symmetry operations of the
lattice (3̄) and also under time reversal (reversing the orienta-
tions of all spins). Together this constrains the energy depen-
dence of the spin orientations in the ab plane to have 6-fold
symmetry. So a simple form is proposed

HA(θ) = EA cos 6(θ − θ0) (4)

where θ is the azimuth of the ordered spins in the ab plane rel-
ative to some reference direction, and EA is an energy that
controls the strength of the anisotropy. This anisotropy is
called clock anisotropy because the easy (hard) axes fall on
the even (odd) numbers of an analogue clock. Note that the
energy is unchanged by a 180° rotation about the ~c axis so
the same term is used for both sublattices in the antiferro-
magnetic structure. Considering just the locations of Co2+

ions in the ab plane, the lattice has 3̄m symmetry with mirror
planes containing the ~c axis. This would restrict θ0 such that
energy minima (maxima) occur when spins are aligned paral-
lel to the Co-Co bond directions of the honeycomb layers for
EA > 0 (EA < 0). However, a small distortion in the oxygen
octahedra breaks this symmetry and lowers the symmetry to
3̄. Instead, a reference direction is chosen such that θ0 = 0,
i.e. the reference direction is taken along the energy max-
ima. The proposed microscopic origin of the anisotropy term
(eq. 4) is an anisotropic interaction between nearest neighbour
spin components parallel to and perpendicular to bonds in the
plane η = Jyy

1 −Jxx
1 where x, y denote local directions parallel

and perpendicular to the Co-Co bond directions respectively.
This gives a ground state contribution of the form of Eq. (4)
with EA ∼ −η3 [12]. ‘ At the mean-field level,the solution of
the Hamiltonian in equations (1) + (2) + (4) can be found by
solving for the equilibrium orientation of the spins ( ~S1, ~S2) of

two types of layers (sublattices) of the AFM structure. So the
resulting two-spin mean-field Hamiltonian becomes

Ĥ = J ~S1 · ~S2 +
∑
i

gµB
~B · ~Si +

∑
i

EA cos(6θi) (5)

where J parameterises the antiferromagnetic coupling of the
two sublattices, i ∈ {1, 2} and ~S1, ~S2 are the vector spins of
the two sublattices and g = g⊥. The above equation assumes
the field is applied within the ab plane and the spins are con-
fined to this plane. This is the arrangement where the system
is most sensitive to EA and so is discussed here to identify
key features. If the field had some component parallel to ~c ,
the spins would cant out of the ab plane, and the anisotropy in
ĝ would need to be considered, as well as a term to prefer the
spins aligned in-plane.

Considering the results of this much simplified, semi-
classical model will enable me to identify experimental sig-
natures of this anisotropy in real experiments. The angular-
dependent energy term in Eq. (4) has been proposed to arise
from an order-by-disorder [15–18] mechanism in a quantum
treatment of the spin Hamiltonian including the XXZ form in
Eq. (1))= as well as the bond dependent exchange η [12]. A
direct experimental signature of this term would be strong ev-
idence for the validity of this model.

CALCULATION OF BEHAVIOR OF CLOCK-ANISOTROPY
SYSTEM

Treating the spins as classical vectors, the Hamiltonian in
Eq. (5) can be solved numerically. I rescaled the energies
by the exchange constant J to bring the system into natural
units. The final Hamiltonian of clock anisotropy to solve is,
in natural units,

Ĥ = 2Ŝ1 · Ŝ2 (6)
+ EA(cos 6θ1 + cos 6θ2)

− EZB̂ · (Ŝ1 + Ŝ2)

where Ŝ1, Ŝ2, B̂ are all unit vectors in the directions of
~S1, ~S2, ~B respectively. And using a unitless parameter for the
Zeeman energy proportional to the magnetic field strength

EZ ≡
g⊥µB | ~B|

J
(7)

This clock-anisotropy model is compared throughout with
a uniaxial model with an anisotropy term EA(cos(2θ1) +
cos(2θ2)). These models can both be written as a generalised
axial anisotropy Hamiltonian

Ĥ(θ1, θ2) = 2 cos(θ1 − θ2) (8)
+ EA(cosnθ1 + cosnθ2)

− EZ(cos(θ1 − θB) + cos(θ2 − θB))

where θ1, θ2, θB are the azimuth of Ŝ1, Ŝ2, B̂ respectively and
n = 2 for the uniaxial case, n = 6 for the clock-type case.



3

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

Ez
0 2

EzEz

θ θ

EA = 0.01 EA = 0.01

2

4

6

8

10

12Easy AxisHard Axis

9

11

7 5

1

Ez
0 1

a) b)

c) d)

e) f)

M
ag

ne
tis

at
io

n 
(a

.u
.)

To
rq

u
e 

(a
.u

.)

0 /2 3 /2 2
-0.04

-0.02

0

0.02

0.04

0 1 /3 2 /3 4 /3 5 /3 2
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

θ

FIG. 2. Mean field calculations of the two-sublattice model From top to bottom: magnetisation curves, equilibrium spin orientation as
function of applied field strength, magnetic torque as function of field orientation for fixed field strength for uniaxial (left column) and clock-
type (right column) anisotropy in Eq. (8). In a), b) colour indicates field orientation, see inset. In c), d) top (bottom) row indicates field applied
along hard (easy) axis. For clock anisotropy the behavior is shown for the magnetic domain with the lowest energy. θ is measured from the
hard axis,
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This comparison is useful because the uniaxial system is well
understood [19–21] so it is informative to compare analogous
properties between the two systems.

To solve this system numerically I minimise the value of H
with gradient descent. Finding the global minimum by using
starting points on each of the solutions to the case where there
is zero applied field. However, it needs to be noted that in this
problem, as stated is an almost pathological example for gra-
dient descent. This is because with the coordinate transform
x = 1

2 (θ1 − θ2), y = 1
2 (θ1 + θ2) the Hamiltonian becomes

Ĥ(x, y) = 2 cos 2x (9)
+ 2EA cosnx cosny

− 2EZ cos(y − θB) cosx

which is only weakly dependent on y when EA, EZ � 1.
This problem can be solved using an approximate precondi-
tioning matrix [22], which performs a coordinate transform
to bring the system into a more well-conditioned form. The
numerical system is a perfectly parallel problem and so it can
be solved quickly on a small cluster or large server CPU. The
code to solve this was written in C++ to maximise speed, es-
pecially in parallelisation. This was run on two Intel Xeon
E5-2650 CPUs on a Linux server, across all 32 cores. In
this set up it can solve 1 million points in 6 s. This enabled
me to solve it at high resolution for a large range of parame-
ters; the final dataset, containing 229 points, was completed in
under 90 min. To show qualitative effects of the anisotropy,
large values of EA are shown in Figure 2, however quantita-
tive analysis was also performed. This strategy of finding the
global minimum means that only the magnetic domain with
the lowest energy is considered.

Numerical Results

Figure 2 shows the results of the calculations comparing
the uniaxial and the clock-type cases using Eq. (8). Fig-
ure 2a,b shows the evolution of magnetisation projected onto
the magnetic field direction ( ~S1 + ~S2) · B̂ with field strength
for EA = 0.01 in 5◦ increments in the field orientation with
respect to the hard axis. In the uniaxial case (a), a clear spin-
flop can be seen with a discontinuity in magnetisation when
the field is parallel to the easy axis. The field at which this
occurs is quadratic with EA when EA � 1,

EZ(SF ) = 4
√
EA − E2

A (10)

but as there is a discontinuity it is a clear experimental signa-
ture of anisotropy. For fields angled away from the easy axis
the change in magnetisation is more gradual, with no clear
transition between low and high fields. Note: in these units, a
magnetisation of 2 means the magnetisation is fully saturated
along the field direction.

For the clock-anisotropy case (Figure 2b), with field ap-
plied along the easy axis and selecting the domain with the

lowest energy, there is a small anomaly in magnetisation (ma-
genta curve). This quickly changes to a smooth crossover as
the field is tilted away from the easy axis. For very strong
anisotropy EA ' 0.015 (not shown) there is also a disconti-
nuity is magnetisation which occurs at ≈ 2× higher field.

The qualitative effect of the spin-reorientations as a func-
tion of applied field in the clock-anisotropy crystal can be seen
in Figure 2d. The axes are numbered as on a clock. With field
application along an easy axis #4, the spin start antiparallel
close to #2 and #8. There is a non-zero susceptibility as the
spins can both tilt towards the field. This reduces the energy
from the Zeeman term and provides a non-zero magnetisation.
At a special field value, one of the spins moves over a hard
axis (#7), leading to an anomaly in magnetisation. It should
be noted that above EZ ' 4 a second anomaly would be ex-
pected in this arrangement. This will occur when both spins
move over the next hard axis such that the spins are both close
to #4 and the magnetisation is nearly saturated. However, this
high field regime is not considered here, as it would require
experimentally inaccessible fields. This magnetic transition
is very different to the uniaxial case, seen in Figure 2c. For
field applications parallel to the easy axis (Figure 2c, bottom
row), at low fields the spins are parallel and antiparallel with
the field. The spins cannot rotate towards the field to reduce
their energy and so there is zero susceptibility. At the spin
flop, it becomes energetically favorable to move the spins into
the arrangement shown, where they can lower their energy by
rotating towards the field.

An experimental approach that is a sensitive probe measur-
ing anisotropy is torque magnetometry [23–26]. This mea-
sures the magnetic torque on a sample which is defined as

τ = ~m× ~B (11)

and can be written in terms of the free energy

τ · v̂ = − ∂F
∂θv

(12)

where θv is the rotation of the sample (or equivalently the
field) about the axis ~v. Thus, magnetic torque is the tendency
for the system to minimise its magnetic energy by changing
its orientation. As can be seen in Eq. (12), it is sensitive only
to the anisotropic part of of the magnetisation. In an isotropic
system, the free energy F cannot depend on sample orienta-
tion and so the torque must be 0. As is discussed in [26], in a
uniaxial system, in the low field limit, the torque can be found
analytically to be proportional to the difference in susceptibil-
ity between the easy axis and the hard axis

τ =
1

2µ0
(χ⊥ − χ‖)B2 sin 2θ (13)

As torque is measured while rotating the sample, different
kinds of anisotropy could be differentiated by the periodic-
ity of the torque signal. In this system, free energy varies with
field orientation (Figure SM1), so the crystal will experience
a magnetic torque to minimise the free energy. For example,
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Figure 2e shows the magnetic torque produced from a uniaxial
crystal for a range of field strengths. The crystal orientation
with field parallel to a hard axis has spin arrangement with
both spins on an easy axis, and able to reduce their Zeeman
energy. This is a lower energy state than the orientation with
field parallel to the easy axis. The torque signal is not sinu-
soidal as it would be in an anisotropic paramagnet, it is steeper
when the field passes through the easy axis. This can provide
a clear mark of which axis is which if the field is in the range
of the spin-flop field. The torque from the clock-type case
(Figure 2f) is much more complex. At low fields, it appears
similar to the uniaxial case, but has sixfold symmetry. How-
ever the sign of the torque changes when EZ passes≈ 1. This
is independent of the magnitude of EA.

These results provide guidance to design an experiment to
determine the magnetic properties of a crystal sample. A mag-
netisation experiment as a function of magnetic field could
show the presence of a spin flop. The location of the spin
flop in EZ , and the size of the jump in magnetisation can be
used to determine EA. A second experimental probe, mag-
netic torque, can clearly show the difference between uniaxial
and clock type systems. Quantitatively EA may however be
determined by finding the magnitude of the torque signal in
absolute units and comparing to calculation.

VIBRATING SAMPLE MAGNETOMETRY

Principle of operation

A vibrating-sample magnetometer (VSM) is able to detect
the magnetisation of a sample by vibrating it in an inductive
coil and measuring the voltage pickup as shown in Figure 3a.
From Lenz’ law, the inductive voltage in the coil is

V = −∂Φ

∂t
(14)

= −∂Φ

∂z

∂z

∂t
(15)

By approximating the sample as a point dipole, and using z =
A cos(ωt), the pickup voltage can be approximated.

V = AωC|~m| sin(ωt) (16)

with vibration amplitude A, vibration frequency ω, coupling
constant C, and magnetic dipole moment ~m [27].

By measuring this inductive voltage, the magnetic dipole
moment of a mounted sample can be measured precisely. The
experiment is performed in a PPMS (Physical Property Mea-
surement System) that controls temperature down to 3 K and
magnetic field of the sample up to 16 T.

Methods

A CoTiO3 crystal was aligned with x-ray diffraction and
had faces cut perpendicular to crystal axes ~a∗ , ~b , ~c to al-

low for alignment when mounting. This cut crystal, weigh-
ing 46.0 mg, was mounted on in the VSM assembly such that
the applied field would be parallel to the ~a∗ axis (Figure 3b.
A VSM experiment was performed measuring the magnetic
moment on cooling from 300 K to 5 K with an applied field
of 0.1 T. A second measurement recorded the magnetic mo-
ment in a field hysteresis between −16 T and 16 T at temper-
atures between 5 K, and 40 K. This experiment was repeated
with the crystal rotated 90°, such that the field was parallel
to ~b (Figure 3a). The experiment was also performed on a
second cut crystal, weighing 11.2 mg, with the magnetic field
applied along the ~c axis. All VSM measurements were per-
formed with a 40 Hz, 1 mm oscillation.

Results

Figure 3 shows the results of the VSM experiment. Fig-
ure 3b shows the evolution of the magnetisation of the sample
with temperature for different crystal orientations. The curves
for the fields along ~a∗ and ~b lie on top of each other to within
the error of the experiment. By fitting the susceptibility per
spin data to a Curie Weiss relationship [28]

χ = χ0 +
µ2
eff

3µ0kB(T + θW )
(per spin) (17)

I can extract the effective magnetic moment of the spins µeff ,
and the Weiss temperature θW as shown in Table I. For all
orientations, the Weiss temperature TW differs from the Néel
temperature (TN ) of 38 K, suggesting that CoTiO3 is not a
conventional antiferromagnet.

TABLE I. Extracted parameters from Curie-Weiss fit to magnetic
susceptibility for different orientations.

µeff (µB) θW (K) χ0 (µBT−1)
~B ‖ ~a∗ 4.71 11.0 0.011
~B ‖ ~b 4.76 9.6 0.010
~B ‖ ~c 2.12 28.0 0.008

The anisotropy in µeff between the ab plane and the ~c axis
is caused by an anisotropic g factor (eq 3). This means that
spins get less Zeeman energy from tilting towards the ~c axis
than towards a vector in the ab plane. As such, there is a lower
susceptibility for fields parallel to ~c .

Figure 3c,d show the evolution of magnetisation with ap-
plied magnetic field. For fields applied parallel to ~a∗ , and ~b ,
the two curves follow each other very closely and no spin-flop
transition can be seen. This could occur if the spin-flop was
sufficiently weak that it cannot be captured by this experiment
(suggesting that EA is small). Alternatively, if the easy and
hard axes are rotated approximately 15° from the crystal axes
it would put ~a∗ and ~b in-between the easy and hard axes of
the anisotropy. If this were the case one would expect the two
curves to follow each other. There is also a clear anomaly in
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FIG. 3. Vibrating Sample Magnetometry Microscope photograph of mounted CoTiO3 crystal for VSM experiment with magnetic field
applied (a) ~B ‖ ~b and (b) ~B ‖ ~a∗ . (c) Schematic showing motion of sample in inductive coil at two different time steps. (d) Evolution of
sample magnetisation with temperature for different sample orientations. Evolution of sample magnetisation with applied field for (e) different
sample orientations and (f) a range of temperatures from 3 K to 40 K.

the region between −1 T to 1 T. The evolution of magnetisa-
tion with magnetic field for different temperatures from 5 K to
40 K can be seen in Figure 3d. This shows the anomaly devel-
oping as the temperature drops below the Néel temperature.
The anomaly is not present in magnetisation curves for ~B ‖ ~c

(Figure SM2). This magnetisation study provided significant
information about the system, but was unable to identify the
characteristic features of clock anisotropy. This is because,
as can be seen in Figure 2b clock anisotropy has particularly
weak spin-flop features.
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TORQUE MAGNETOMETRY

Principle of operation

Torque magnetometry generally involves mounting the
sample on a long cantilever and placing the assembly in a
magnetic field. Various methods can be used to measure the
deflection of the lever. One method uses a piezoresistive lever
[29]. As the lever deflects, the mechanical strain at the base
increases its resistance. This resistance is measured by having
a current path through the lever be one part of a Wheatstone
bridge as shown in Figure 4a. A second method measures the
capacitance between the lever and a nearby plate, shown in
Figure 4c.

Preliminary results

A first experiment using a 400 µm Seiko PRC400 piezore-
sistive cantilever torque magnetometer has been performed.
To prepare samples, small crystals were flaked off the larger
piece of CoTiO3 . Of the pieces that appeared under the mi-
croscope to be single, flat crystals of approximately 100 µm
wide, were tested with x-ray diffraction. From these, sam-
ples were selected with a surface normal parallel to one of the
crystal axes.

A sample S1 with a surface normal parallel to the ~c axis
was mounted on the lever and stuck with grease. The torque
was measured in in the ~a∗ , ~c plane. The torque signal was

fitted to a sinusoidal form

τ = A sin 2(θ − θ0) +B (18)

with free parameters A, B, and θ0, from Eq. (13). The evolu-
tion of the amplitude A of the torque signal with temperature
is shown in Figure 5. The data clearly show the transition of
the sample from a paramagnetic state above the Néel temper-
ature to an antiferromagnetic state below it. These data match
with those gathered during the VSM experiment (Figure 3d).

A second sample S2 with a surface normal parallel to the
~b axis was mounted on another identical lever. The evolution
of the torque signal with temperature can be seen in Figure 5d.
Above the Néel temperature, some paramagnetic torque sig-
nal is present which matches the torque in ac, caused by the
crystal being tilted slightly, such that some ac component re-
mains. The sign of this high temperature signal is reversed
from the previous data because the lever is oriented in the op-
posite direction. Below the transition, a more complex torque
profile can be seen. This profile has 2-fold symmetry, and
peaks separated approximately 90° apart. By assuming the
contribution from the ac plane is constant below 50 K I sub-
tract this component, leaving only the in-plane contribution
(Figure 5d. This shows signs of in-plane structure. The evolu-
tion of this signal with field at 3 K can be seen in Figure SM3.
These data show that above 4 T, a sinusoidal pattern of torque
is recovered. This clearly shows that the field is tilted to-
wards ~c , and so the expected torque is beyond the scope of
the calculation. Including that contribution would require a
generalisation of the model to include three-dimensional field
orientations, anisotropic g-factors, and a component from the
exchange interactions to hold the spins in the ab plane.



8

0 50T (K)

0 60 120 180 240 300 360

(degrees)

(a
.u

.)

c) d)

|B| = 2T

(a
.u

.)

0 200T (K)
|B| = 2T

0 50 100 150 200
T (K)

0

1

2

3

4

5

(a
.u

.)

a) b)

|B| = 2T

0 60 120 180 240 300 360

(degrees)

(a
.u

.)

0 50T (K)
|B| = 2T

S1

S1

S2 S2

c -c ca -a
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OTHER WORK

During this year, I wrote the first draft of a paper of which
I am the first author. This work was on an ARPES study
of the superconductor FeSe0.82S0.18 which started during my
MPhys project. The work will be submitted this year after fur-
ther improvements [30]. I have found the process of writing
a paper has significantly improved my experimental planning
skills, as I now have more experience in what problems can
come up during this work.

FUTURE WORK

A number of improvements could be make to the clock-
anisotropy calculation. The assumption that the spins are
bounded to the ab plane relies on the crystal being perfectly
aligned. This assumption could be relaxed by considering the
state of any crystal orientation. The calculation could be gen-
eralised by allowing the sublattice spins to move out of the ab
plane and computing the state for magnetic fields on a sphere.
This could be implemented practically by mapping the mag-
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netic field direction onto a Fibonacci spiral, distributed over
a sphere [31]. This strategy is well developed for computer
graphics and has very good area coverage of the unit sphere
when many points are considered. In order to manage the
complexity of the additional dimensionality, the code could be
modified to execute on a graphics card for significant speedup.
This would allow the theoretical model to be generalised with
anisotropic g factors, and an energy component to hold the
spins within the ab plane. This would allow the calculation
to include the effect of field orientation titled towards ~c and
might capture the complex behavior observed. Additionally,
the effects of magnetic domains could be considered by treat-
ing all domains separately, allowing the effects of domain po-
larisation to be included.

One challenge of the present experiments is to accurately
align the samples to probe the anisotropy in the ab plane while
suppressing contributions from the out of plane tilt. A way
forward may be to implement in-situ rotations of the torque
lever using a multi-axis rotator such as the recently purchased
Attocube micro-goniometers. This project would help widely
with a range of projects where precision alignment is neces-
sary as the system is sensitive to sample orientation, or where
in-situ rotation could be useful. I am also planning additional
torque magnetometry experiments with the Materials Science
department using a capacitive lever. This allows much larger
samples to be mounted which could allow more precise align-
ment of the crystal. I also plan to explore other magnetic sys-
tems with torque magnetometry such as single crystals of in-
sulating triangular lattice based Yb magnet Ba3Yb(BO3)3, re-
cently synthesised in our research group. This is a candidate
material to display bond-dependent interactions between an
effective spin- 12 Yb ions on a triangular lattice, characterised
so far my magnetisation and temperature-dependent suscepti-
bility measurements.

Another area that I am planning to be involved in is in neu-
tron scattering experiments, on CoTiO3 and in other, related,
materials. These include frustrated magnetic systems, quan-
tum magnets. Neutron scattering to explore the magnon band
structure provides an incredible amount of detail about the
magnetic Hamiltonian of a system. This could be combined
with other magnetometry experiments like the ones above,
and similar calculations and toy models to test aspects of the
predicted Hamiltonians. Finally, I am planning to be involved
in future heat capacity studies performed in a dilution refrig-
erator that is currently being set up in a new lab. This would
open up many more properties of these materials for study.
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FIG. SM1. Supplementary Materials for mean field calculations of the two-sublattice model From top to bottom: magnetisation as a
function of field orientation for fixed field strength, equilibrium energy as a function of field orientation for fixed field strength for uniaxial
(left column) and clock-type (right column) anisotropy. For clock anisotropy the behavior is shown for the magnetic domain with the lowest
energy.
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FIG. SM3. Evolution of torque on CoTiO3 with crystal rotation about axis ~c for a range of fields from 0.5 T to 9.0 T at 3 K.
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