BGD Group - 2011 TLC Developing System

The following solvent systems are roughly ordered from least polar to most polar. For multi-solvent systems, the polarity will dependent on the solvent ratio

*Good (more usual) systems that are most often used that run quickly and vac-off cleanly/well - efficient

Pentane Hexane or Petrol Petrol/Ether THF/Petrol THF/Ether THF/EtOAc THF/MeOH

*Petrol/EtOAc

Acetone/Toluene a change in solvent type can pull apart two spots

that might have the same Rf in a different solvent system with the same polarity – solvent:solute interactions are molecular too so change the

solvent structure if you need to

Acetone/Petrol

EtOAc

Toluene/EtOAc (good for aromatic compounds)

Et₃N/EtOAc (up to 5% Et₃N, use for basic compounds or those that are acid sensitive and so decompose on silica -

Et₃N may be hard to vac-off so use 0.1% is you

can)

DCM

Petrol/DCM Acetone/DCM

Et₂O/DCM (good for halogenated protected sugars, e.g 1:50)

*EtOAc/(Hexane/Petrol)

EtOAc/DCM

EtOH/DCM

EtOH/CHCI₃ (good for free hydroxyl group)

Ether/MeOH

(good for separation of protected anomeric mixture, CHCl₃/Acetone

e.g. 97:3)

(good for protected sugars, up to 20% MeOH, + 1-*MeOH/EtOAc

2% AcOH in presence of acid impurity)

Remember >20% MeOH in EtOAc will start to dissolve some silicas giving you a fine white powder/crystals on vac-down and a yield of >100%!

AcOH/EtOAc (use for acidic compounds, 1-5% AcOH)

MeOH/DCM (up to 20% MeOH)

*MeOH/CHCI₃

iPrOH/EtOAc

iPrOH/CHCl₃

BuOH/AcOH/H₂O BuOH can be quite unique for some compounds NH₄OH/MeOH/DCM (for basic compounds, 1-10% NH₄OH, 25% aq.)

*CHCl₃/MeOH/Acetone/H₂O

*CHCl₃/MeOH/AcOH/H₂O CMAW or "Seymour"

H₂O/THF/Ether H₂O/MeCN H₂O/iPrOH/Ether

H₂O/iPrOH/EtOAc + 100mM NaCl

H₂O/iPrOH/EtOAc (for very polar compounds; up to 1:2:2)

EtOH/NH₄(aq.)/H2O H₂O/iPrOH/EtOAc + 1% NH4 (aq.) H₂O/CHCl₂/MeOH/AcOH H₂O/AcOH/MeOH/EtOAc

NH₄OH/MeOH/iPrOH (for very polar, basic compounds like deprotected

amino acids; up to 10% NH₄OH and 20% MeOH)