Electronic Transitions to Probe Bonding Orbital Energies

- Electronic transitions as a source of bonding information,
- · hy absorption leads to excitation of electrons from a ground state to an excited one
- The wavelength (λ_{max}) of an absorption (in nm) can be used to deduce details of the structure of the *chromophore*.
- Most important in the structural analysis of compounds containing π electrons, and particularly highly conjugated systems.

Beer-Lambert Law

$$A = \log(I/I_0) = \varepsilon.c.l$$

where I = transmitted light intensity

I_o = incident light intensity

c = concentration (M)

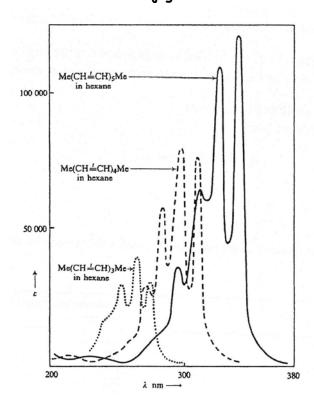
/= path length of cell (cm)

 ϵ = molar extinction coefficient (usually in the range 0-10 5 , with <10 3 considered to be a weak absorption)

• In characterization λ_{max} and ϵ normally reported for each maximum

Sample Preparation

Solvent	Minimum wavelength for 1 cm cell, nm		
Acetonitrile	190		
Water	191		
Cyclohexane	195		
Hexane	201		
Methanol	203		
Ethanol	204		
Ether	215		
Methylene dichloride	220		
Chloroform	237		
Carbon tetrachloride	257		


Common Transitions and Functional Groups

• Most frequently observed, most important transitions involve 'loosely held' \emph{n} and π electrons

$$n \xrightarrow{n \to \pi^*} \qquad \qquad \begin{array}{c} c = \ddot{0} & \longrightarrow \\ c = \ddot{0} & \longrightarrow$$

Chromophore	Transition notation†	λ_{\max} , nm	
σ-bonded electrons			
C-C = and -C-H	$\sigma \rightarrow \sigma^*$	~150	
Lone-pair electrons			
-0-	$n \rightarrow \sigma^*$	~185	
-Ñ<	$n \rightarrow \sigma^*$	~195	
_ <u>;</u> _	$n \rightarrow \sigma^*$	~195	
c≕ö	$n \to \pi^*$	~300	
c≕ö	$n \rightarrow \sigma^*$	~190	
π -bonded electrons			
c=c	$\pi \to \pi^*$	~190	
(isolated)			

Conjugation

Woodward-Fieser Rules

• Empirical rules for predicting λ_{max}

$\stackrel{\delta}{C}=\stackrel{\gamma}{C}=\stackrel{\beta}{C}=\stackrel{\alpha}{C}=C=0$ ε values are usually above 10 000 and increase with the length of the conjugated system.

Value assigned to p	parent $\alpha\beta$ -unsaturated six-ring or acyclic ketone parent $\alpha\beta$ -unsaturated five-ring ketone	215 nm 202 nm
Value assigned to parent αβ-unsaturated aldehyde		207 nm
Increments for	arone up ansatarated arden, de	20, 1111
	d extending the conjugation	30 nm
	oup or ring residue α	10 nm
(b) cach ankyrgi	oup of fing residue a	12 nm
	p wand bishes	
	y and higher	18 nm
(c) auxochrome	S	
(i) —OH	α	35 nm
	β	30 nm
	δ	50 nm
(ii) —OAc	α, β, δ	6 nm
(iii) —OMe	α	35 nm
	β	30 nm
	v	17 nm
	δ	31 nm
(iv) -SAlk	В	85 nm
(v) —Cl	α	15 nm
(0)	B	12 nm
(vi) —Br	α	25 nm
(01) Bi	Q.	30 nm
(.:) NID	P	
(vii) -NR ₂	<i>p</i>	95 nm
	e nature of any double bond	5 nm
(e) homodiene	component	39 nm
AEtOH calc	Total	

For λ_{\max}^{calc} in other solvents a solvent correction (Table 1.7) must be subtracted from the above value.

(Reprinted with permission from A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products, Pergamon Press, Oxford, 1964.)

Ring variant

Woodward's rules for diene and triene absorptions (as modified by Fieser & Scott)

Heteroannular diene

Value assigned to parent heteroannular or open chain diene	214 nm
Value assigned to parent homoannular diene Increment for	253 nm
(a) each alkyl substituent or ring residue	5 nm
(b) the exocyclic nature of any double bond	5 nm
(c) a double bond extension	30 nm
(d) auxochrome—OAcyl	0 nm
-OAlkyl	6 nm
—SAlkyl	30 nm
—Cl, —Br	5 nm
-NAlkyl ₂	60 nm
λ_{calc}	Total

Me

Homoannular diene

(Reprinted with permission from A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products, Pergamon Press, Oxford, 1964.)

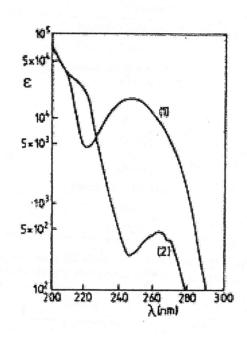
· Benzene rules

$$\mathbf{R} = \mathbf{V} \mathbf{V}$$

	Orientation	$\lambda_{\text{calc}}^{\text{EtOH}}$, nm	
		THIT	
Parent chromophore:			
X = alkyl or ring residue		246	
X = H		250	
X = OH or OAlkyl		230	
Increment for each substituent:			
R = alkyl or ring residue	0, m	3	
and the	p	10	
R = OH, OMe, OAlkyl	o, m	7	
	P	25	
$R = O^-$	0	11	
	m	20	
	p	78	
R = Cl	o, m	0	
	p	10	
R = Br	0, m	2	
	p	15	
$R = NH_2$	o, m	13	
·	p	58	
R = NHAc	o, m	20	
	p	45	
R = NHMe	p	73	
$R = NMe_2$	0, m	20	
	p	85	

(Reprinted with permission from A. I. Scott, Interpretation of the Ultraviolet Spectra of Natural Products, Pergamon Press, Oxford, 1964.)

$R = \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$


and actual....

R	λ_{\max} , nm (ϵ) (solvent H_2O or $MeOH$)			
—н	203.5 (7400)	254	(204)	
$-NH_3^+$	203 (7 500)	254	(160)	
—Me	206.5 (7000)	261	(225)	
—I	207 (7000)	257	(700)	
-Cl	209.5 (7400)	263.5	(190)	
—Br	210 (7900)	261	(192)	
—OH	210.5 (6 200)	270	(1450)	
ОМе	217 (6 400)	269	(1480)	
$-SO_2NH_2$	217.5 (9 700)	264.5	(740)	
-CN	224 (13 000)	271	(1000)	
-CO ₂	224 (8 700)	268	(560)	
-CO ₂ H	230 (11 600)	273	(970)	
$-NH_2$	230 (8 600)	280	(1430)	
-0-	235 (9 400)	287	(2600)	
-NHAc	238 (10 500)			
—COMe	245.5 (9800)			
$-CH=CH_2$	248 (14000)	282	(750)	291 (500)
-CHO	249.5 (11 400)			
—Ph	251.5 (18 300)			
—OPh	255 (11 000)	272	(2000)	278 (1800)
-NO ₂	268.5 (7800)			
−CH [±] CHCO ₂ H	273 (21 000)			
-CH≟CHPh	295.5 (29000)			

(Most values taken with permission from H. H. Jaffé and M. Orchin, Theory and Applications of Ultraviolet Spectroscopy, Wiley, New York, 1962.)

Examples

(a) Biphenyl (1) and 2.5.2'.6'-tetramethylbiphenyl (2) have the ultraviolet absorption spectra shown. What may be deduced from this information?

