BGD Group - 2011 TLC Developing System

The following solvent systems are roughly ordered from least polar to most polar. For multi-solvent systems, the polarity will dependent on the solvent ratio
*Good (more usual) systems that are most often used that run quickly and vac-off cleanly/well - efficient

Pentane
Hexane or Petrol
Petrol/Ether
THF/Petrol
THF/Ether
THF/MeOH
*Petrol/EtOAc
Acetone/Toluene

Acetone/Petrol
EtOAc
Toluene/EtO
$\mathrm{Et}_{3} \mathrm{~N} / \mathrm{EtOAc}$

DCM
Petrol/DCM
$\mathrm{Et}_{2} \mathrm{O} / \mathrm{DCM}$
${ }^{*}$ EtOAc/(Hexane/Petrol)
EtOAc/DCM
EIOH/DCM
$\mathrm{EtOH} / \mathrm{CHCl}_{3}$
Ether/MeOH
$\mathrm{CHCl}_{3} /$ Acetone
*MeOH/EtOAc
$\mathrm{AcOH} / \mathrm{EtOA}$
$\mathrm{MeOH} / \mathrm{DC}$

* $\mathrm{MeOH} / \mathrm{CHCl}_{3}$
$\mathrm{iPrOH} / \mathrm{CHCl}_{3}$
$\mathrm{BuOH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$
$\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{DCM}$
a change in solvent type can pull apart two spots hat might have the same R in a different solvent system with the same polarity - solvent:solute interactions are molecular too so change the solvent structure if you need to
(good for aromatic compounds)
up to $5 \% \mathrm{Et}_{3} \mathrm{~N}$, use for basic compounds or those hat are acid sensitive and so decompose on silica so use 0.1% is you can)
(good for halogenated protected sugars, e.g 1:50)
(good for free hydroxyl group)
(good for separation of protected anomeric mixture, e.g. 97:3)
(good for protected sugars, up to $20 \% \mathrm{MeOH},+1$ $2 \% \mathrm{AcOH}$ in presence of acid impurity)
Remember $>20 \% \mathrm{MeOH}$ in EtOAc will start to dissolve some silicas giving you a fine white powder/crystals on vac-down and a yield of $>100 \%$! use for acidic compounds, 1-5\% AcOH)
up to $20 \% \mathrm{MeOH}$)

BuOH can be quite unique for some compounds
${ }^{*} \mathrm{CHCl}_{3} / \mathrm{MeOH} /$ Acetone $/ \mathrm{H}_{2} \mathrm{O}$ ${ }^{*} \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O} / \mathrm{THF} / \mathrm{Ethe}$
$\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$
$\mathrm{H}_{2} \mathrm{O} / \mathrm{PrOH} / E$ ther
$\mathrm{H}_{2} \mathrm{O} / \mathrm{PrOH} / \mathrm{EtOAc}+100 \mathrm{mM} \mathrm{NaCl}$
$\mathrm{H}_{2} \mathrm{O} / \mathrm{PrOH} / \mathrm{EtOAc}$
$\mathrm{H}_{2} \mathrm{O} / \mathrm{iPrOH} / \mathrm{EtOAc}+1 \% \mathrm{NH} 4$ (aq.)
$\mathrm{H}_{2} \mathrm{O} / \mathrm{CHCl}_{3} / \mathrm{MeOH} / \mathrm{AcOH}$
$\mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}^{2} / \mathrm{MeOH} / \mathrm{EtOAc}$
$\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{PrOH}$

CMAW or "Seymour
(for very polar compounds; up to 1:2:2)
(for very polar, basic compounds like deprotected amino acids; up to $10 \% \mathrm{NH}_{4} \mathrm{OH}$ and $20 \% \mathrm{MeOH}$)

