Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Evaluation of the non-toxic mutant of the diphtheria toxin K51E/E148K as carrier protein for meningococcal vaccines

S. Pecetta^{a, 1}, B. Vijayakrishnan^{b, 1}, M.R. Romano^a, D. Proietti^a, P. Lo Surdo^a, C. Balocchi^a, E. Mori^a, B.G. Davis^{b,*}, F. Berti^{a,*}

^a GSK Vaccines, Research, Via Fiorentina 1, Siena 53100, Italy
^b Department of Chemistry, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, United Kingdom

ARTICLE INFO

Article history: Received 10 November 2015 Received in revised form 14 December 2015 Accepted 19 January 2016 Available online 1 February 2016

Keywords: Conjugate vaccines Meningococcal vaccines CRM₁₉₇ Diphtheria toxin mutant DT-K51E/E148K

ABSTRACT

Diphtheria toxin mutant CRM₁₉₇ is a common carrier protein for glycoconjugate vaccines, which has been proven an effective protein vector for, among others, meningococcal carbohydrates. The wide-range use of this protein in massive vaccine production requires constant increase of production yields and adaptability to an ever-growing market. Here we compare CRM₁₉₇ with the alternative diphtheria non-toxic variant DT-K51E/E148K, an inactive mutant that can be produced in the periplasm of *Escherichia coli*. Biophysical characterization of DT-K51E/E148K suggested high similarity with CRM₁₉₇, with main differences in their alpha-helical content, and a suitable purity for conjugation and vaccine preparation. Meningococcal serogroup A (MenA) glycoconjugates were synthesized using CRM₁₉₇ and DT-K51E/E148K as carrier proteins, obtaining the same conjugation yields and comparable biophysical profiles. Mice were then immunized with these CRM₁₉₇ and DT-K51E/E148K conjugates, and essentially identical immunogenic and protective effects were observed. Overall, our data indicate that DT-K51E/E148K is a readily produced protein that now allows the added flexibility of *E. coli* production in vaccine development and that can be effectively used as protein carrier for a meningococcal conjugate vaccine.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Diphtheria toxin (DT) is the exotoxin responsible of the toxicity of *Corynebacterium diphtheriae*, the leading cause of diphtheria [1]. It catalyzes the adenosine diphosphate (ADP)-ribosylation of diphtamide, a post-translationally modified histidine residue present on elongation factor-2 (EF-2) [2,3]. Two inactive versions of diphtheria toxin have been used for decades in the production of glycoconjugate vaccines: the diphtheria toxoid, obtained by inactivation of the native toxin with formaldehyde [4,5], and CRM₁₉₇, an enzymatically inactive and non-toxic mutant of DT [6]. CRM₁₉₇ contains one single point mutation leading to the substitution of a glycine by a glutamic acid in position 52 [7,8]. CRM₁₉₇ has been used as a protein component in vaccines protective against several pathogenic bacteria, such as *Streptococcus pneumoniae*, *Haemophilus influenzae*, and *Neisseria meningitidis* [9]. As for other glycoconjugate vaccines, DT variants have potential as carrier proteins by covalent linkage to, for

* Corresponding authors.

E-mail address: francesco.x.berti@gsk.com (F. Berti).

¹ Authors contributed equally to this work.

http://dx.doi.org/10.1016/j.vaccine.2016.01.040 0264-410X/© 2016 Elsevier Ltd. All rights reserved. example, the capsular polysaccharide, a T-cell-independent antigen, thus providing T-cell-dependent epitopes that greatly improve the immunogenicity of the saccharide and making it suitable also for infants [10,11].

At present, despite the availability of Pfenex technology in which CRM_{197} is expressed in *Pseudomonas fluorescens* [12,13], for production of licensed conjugate vaccines, CRM_{197} is obtained by fermentation of the *C. diphtheriae* $C7(\beta197)$ tox- strain, which contains the CRM_{197} gene. The protein is secreted in the supernatant, centrifuged, filtered and concentrated, and finally purified by chromatography, with a final purity of 90% [14]. However, the production of a recombinant protein in a pathogenic bacterial strain such as *C. diphtheriae* imposes regulatory limitations and provides fermentation yields that barely suffice the needs of massive vaccine production.

To overcome the limitations of CRM₁₉₇ production, several methods can be considered: modification of *C. diphteriae* bacterium to increase fermentation yields, new fermentation strategies, or alteration of the inactive diphtheria toxin into a more suitable protein for large scale production. In this manuscript we describe the analysis of a novel recombinant inactive diphtheria toxin variant, DT-K51E/E148K [15–17]. This protein lacks the point mutation of

CrossMark

 CRM_{197} (G52E) and is instead inactivated by two different amino acid substitutions: glutamic acid at position 51 (K51E) and lysine at position 148 (E148K).

We show here that DT-K51E/E148K produced in the periplasm of *Escherichia coli*, a fast growing bacterium capable of easy scale up fermentation, is a suitable protein component for potential vaccines. We performed biophysical analyses on DT-K51E/E148K in comparison with CRM₁₉₇ to evaluate the impact of the mutations on the protein structure. We also used DT-K51E/E148K as carrier protein for a glycoconjugate containing *N. meningitidis* serogroup A polysaccharide (MenA) to directly compare a DT-K51E/E148Kbased conjugate vaccine with a CRM₁₉₇ reference vaccine in a mouse model.

2. Material and methods

2.1. DT-K51E/E148K production

A 20 mL starter culture of LB containing 0.1 mg/mL ampicillin was inoculated with a single colony of E. coli BL21(DE3) cells containing pET22(DT-mutant) DNA and was grown by shaking overnight at 37 °C. Eight milliliters of overnight culture were diluted into 800 mL of LB medium containing 0.1 mg/mL ampicillin. The bacteria were grown at 37 °C with shaking to an OD_{600} of 0.6. Protein production was induced with the addition of 1 mM IPTG and then the culture was allowed to continue shaking at 25 °C for 16 h. Cells were harvested by spinning for 20 min at 8000 rpm. Cell pellets were collected and stored at -78 °C until used. The cell pellets from 800 mL culture were treated in 40 mL of buffer (50 mM Tris.HCl, 150 mM NaCl, pH 7.5) containing 1 mg/mL lysozyme and 0.1 mg/mL of DNAse. The pellet and buffer were allowed to incubate on ice for 30 min. Cell pellets were then sonicated, in a plastic beaker on ice, at 20% power in bursts of 30s with a wait time of 1 min between each burst, for a total of 4 bursts. Cell debris was removed from the lysis mixture by centrifugation at 15,000 rpm for 30 min. Then the cleared lysate was loaded onto the Superdex S200 pre-packed size exclusion column (26/60, GE Healthcare). Protein was eluted using the same buffer and protein-containing fractions (as determined by UV absorbance) were analyzed by SDS PAGE. Major protein fractions were pooled and then concentrated using 10 kDa MWCO membrane spin filter and loaded onto a pre-packed HiTrap Q column (GE Healthcare) and then eluted using the same buffer containing 1 M NaCl. Fractions were analyzed by SDS PAGE and it was found that pure protein was eluted from the binding buffer itself. Fractions were pooled and concentrated using 10,000 MWCO membrane spin filter. Concentrations were analyzed using BCA assay (Pierce) [18]; protein expression levels were found to be typically 15 mg from 1 L of culture.

2.2. DT-K51E/E148K protein characterization

Recombinant diphtheria toxin K51E/E148K obtained by vector expression in *E. coli* underwent diafiltration against 0.01 M sodium phosphate buffer, pH 7.2, and was concentrated using a 30 kDa cut-off Amicon centrifugal filter (Sigma-Aldrich). Protein concentration was determined by BCA assay.

Characterization of DT-K51E/E148K, in comparison with CRM₁₉₇, was performed through HPLC-Size Exclusion Chromatography (SEC) and ESI-Q-Tof MS. HPLC-SEC analyses were performed on a TSK 3000 Gel SW analytical column with TSK guard column (Tosoh Bioscience) connected to an UltimateTM3000 HPLC system (Dionex-Thermo Fisher Scientific) equipped with a PDA detector. Chromatography was performed in 0.1 M sodium sulfate 0.1 M sodium phosphate 5% CH₃CN pH 7.2 at flow rate of 0.5 mL/min. Data was processed using ChromeleonTM 6.7 software. Exact masses of DT-K51E/E148K and CRM_{197} were measured by Electron Spray lonization mass spectroscopy, using a Q-Tof *micro* Macromass instrument (Waters).

2.3. Preparation and characterization of meningococcal A oligosaccharide (MenA) conjugates

MenA-protein conjugates were obtained by reacting the carrier protein (CRM₁₉₇ or DT-K51E/E148K) with *N*-hydroxy-succinimido-activated MenA oligosaccharide ester [19] at an active ester to protein molar ratio of 30:1 and a protein concentration of 9 mg/mL(~156 μ M), in 0.1 M sodium phosphate buffer pH 7.2. After overnight incubation at room temperature with gentle stirring, the conjugates were purified from the unreacted oligosaccharides by hydrophobic interaction chromatography (HIC) on phenyl sepharose. SDS–PAGE was performed on MenA and protein content was determined by BCA assay.

Total saccharide content of MenA conjugates was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) as described [20,21]. Unconjugated (free) saccharide was separated from the conjugate by Solid Phase Extraction (SPE) (Bioselect, Grace Vydac C4 100 mg/3 mL) and subsequently estimated by HPAEC-PAD analysis.

HPLC-size exclusion chromatography of MenA conjugates was performed as described in the previous paragraph.

2.4. Differential scanning calorimetry (DSC) analysis

All samples were diluted in 10 mM sodium phosphate buffer, pH 7.2, to a final concentration of 0.5 mg/mL (~8.5 μ M) and data were collected with a MicroCal VP-Capillary DSC instrument (GE Health-care) with integrated autosampler. Sample volumes of 500 μ L were transferred to a 96-well plate and loaded into the instrument autosampler thermostatted at 4 °C until analysis. A single DSC scan was recorded for each sample in the temperature range 10–110 °C at a scan rate of 2.5 °C/min and a 5 s filter period. Data were analyzed by subtraction of the reference data for a sample containing only buffer, using the OriginTM 7 software.

2.5. Circular dichroism (CD) analysis

Near-UV CD spectra were recorded at 20 °C in a quartz cuvette with an optical path length of 1 cm, in the range 250–320 nm. Carrier proteins and conjugates samples were diluted to 0.7 mg/mL (\sim 12 mM) in 10 mM sodium phosphate buffer, pH 7.2. Spectra were acquired at 1 nm bandwidth, 8 s response time, 0.2 nm step size and 5 nm/min scan speed. Each spectrum was calculated as the average of 10 accumulations. Far-UV CD spectra were recorded at 20 °C in the range 180–260 nm in a quartz cuvette with an optical path length of 1 mm, at a concentration of 0.35 mg/mL (\sim 6 mM) in 10 mM sodium phosphate buffer, pH 7.2. Spectra were acquired at 1 nm bandwidth, 0.2 nm step size, 4 s response time, with a speed of 10 nm/min and 3 accumulations. All spectra were corrected by subtracting the baseline (buffer) and converted in molar ellipticity (deg × cm² × dmol⁻¹), by using a mean residue molecular mass of 109 Da, in Spectra Manager v2.0 (Jasco).

2.6. Vaccines formulation and animal immunization

All animal protocols were approved by the local animal ethical committee and by the Italian Minister of Health in accordance with Italian law.

Conjugated antigens, $2 \mu g/dose$ (saccharide-based), were formulated in 10 mM phosphate buffered saline pH 7.2 (PBS) with aluminum phosphate (AlPO₄) as adjuvant (0.12 mg/dose expressed as Al³⁺). All vaccines were injected subcutaneously in a volume of 200 μ L. The immunogenicity of the MenA glycoconjugates was tested in groups of 8 BALB/c (female, four weeks old) mice immunized on days 1, 14 and 28. Serum samplings were performed on day 0 (pre immune), day 13 (Post 1), day 27 (Post 2) and day 42 (Post 3). As control group, 8 mice received at the same time points an equal volume of a PBS/adjuvant formulation.

2.7. Analysis of humoral response by ELISA and rabbit Serum Bactericidal Activity (rSBA) assay

The antibody response induced against the meningococcal polysaccharides was measured by ELISA as previously described [22] (details in Supplementary information). Sera titers were expressed as the reciprocal dilution corresponding to a cut-off at $OD_{405} = 1.0$.

The avidity index (AI) of the anti-MenA IgGs was measured by avidity ELISA [23]. Pools of sera at a pre-determined dilution corresponding to $OD_{405} = 1$ were mixed with TPBS containing increasing amounts of NH₄SCN (0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 2.5 M) and then added to a MenA-coated plate, continuing the ELISA analysis as described previously. Linear regression analysis and calculation of affinity index (AI), defined as the molar concentration of thiocyanate required to reduce the initial optical density by 50%, were performed as described and adopting the same acceptance criteria which included a correlation coefficient for the line-fitting >0.88 [24].

Serum bactericidal activity (SBA) against *N. meningitidis* strains was evaluated as described [25], with minor modifications using pooled baby rabbit serum (Pel-Freez) as complement source (rSBA) [26] (details in Supplementary information). Titers were expressed

as the reciprocal serum dilution resulting in 50% of bactericidal killing.

3. Results

3.1. DT-K51E/E148K production

Recombinant diphtheria toxin mutant DT-K51E/E148K was produced using *E. coli* BL21(DE3) (sequence details, Fig. S1). The use of a *pelB* leader sequence allowed translocation of protein product via the Sec translocase system [27], and has been previously reported in some cases to allow increased expression yields of certain proteins [28]. After extensive evaluation of expression and purification methods, a protocol using size exclusion chromatography followed by anion exchange chromatography was found to be efficient in delivering reasonable purity. Under laboratory conditions typical yields of ~15 mg of purified DT-K51E/E148K could be achieved from 1 L of culture.

3.2. DT-K51E/E148K protein characterization

The amino acid sequence of DT-K51E/E148K and alignment with CRM₁₉₇ is provided (Fig. S2).

Recombinant diphtheria toxin K51E/E148K (DT-K51E/E148K) from *E. coli* showed a comparable HPLC-SEC profile to CRM_{197} from *C. diphtheriae* with only a slight reduction in retention time and a slightly broader curve, indicating a purity of the sample of >90% (Fig. 1b and c; Table 1). These fragments were not clearly observed using HPLC-SEC methods but were visible at low levels using Coomassie Blue staining in SDS–PAGE (Fig. S3); this was taken as suitably pure (>90%) for conjugation. The mass obtained

Fig. 1. Synthesis and characterization of MenA conjugates. (a) Schematic representation of conjugation method and MenA conjugate structure. HPLC-SEC profiles of (b) CRM₁₉₇ and MenA-CRM₁₉₇ conjugate, and (c) DT-K51E/E148K and MenA-DT-K51E/E148K conjugate; protein (solid line), conjugate (dashed line).

1408

Table 1 Characterization of proteins and MenA glycoconjugates. K_d = distribution coefficient; T_m = melting temperature.

	CRM ₁₉₇	MenA-CRM ₁₉₇	DT-K51E/ E148K	MenA-DT- K51E/E148K
MALDI-TOF MW (Da)	58,412	-	59,284	-
HPLC-SEC Kd	0.61	0.27	0.60	0.26
Saccharide/protein (w/w)	-	0.32	-	0.40
Free saccharide (%)	-	3.50	-	2.70
DSC T_m (°C)	45.9	30.5	51.2	54.2

(59,284 Da) was consistent with the calculated (59,284 Da) (Fig. S4; Table 1).

Cross-reactivity of DT-K51E/E148K to CRM₁₉₇-specific polyclonal serum (obtained by mice immunization) was observed by Western blot (Fig. S5)

3.3. Preparation and characterization of meningococcal A oligosaccharide (MenA) conjugates

N-hydroxy-succinimido-activated MenA oligosaccharide was reacted with carrier proteins CRM₁₉₇ and DT-K51E/E148K (Fig. 1a). Resulting MenA-protein conjugates were purified by hydrophobic interaction chromatography on phenyl sepharose.

Purified MenA conjugates were obtained with conjugation yields of 64% for both, in terms of protein recovery, and a saccharide-to-protein ratio ('glycosylation degree') of 0.32 and 0.40 weight/weight for MenA-CRM₁₉₇ and MenA-DT-K51E/E148K, respectively, with free saccharide of 3.5% for MenA-CRM₁₉₇ and 2.7% for MenA-DT-K51E/E148K (Table 1).

HPLC-SEC analysis of proteins and conjugates showed comparable profiles for both MenA conjugates (Fig. 1b and c; Table 1). Absence of unreacted protein was observed by SDS-PAGE (Fig. S3).

3.4. Differential Scanning Calorimetry (DSC) analysis

Thermal stability and denaturation transition profiles were tested by DSC (Fig. 2). The thermogram of unconjugated CRM₁₉₇ showed a neat transition curve at 45.9 °C, while unconjugated DT-K51E/E148K showed a shift to higher temperatures with a melting temperature (T_m) of 51.2 °C (Table 1).

Conjugation of both scaffolds with MenA induced a profound change in the thermal curves of both CRM_{197} and DT-K51E/E148K: broadening of denaturation interval, decrease in transition enthalpy and shifts in T_m occurred, possibly, as already observed, due to a loss of protein tertiary structure and/or the very different structural nature of the resulting conjugates (Table 1) [29].

3.5. Circular dichroism (CD) analysis

Spectra of CRM₁₉₇ and DT-K51E/E148K showed differences between these two proteins, both in the near-UV and far-UV regions (Fig. 3). CRM₁₉₇ showed higher signals in the near-UV regions of tryptophan, phenylalanine and tyrosine emission, indicating a well-structured conformation; this was confirmed by the far-UV spectrum, which gave a typical alpha-helix pattern. DT-K51E/E148K showed lower signals in the same regions of the near-UV spectrum, and a less marked (but observable) pattern in the far-UV spectrum, potentially indicating less alpha-helical content.

Covalent attachment of MenA oligosaccharide induced marked changes in the CD profiles of both CRM₁₉₇ and DT-K51E/E148K, confirming the observations from DSC analysis and indicating a loss of tertiary and secondary structure associated with chemical modification due to oligosaccharide conjugation. However, a less marked modification was observed for the MenA-DT-K51E/E148K conjugate CD spectrum, thus suggesting that this protein may be less susceptible to this conjugation-induced modification.

3.6. Analysis of humoral response by ELISA and rabbit Serum Bactericidal Activity (rSBA) assay

Serum samples from three time points (Post 1, Post 2, and Post 3 immunizations) were collected, and the sera were analyzed by ELISA and rabbit Serum Bactericidal Activity (rSBA). Evaluation was performed in pre-clinical murine model, commonly used for meningococcal conjugate vaccines [30–34].

ELISA was used to determine the anti-MenA IgG titers and, at every time point (Post 1, Post 2, and Post 3), no significant difference (p > 0.1) was observed between the two groups immunized with MenA-CRM₁₉₇ or MenA-DT-K51E/E148K (Fig. 4). These two immunization groups showed comparable immunogenicity when compared to the reference group that received only PBS/adjuvant, both after one, two, or three doses (p < 0.001). Carrier-specific IgG

Fig. 2. DSC analysis of proteins (solid line) and conjugates (dashed lines); (a) CRM₁₉₇ and MenA-CRM₁₉₇, (b) DT-K51E/E148K and MenA-DT-K51E/E148K.

Fig. 3. CD spectra of carrier proteins (solid line) and their glycosylated MenA conjugate (dashed line); (a) near-UV and (c) far-UV spectra of CRM₁₉₇ conjugates; (b) near-UV and (d) far-UV spectra of DT-K51E/E148K conjugates. The buffer blank was subtracted from the baseline of all spectra. Mol. Ellip. = molar ellipticity, expressed in degree \times cm² \times dmol⁻¹.

Fig. 4. Anti-MenA IgG response induced in mice by one, two, and three doses of MenA-CRM₁₉₇, MenA-DT-K51E/E148K conjugates, or only PBS/adjuvant (negative control), GMT ELISA (95% Confidence Interval).

Table 2

Rabbit serum bactericidal (rSBA) titers after one, two, and three doses of MenA con-
ugates and avidity indexes (AI) after three doses of MenA conjugates (SD = standard
leviation of 3 replicates).

	rSBA titer			Avidity index	(Post 3)
Conjugate	Post 1	Post 2	Post 3	Average AI	$\pm SD$
MenA-CRM ₁₉₇ MenA-DT-K51E/E148K	128 128	8192 4096	16,384 16,384	0.28 0.29	0.01 0.02

titers of Post 3 sera were also determined, using CRM_{197} or diphtheria toxoid as coating agents (Fig. S6), evidencing comparable IgG titers for coated CRM_{197} (p < 0.05) and similarly low cross-reactivity against diphtheria toxoid (p > 0.05).

Avidity analyses using ammonium thiocyanate revealed an almost identical avidity index for MenA-CRM₁₉₇ and MenA-DT-K51E/E148K post-immunization sera (Post 3) of 0.28 ± 0.01 and 0.29 ± 0.02 , respectively (Table 2).

Rabbit Serum Bactericidal Activity assay (rSBA) confirmed the comparable protective effect of the two conjugates (Table 2). After one, two, or three doses, the rSBA titers for both vaccination groups was identical (rSBA titer 128 at Post 1 and 16,384 at Post 3), or closely related (rSBA titer 8192 for MenA-CRM₁₉₇ and 4096 for

MenA-DT-K51E/E148K immunization groups at Post 2), indicating comparable bactericidal activity for the two conjugates.

4. Discussion

CRM₁₉₇ has proven to be a valuable protein scaffold in conjugate vaccine design and has achieved great popularity in the field of vaccine design as a useful T-epitope-dependent scaffold onto which suitable immunogens can be attached. In the field of glycoconjugate vaccine development it has arguably become one of the most popular scaffolds [35]. However, disadvantages associated with production have hampered a more wide-ranging use of CRM₁₉₇. Despite the availability of highly productive bacterial platforms for recombinant proteins, as the Pfenex technology [12,13], so far the CRM₁₉₇ protein has been produced by fermentation of the *C. diphtheriae* C7(β 197)tox- strain and not much effort has been put on the expression of inactive mutants in a more flexible expression system, such as *E. coli* fermentation.

Here we have shown that the alternative, inactive DT mutant DT-K51E/E148K can not only be produced and purified from *E. coli*, when using a suitable vector and sequence, but that this protein scaffold is highly suitable as a scaffold for glycoconjugate vaccine design. Applying a variety of physicochemical methods, which we recently used to compare CRM₁₉₇ and diphtheria toxoid meningococcal conjugates [29], we observed that the DT-K51E/E148K protein scaffold showed biophysical properties consistent with CRM₁₉₇. As for CRM₁₉₇, conjugation-induced denaturation was also observed. Moreover, and most importantly, DT-K51E/E148K showed essentially identical immunogenic and protective effects in vaccinated mice, with clearly positive implications for a putative MenA glycoconjugate vaccine. Although further work will be needed, based on these evidences, and on the structural similarity between these two proteins, which differ only for three mutations on a flexible domain [1], we expect a comparable T-helper response for CRM₁₉₇ and DT-K51E/E148K.

As well as now importantly confirming the utility of an inactive DT scaffold that might be readily produced by laboratories around the world, this study will also allow new directions in vaccine design that will combine the much greater flexibility of E. coli in producing protein substrates. We have previously proposed that a coordinated strategy using convergent and precise protein assembly could allow the ready creation of homogeneous glycoconjugate vaccines [36]. This method used unnatural amino acids at predefined positions to control the attachment of glycans in a precise way. With a production system for a suitable DT variant now available (disclosed here) then various methods for inserting unnatural amino acids into DT to allow the application of a 'tag-and-modify' strategy may now be considered [37]. The precise positioning of glycans in this way has only rarely been considered previously in the past [36,38,39], and this method now opens the door to many possible strategies in the valuable DT protein scaffold. Experiments creating and using such ad hoc designed DT-based vaccines will be reported in due course.

Conflict of interest statement

The authors Proietti D., Lo Surdo P., Balocchi C., Mori E. and Berti F. are GSK Vaccines employees. Pecetta S. has been recipient of a GSK Vaccines Fellowship from the PhD program in Cellular Biology of the University of Rome "La Sapienza", Italy.

Acknowledgments

BV and BGD thank the International AIDS Vaccine Initiative for financial support. BGD was a Royal Society Wolfson Research Merit Award recipient during some of the course of this work. We also thank Marta Tontini for her precious support with ELISA analyses.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.vaccine.2016.01. 040.

References

- Malito E, et al. Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci USA 2012;109(14):5229–34.
- [2] Collier RJ. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 2001;39(11):1793-803 (official journal of the International Society on Toxinology).
- [3] Honjo T, Nishizuka Y, Hayaishi O. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem 1968;243(12):3553–5.
- [4] Fitzgerald JG. Diphtheria toxoid as an immunizing agent. Can Med Assoc J 1927;17(5):524–9.
- [5] Organization WH. Diphtheria vaccine. Wkly Epidemiol Rec 2006;81:9.
- [6] Uchida T, Gill DM, Pappenheimer Jr AM. Mutation in the structural gene for diphtheria toxin carried by temperate phage. Nat: New Biol 1971;233(35):8–11.
- [7] Giannini G, Rappuoli R, Ratti G. The amino-acid sequence of two nontoxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res 1984;12(10):4063–9.
- [8] Uchida T, Pappenheimer Jr AM, Greany R. Diphtheria toxin and related proteins, I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem 1973;248(11):3838–44.
- [9] Shinefield HR. Overview of the development and current use of CRM(197) conjugate vaccines for pediatric use. Vaccine 2010;28(27):4335–9.
- [10] Ada G, Isaacs D. Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect 2003;9(2):79–85 (the official publication of the European Society of Clinical Microbiology and Infectious Diseases).
- [11] Pollard AJ, Perrett KP, Beverley PC. Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev Immunol 2009;9(3):213–20.
- [12] Gupta SK, Shukla P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 2015;18:1–10.
- [13] Retallack DM, Jin H, Chew L. Reliable protein production in a Pseudomonas fluorescens expression system. Protein Expr Purif 2012;81(2):157-65.
- [14] Broker M, Costantino P, DeTora L, McIntosh ED, Rappuoli R. Biochemical and biological characteristics of cross-reacting material 197 CRM197, a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals 2011;39(4):195–204 (journal of the International Association of Biological Standardization).
- [15] Paoletti LC, Peterson DL, Legmann R, Collier RJ. Preclinical evaluation of group B streptococcal polysaccharide conjugate vaccines prepared with a modified diphtheria toxin and a recombinant duck hepatitis B core antigen. Vaccine 2001;20(3–4):370–6.
- [16] Kimura Y, Saito M, Kimata Y, Kohno K. Transgenic mice expressing a fully nontoxic diphtheria toxin mutant, not CRM197 mutant, acquire immune tolerance against diphtheria toxin. J Biochem 2007;142(1):105–12.
- [17] Fu H, Blanke SR, Mattheakis LC, Collier RJ. Selection of diphtheria toxin activesite mutants in yeast. Rediscovery of glutamic acid-148 as a key residue. Adv Exp Med Biol 1997;419:45–52.
- [18] Smith PK, et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985;150(1):76–85.
- [19] Broker M, Dull PM, Rappuoli R, Costantino P. Chemistry of a new investigational quadrivalent meningococcal conjugate vaccine that is immunogenic at all ages. Vaccine 2009;27(41):5574–80.
- [20] Bardotti A, et al. Physicochemical characterisation of glycoconjugate vaccines for prevention of meningococcal diseases. Vaccine 2008;26(18):2284–96.
- [21] Ricci S, Bardotti A, D'Ascenzi S, Ravenscroft N. Development of a new method for the quantitative analysis of the extracellular polysaccharide of *Neisseria meningitidis* serogroup A by use of high-performance anionexchange chromatography with pulsed-amperometric detection. Vaccine 2001;19(15–16):1989–97.
- [22] Tontini M, et al. Comparison of CRM197, diphtheria toxoid and tetanus toxoid as protein carriers for meningococcal glycoconjugate vaccines. Vaccine 2013;31(42):4827–33.
- [23] Granoff DM, et al. A modified enzyme-linked immunosorbent assay for measurement of antibody responses to meningococcal C polysaccharide that correlate with bactericidal responses. Clin Diagn Lab Immunol 1998;5(4):479–85.
- [24] Pullen GR, Fitzgerald MG, Hosking CS. Antibody avidity determination by ELISA using thiocyanate elution. J Immunol Methods 1986;86(1):83–7.
- [25] Borrow R, et al. Interlaboratory standardization of the measurement of serum bactericidal activity by using human complement against meningococcal serogroup b, strain 44/76-SL, before and after vaccination with the Nor-

wegian MenBvac outer membrane vesicle vaccine. Clin Diagn Lab Immunol 2005;12(8):970-6.

- [26] Giuliani MM, et al. The region comprising amino acids 100 to 255 of *Neisseria meningitidis* lipoprotein GNA 1870 elicits bactericidal antibodies. Infect Immun 2005;73(2):1151–60.
- [27] Manting EH, Driessen AJ. Escherichia coli translocase: the unravelling of a molecular machine. Mol Microbiol 2000;37(2):226–38.
- [28] Sletta H, et al. The presence of *N*-terminal secretion signal sequences leads to strong stimulation of the total expression levels of three tested medically important proteins during high-cell-density cultivations of *Escherichia coli*. Appl Environ Microbiol 2007;73(3):906–12.
- [29] Pecetta S, et al. Carrier priming with CRM 197 or diphtheria toxoid has a different impact on the immunogenicity of the respective glycoconjugates: biophysical and immunochemical interpretation. Vaccine 2015;33(2): 314–20.
- [30] Finney M, Halliwell D, Gorringe AR. Can animal models predict protection provided by meningococcal vaccines? Drug Discovery Today: Dis Models 2006;3(1):77–81.
- [31] Ho MM, Bolgiano B, Corbel MJ. Assessment of the stability and immunogenicity of meningococcal oligosaccharide C-CRM197 conjugate vaccines. Vaccine 2000;19(7–8):716–25.

- [32] Campbell H, Andrews N, Borrow R, Trotter C, Miller E. Updated postlicensure surveillance of the meningococcal C conjugate vaccine in England and Wales: effectiveness, validation of serological correlates of protection, and modeling predictions of the duration of herd immunity. Clin Vaccine Immunol: CVI 2010;17(5):840–7.
- [33] Costantino P, et al. Development and phase 1 clinical testing of a conjugate vaccine against meningococcus A and C. Vaccine 1992;10(10):691–8.
- [34] Sanders H, Kaaijk P, van den Dobbelsteen GP. Preclinical evaluation of MenB vaccines: prerequisites for clinical development. Expert Rev Vaccines 2013;12(1):31–42.
- [35] Pichichero ME. Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum Vaccines Immunother 2013;9(12):2505–23.
- [36] Grayson EJ, et al. A coordinated synthesis and conjugation strategy for the preparation of homogeneous glycoconjugate vaccine candidates. Angew Chem Int Ed 2011;50(18):4127–32.
- [37] Chalker JM, Bernardes GJ, Davis BG. A "tag-and-modify" approach to siteselective protein modification. Acc Chem Res 2011;44(9):730–41.
- [38] Adamo R, et al. Synthetically defined glycoprotein vaccines: current status and future directions. Chem Sci 2013;4(8):2995–3008.
- [39] Adamo R, et al. Deciphering the structure-immunogenicity relationship of anti-Candida glycoconjugate vaccines. Chem Sci 2014;5:4302-11.