

Communication

¹⁸F-Trifluoromethylation of Unmodified Peptides with 5-¹⁸F-(Trifluoromethyl)dibenzothiophenium Trifluoromethanesulfonate

Stefan Verhoog,^{†,§} Choon Wee Kee,^{†,§}[®] Yanlan Wang,[†] Tanatorn Khotavivattana,^{†,⊥} Thomas C. Wilson,[†] Veerle Kersemans,[‡] Sean Smart,[‡] Matthew Tredwell,^{†,||} Benjamin G. Davis,[†][®] and Véronique Gouverneur^{*,†}[®]

[†]Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom [‡]Oxford Institute for Radiation Oncology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom

Supporting Information

ABSTRACT: The ¹⁸F-labeling of 5-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate, commonly referred to as the Umemoto reagent, has been accomplished applying a halogen exchange ¹⁸F-fluorination with ¹⁸F-fluoride, followed by oxidative cyclization with Oxone and trifluoromethanesulfonic anhydride. This new ¹⁸F-reagent allows for the direct chemoselective ¹⁸Flabeling of unmodified peptides at the thiol cysteine residue.

ositron emission tomography (PET) is a molecular imaging technique that can visualize biochemical processes in vivo. In practice, these studies require molecules labeled with a positron-emitting radioisotope, for example ¹¹C or ¹⁸F. Radiolabeled peptides are attractive candidates for PET imaging because of their favorable pharmacokinetics and high specificity targeting characteristics.² Such properties have stimulated development of numerous strategies for tagging peptides with a radioactive component.³ Most methods require prefunctionalization of the peptide with a prosthetic group enabling attachment of the radioisotope itself, or a radiolabeled molecular entity.⁴ Alternatively, a radiolabeled prosthetic group is synthesized prior to attachment to the peptides; typically, this approach requires synthetic modification of the peptide prior to radiolabeling.⁵ Major structural modifications of the peptide target can result in alteration of their biological function, a concern that has encouraged development of innovative labeling methodologies employing unmodified peptides and minimally sized radioisotope-containing motifs.^{3d} Studies have focused on the radioisotope ¹¹C. For example, Skrydstrup and co-workers reported methyl bisphosphine-ligated complexes enable N-11Cacetylation of lysine residue of native peptides,⁶ and the direct ¹¹CN-labeling of unprotected peptides at a cysteine residue was accomplished by Buchwald, Hooker and co-workers applying a palladium-mediated sequential cross-coupling consisting of Sarylation followed by ¹¹C-cyanation (Figure 1a).⁷ Our objective was to demonstrate unmodified peptides are amenable to direct labeling with the longer half-life radioisotope fluorine-18 applying a method that does not require chemical manipulation of the peptide prior to ¹⁸F-incorporation, and employs a "zerosize" ¹⁸F-motif. Herein, we report radiosynthesis of a newly

designed ¹⁸F-reagent and its application toward a metal-free technology to radiolabel unmodified peptides at the cysteine residue with the smallest symmetrical ¹⁸F-labeled multifluorine group possible: CF₃ (Figure 1b). This approach generates the noncanonical trifluoromethylcysteine residue, a structural reengineering operation unmatched by alternative ¹⁸F-labeling methods.⁸

It is well-known reagents based on hypervalent iodine and chalcogenonium salts are well suited to transfer the trifluoromethyl group to S-nucleophiles.⁹ We opted to ¹⁸F-label 5-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate 1, the so-called Umemoto reagent, due to it being soluble in water and amenable to tunable reactivity through interchange of S with Se or Te, and/or substitution on the aryl groups.^{9a,10} We anticipated the soft nature of the nucleophile cysteine thiol and the sulfonium leaving group of this reagent would guide chemoselectivity for the ¹⁸F-labeling of peptides.¹¹ The most streamlined protocol to prepare 1 consists of treating 1,1'biphenyl with CF₃SO₂K and 2 equiv of Tf₂O.¹² For radiolabeling, this method would require a route to ¹⁸F-labeled CF₃SO₂K. An alternative approach consists of subjecting 2-((trifluoromethyl)sulfinyl)-1,1'-biphenyl to cyclization with Tf₂O.^{9a} This sequence was attractive as our laboratory has demonstrated that [1,1'-

Received: September 25, 2017 Published: January 5, 2018

biphenyl]-2-yl(trifluoromethyl)sulfane [18 F]2 is within reach upon treatment of [1,1'-biphenyl]-4-yl(bromodifluoromethyl)sulfane 3 with [18 F]KF, diCy-18-cr-6 and AgOTf. 13 This result encouraged development of a process to oxidize [18 F]2 into 2-((trifluoromethyl)sulfinyl)-1,1'-biphenyl and induce subsequent cyclization (Table 1).

Table 1. Oxidative Cyclization of [¹⁸F]2

$\begin{array}{c} & \left[\begin{smallmatrix}1^{18}\text{F}]\text{KF}/\text{diCy-18-cr-6} \\ \text{AgOTf (2 equiv.)} \\ \hline \\ \text{DCE, 60 °C} \\ \text{20 min} \end{smallmatrix}\right] \xrightarrow{\text{I or II}} \begin{array}{c} \text{I or II} \\ \text{DCE, 45 °C} \\ \text{SCF}_2^{18}\text{F} \end{array} \xrightarrow{\text{CO}} \begin{array}{c} \\ \text{TfO} \\ \\ \text{CF}_2^{18}\text{F} \end{array}$							
	3	[¹⁸ F]2	[¹⁸ F]1			
entry	[¹⁸ F]2	additive ^a	purification	RCC [%]			
1	$\sim 30 \text{ MBq}^b$	I (3 equiv)	Al ₂ O ₃ (N) Sep-Pa	ak 98 ± 1^c			
2	106 MBq^d	I (3 equiv)	Al ₂ O ₃ (N) Sep-Pa	ak 13 ^e			
3	120 MBq	I (3 equiv)	HPLC	30 ^f			
4	224 MBq	II (3 equiv)	HPLC	42^{f}			
5	0.2–1.6 GBq	II (3 equiv)	HPLC	49 ± 9 ^g			
<i>a</i> -			h				

^{*a*}I = *m*CPBA/Tf₂O; II = Oxone/Tf₂O. ^{*b*}~50 μ L aliquot of a solution of [¹⁸F]2 in 1 mL of DCE. ^{*c*}Radiochemical conversion (RCC) determined by radio-TLC (*n* = 2). ^{*d*}~300 μ L aliquot of a solution of [¹⁸F]2 in 1 mL of DCE. ^{*e*}RCC determined by radio-TLC. ^{*f*}Radiochemical yield (RCY). ^{*g*}*n* = 44

The radiosynthesis of $[^{18}F]1$ began with the ^{18}F -fluorination by halogen exchange of 3 with $[^{18}F]KF/diCy-18$ -cr-6 in the presence of AgOTf, 14,15 a reaction performed in DCE at 60 °C for 20 min. Purification using an Alumina (N) Sep-Pak provided a solution of [¹⁸F]2 in DCE (approximately 1 mL). The oxidative ring closure was investigated adding an aliquot of $[^{18}F]2$ (50 μ L, approximately 30 MBq) to a vial containing the oxidant, followed by addition of Tf₂O in DCE. After 20 min, the radiochemical conversion (RCC) was determined by analysis of the crude reaction mixture by radio-TLC. The ¹⁸F-Umemoto reagent $[^{18}F]$ was obtained using an excess of *m*-chloroperbenzoic acid (mCPBA) and Tf₂O in DCE at 45 °C (Table 1, entry 1). Having validated the two steps converting 3 into $[^{18}F]1$, we focused on establishing a protocol to prepare, purify and isolate this novel ¹⁸F-trifluoromethylation reagent for subsequent use. The use of a larger aliquot of $[{}^{18}F]2$ in DCE (300 μ L, 106 MBg) resulted in a lower RCC of 13% (Table 1, entry 2) and informed that the presence of unreacted 3, which cannot be removed from $[^{18}F]_2$ through Alumina (N) Sep-Pak purification, was detrimental for oxidative cyclization. Purification by HPLC resulted in removal of 3, and provided a solution of [18F]2 in a CH₃CN/H₂O mixture. Reformulation by C18 Sep-Pak was necessary prior to oxidative cyclization. The final purification of $[1^{18}F]1$ was achieved using a Silica Sep-Pak. Elution with CHCl₃ removed all nonpolar impurities, after which [18F]1 was eluted with CH₃CN. Following this procedure, [¹⁸F]1 was isolated in 30% RCY but *m*CPBA was present as an impurity (Table 1, entry 3). This was circumvented using Oxone with Tf_2O_1 a modification that provided [¹⁸F]1 in 42% RCY (Table 1, entry 4). The optimized protocol for the radiosynthesis of $[^{18}F]1$ began with the ¹⁸F-fluorination of **3** applying the original elution conditions $(K_2C_2O_4/diCy-18$ -cr-6). This step afforded $[^{18}F]2$ in $11\% \pm 4\%$ RCY (n = 47), and a molar activity (MA) of 0.24 GBq/ μ mol. Oxidative cyclization with Oxone afforded $[^{18}F]1$ in 49% \pm 9% RCY (n = 44) from [¹⁸F]2 (MA of 0.08 GBq/ μ mol) (Table 1, entry 5). The overall nondecay corrected activity yield of isolated $[^{18}\text{F}]$ a calculated from $^{18}\text{F-fluoride}$ is 5% ± 2% (*n* = 41). Using this protocol, up to 840 MBq of $[^{18}F]1$ was isolated from $\sim 6-10$

GBq of ¹⁸F-fluoride. The identity of [¹⁸F]1 was established by HPLC and electrospray ionization (ESI) mass spectrometry ([¹⁹F]1, $C_{14}H_8F_4O_3S_2 m/z 253.1$, calcd 253.0).¹⁵

The reactivity of the novel ¹⁸F-trifluoromethylation reagent $[^{18}F]1$ was examined with ethyl benzoyl-L-cysteinate 4 and (*tert*-butoxycarbonyl)-DL-homocysteinate 5 (Table 2).

Table 2. ¹⁸F-Trifluoromethylation of 4–6

	$(f_n)^{SH} CO_2R''$ 4, n = 1, R' = COPh, f (±)-5, n = 2, R' = Boc, 6, n = 2, R', R'' = H	$\frac{\begin{bmatrix} 1^{18}F]1 & F \\ CF_{2} \end{bmatrix}^{18}}{additive, soh}$ $\frac{[1^{18}F]1 & F_{2} \end{bmatrix}^{12}}{r.t., 20 \text{ min}}$ R'' = Me	$\begin{array}{c} & & \\$: Ph, R'' = Me Boc, R'' = Me H
entry ^a	4-6 ^b	additive ^c	solvent ^d	RCC 7–9 [%] ^e
1	4 (40)	DMAP	CH ₃ CN ^f	0
2	4 (40)	DMAP	CH ₃ CN ^g	6 ± 1
3	4 (40)	DMAP	CH ₃ CN	60 ± 7
4	4 (40)	DMAP	DMF	65 ± 2
5	4 (40)	DMAP	DMSO	59 ± 2
6	4 (40)	-	DMSO	2 ± 1
7	4 (20)	DMAP	DMSO	72 ± 4^{h}
8 ⁱ	4 (20)	DMAP	DMSO	69 ± 1
9 ⁱ	4 (20)	DMAP	DMSO/H ₂ O, 4/1	66 ± 4
10	4 (20)	KHCO3	DMSO/H ₂ O, 1/1	71 ± 6^{h}
11	(\pm) -5 (20)	DMAP	DMSO/H ₂ O, 4/1	75 ± 8
12 ^j	6 (20)	KHCO3 ^k	DMSO/H ₂ O, 1/9	26 ± 6^l

^{*a*}~20–25 MBq of [¹⁸F]1 per reaction. ^{*b*}µmol. ^{*c*}1 equiv. ^{*d*}100 µL. ^{*e*}RCC = radiochemical conversion based on [¹⁸F]1, determined by radio-TLC and radio-HPLC (n = 2). ^{*f*}400 µL. ^{*g*}200 µL. ^{*h*}n = 4. ^{*i*}Reaction time = 10 min. ^{*j*}Reaction temp. = 40 °C. ^{*k*}2 equiv. ^{*l*}RCY of **6** isolated after Oasis MCX cartridge purification.

¹⁸F-Trifluoromethylation of **4** took place upon treatment with $[^{18}F]$ **1** and DMAP¹⁶ (1 equiv) in CH₃CN (0.2 M), with the RCC of $[^{18}F]$ 7 increasing to 60% at higher concentration (0.4 M) (Table 2, entries 2–3). DMF and DMSO are suitable solvents for this reaction, and a control experiment verified the base is essential (Table 2, entries 5–6). Water as a cosolvent is compatible with the reaction, but it is preferable to replace DMAP with KHCO₃ (Table 2, entries 10). Methyl (*tert*-butoxycarbonyl)homocysteinate (±)-**5** also underwent thiol ¹⁸F-trifluoromethylation affording $[^{18}F]$ **8** in 75% ± 8% RCC (*n* = 4) (Table 2, entry 11). Increasing the H₂O ratio to 90% allowed for the ¹⁸F-labeling of unprotected amino acids. Under these conditions, L-homocysteine **6** led to $[^{18}F]$ **9** isolated in 26% ± 6% RCY (*n* = 2) (Table 2, entry 12).

The method exhibits high chemoselectivity for the radiolabeling of the cysteine residue in the presence of other nucleophilic functional groups (Figure 2).¹⁷ Model dipeptides and tetrapeptides containing asparagine, glutamine, methionine, glutamic acid, proline, threonine, serine, tyrosine, lysine or arginine all underwent ¹⁸F-trifluoromethylation at room temperature in the presence of DMAP in DMSO/H₂O 4/1 with RCCs superior to 55%. Exclusive chemoselectivity for the cysteine residue was verified by comparison with authentic references based on UV- and radio-HPLC.¹⁵ For the model dipeptides [¹⁸F]22 and [¹⁸F]24 containing a serine or lysine residue, the RCCs were improved by replacing DMAP with KHCO₃ or Et₄NHCO₃. Dipeptides featuring tryptophan and histidine resulted in the formation of more than one ¹⁸F-radiolabeled product. The ¹⁸F-trifluoromethylation of methyl (*tert*-butox-

Figure 2. [a] Conditions A: 20 μ mol peptide, 20 μ mol DMAP, DMSO/H₂O 4:1 (100 μ L), RT, 10 min. [b] Conditions B: 20 μ mol peptide, 20 μ mol KHCO₃, DMSO/H₂O 1:1 (100 μ L), RT, 10 min. [c] Conditions C: 20 μ mol peptide, 20 μ mol Et₄NHCO₃, DMSO/H₂O 4:1 (100 μ L), 40 °C, 20 min. [d] DMSO (100 μ L) was used. [e] 40 μ mol DMAP was used. [f] Substrate is Ac-Lys-Cys-OMe.TFA. [g] Isolated yield after cartridge purification (Oasis HLB). [h] 40 μ mol Et₄NHCO₃, DMSO/H₂O 4:1 (40 μ L), 40 °C, 20 min. [j] 20 μ mol substrate, 60 μ mol NaHCO₃, DMSO/H₂O 1:1 (140 μ L), 30 °C, 10 min. [k] Isolated yield after cartridge purification (Oasis MCX). [l] 20 μ mol substrate, 50 μ mol K₂CO₃, DMSO/H₂O 1:1 (100 μ L), 40 °C, 20 min. [m] Isolated yield after cartridge purification (Oasis MAX). [n] 3.1 μ mol peptide AcOH salt, 10 μ mol Et₄NHCO₃, DMSO/H₂O 4:1 (40 μ L). [o] Isolated yield after HPLC purification. [p] 2.8 μ mol peptide TFA salt, 10 μ mol Et₄NHCO₃, DMSO/H₂O 4:1 (40 μ L). [q] 1.0 μ mol peptide TFA salt, 5.2 μ mol Et₄NHCO₃, DMSO/H₂O 4:1 (40 μ L). Color coding: green = single ¹⁸F-radiolabeled product; orange = more than one ¹⁸F-radiolabeled product.

ycarbonyl)-L-histidyl-L-cysteinate led to the ¹⁸F-labeled peptide $[^{18}F]$ 26 in 41% ± 15% RCC (*n* = 4) as the major product (68% RCP) (RCP = radiochemical purity), along with radiolabeled products resulting from ¹⁸F-trifluoromethylation at the imidazole ring along with some disulfide formation resulting from oxidative dimerization.¹⁵ In addition to predominant ¹⁸F-trifluoromethylation at the cysteine residue (64% RCP), similar competitive pathways were observed for the tryptophan-containing dipeptide precursor of [¹⁸F]27. For these challenging peptides, the ratio of ¹⁸F-radiolabeled products can be modified to maximize thiol ¹⁸Ftrifluoromethylation by using 1 equiv of KHCO3 as base instead of DMAP, but side reactions could not be entirely suppressed (41% vs 21% for [¹⁸F]26, 59% vs 28% for [¹⁸F]27). Glutathione and ((1-carboxy-2-mercaptoethyl)-carbamoyl)-glutamic acid, a core structure found in PET radioligands targeting prostate specific membrane antigen (PSMA),¹⁸ were selected to test the robustness of this methodology toward multiple carboxylic acids. Glutathione underwent successful thiol ¹⁸F-trifluoromethylation in 26% \pm 4% RCY (*n* = 2) when the reaction was carried out with an excess of KHCO₃ (3 equiv) in DMSO/H₂O (1/1). These conditions gave PSMA radioligand $[^{18}F]29$ in 10% ± 2% RCY (n = 2).

Radiolabeled Arg-Gly-Asp (RGD) peptides have been a focus for noninvasive assessment of angiogenesis because of their high affinity and selectivity for integrin $\alpha_{\nu}\beta_{3}$.¹⁹ It was thus of interest to study the ¹⁸F-labeling of cyclic peptide containing the RGD sequence. The ¹⁸F-trifluoromethylation was performed with 3 μ mol of peptide and 10 μ mol of Et₄NHCO₃ at 40 °C in 40 μ L of solvent (DMSO/H₂O 1/1). After 20 min of reaction, cRGDfC-([¹⁸F]CF₃) [¹⁸F]30 was purified and isolated by prep-HPLC in $19\% \pm 5\%$ RCY as a single ¹⁸F-radiolabeled product. The cyclic peptide cRADfC($[^{18}F]CF_3$) $[^{18}F]31$ was obtained in 33% ± 9% after cartridge purification. Finally, a beta-amyloid peptide fragment²⁰ (1 μ mol, MW = 1034) also underwent successful ¹⁸F-trifluoromethylation in 40 μ L of solvent (DMSO/H₂O 1/1). The reaction proceeded exclusively at the cysteine residue affording the single product $[^{18}\mathrm{F}]32$ isolated in 30% \pm 11% RCY (n = 2). This assignment was confirmed by mass spectrometry (ESI) and comparison of the authentic reference by UV- and radio-HPLC.12

To investigate the *in vivo* stability of peptides functionalized with an $[{}^{18}F]SCF_3$ moiety, a biodistribution profile was obtained by injecting naïve CBA mice (n = 3) with cRGDfC($[{}^{18}F]CF_3$) $[{}^{18}F]$ **30**, followed by dynamic whole-body PET imaging.¹⁵ Biodistribution studies by imaging and dissection show $[{}^{18}F]$ **30**

Journal of the American Chemical Society

is predominantly excreted by the hepatobiliary route and to a lesser extent by the kidneys. Although these excretion organs contain a considerable amount of radioactivity at 1 h post-injection, most radioactivity in nontargeted tissues and blood was cleared. This biodistribution profile is consistent with RGD peptides labeled applying alternative methods.²¹ The absence of uptake in the bones indicated [¹⁸F]**30** is metabolically stable toward [¹⁸F]SCF₃ elimination and that no [¹⁸F]F⁻ was released.^{8b}

In summary, we have developed the first protocol enabling direct ¹⁸F-labeling of unmodified peptides at the cysteine residue with the minimally sized CF₃ group. The strategy required the novel designed ¹⁸F-reagent [¹⁸F]1 for thiol ¹⁸F-trifluoromethylation. Biodistribution studies demonstrated the [¹⁸F]SCF₃ moiety is viable for imaging. Considering the number of reactions that use the Umemoto's reagent 1, we anticipate the availability of [¹⁸F]1 will expand the radiochemical space available for radioligand production well beyond the peptides described in this study.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b10227.

Experimental and characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

*veronique.gouverneur@chem.ox.ac.uk ORCID ©

Choon Wee Kee: 0000-0003-1843-2189 Benjamin G. Davis: 0000-0002-5056-407X

Véronique Gouverneur: 0000-0001-8638-5308

Present Addresses

¹Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan Bangkok 10330, Thailand

^{||}Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

Author Contributions

[§]S.V. and C.W.K. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was provided by the EPSRC (EP/L025604/1, NS/A000024/1), BBSRC (BB/P026311/1), the Agency for Science, Technology and Research (A*STAR, Singapore) for a fellowship to C.W.K., the European Union Horizon 2020 (Y.W.) and CRUK (C5255/A16466). V.G. thanks the Royal Society for a Wolfson Research Merit Award.

REFERENCES

(1) (a) Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem., Int. Ed. **2008**, 47, 8998–9033. (b) Placzek, M. S.; Zhao, W.; Wey, H. Y.; Morin, T. M.; Hooker, J. M. Semin. Nucl. Med. **2016**, 46, 20–27.

(2) (a) Richter, S.; Wuest, F. Molecules 2014, 19, 20536–20556.
(b) Charron, C. L.; Hickey, J. L.; Nsiama, J. K.; Cruickshank, D. R.; Turnbull, W. L.; Luyt, L. G. Nat. Prod. Rep. 2016, 33, 761–800.

(3) (a) Fani, M.; Maecke, H. R. *Eur. J. Nucl. Med. Mol. Imaging* **2012**, 39, 11–30. (b) Cutler, C. S.; Hennkens, H. M.; Sisay, N.; Huclier-Markai, S.; Jurisson, S. S. *Chem. Rev.* **2013**, *113*, 858–883. (c) Jackson, I.

M.; Scott, P. J. H.; Thompson, S. Semin. Nucl. Med. **2017**, 47, 493–523. (d) Krishnan, H.; Ma, L.; Vasdev, N.; Liang, S. Chem. - Eur. J. **2017**, 23, 15553–15577.

(4) (a) Li, Y.; Liu, Z.; Lozada, J.; Wong, M. Q.; Lin, K. S.; Yapp, D.; Perrin, D. M. Nucl. Med. Biol. 2013, 40, 959-966. (b) Bernard-Gauthier, V.; Wängler, C.; Schirrmacher, E.; Kostikov, A.; Jurkschat, K.; Wängler, B.; Schirrmacher, R. BioMed Res. Int. 2014, 2014, 454503. (c) Laverman, P.; McBride, W. J.; Sharkey, R. M.; Goldenberg, D. M.; Boerman, O. C. J. Labelled Compd. Radiopharm. 2014, 57, 219-223. (d) Cornilleau, T.; Audrain, H.; Guillemet, A.; Hermange, P.; Fouquet, E. Org. Lett. 2015, 17, 354-357. (e) Perrin, D. M. Acc. Chem. Res. 2016, 49, 1333-1343. (5) (a) Marik, J.; Sutcliffe, J. L. Tetrahedron Lett. 2006, 47, 6681-6684. (b) Gao, M.; Gouverneur, V.; Davis, B. G. J. Am. Chem. Soc. 2013, 135, 13612-13615. (c) Jacobson, O.; Yan, X.; Ma, Y.; Niu, G.; Kiesewetter, D. O.; Chen, X. Bioconjugate Chem. 2015, 26, 2016-2020. (d) Way, J. D.; Bergman, C.; Wuest, F. Chem. Commun. 2015, 51, 3838-3841. (e) Chiotellis, A.; Sladojevich, F.; Mu, L.; Herde, A. M.; Valverde, I. E.; Tolmachev, V.; Schibli, R.; Ametamey, S. M.; Mindt, T. L. Chem. Commun. 2016, 52, 6083-6086.

(6) Andersen, T. L.; Nordeman, P.; Christoffersen, H. F.; Audrain, H.; Antoni, G.; Skrydstrup, T. *Angew. Chem., Int. Ed.* **201**7, *56*, 4549–4553. (7) Zhao, W.; Lee, H. G.; Buchwald, S. L.; Hooker, J. M. *J. Am. Chem. Soc.* **201**7, *139*, 7152–7155.

(8) (a) Marsh, E. N. Acc. Chem. Res. 2014, 47, 2878–2886. (b) Gadais, C.; Saraiva-Rosa, N.; Chelain, E.; Pytkowicz, J.; Brigaud, T. Eur. J. Org. Chem. 2017, 2017, 246–251. (c) Zeng, J.-L.; Chachignon, H.; Ma, J.-A.; Cahard, D. Org. Lett. 2017, 19, 1974–1977.

(9) (a) Umemoto, T.; Ishihara, S. J. Am. Chem. Soc. 1993, 115, 2156–2164. (b) Kieltsch, L.; Eisenberger, P.; Togni, A. Angew. Chem., Int. Ed. 2007, 46, 754–757. (c) Capone, S.; Kieltsch, I.; Flögel, O.; Lelais, G.; Togni, A.; Seebach, D. Helv. Chim. Acta 2008, 91, 2035–2056. (d) Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65–73. (e) Santschi, N.; Togni, A. J. Org. Chem. 2011, 76, 4189–4193. (10) (a) Li, M.; Wang, Y.; Xue, X.–S.; Cheng, J.-P. Asian J. Org. Chem.

2017, *6*, 235–240. (b) Umemoto, T.; Zhang, B.; Zhu, T.; Zhou, X.; Zhang, P.; Hu, S.; Li, Y. J. Org. Chem. **2017**, *82*, 7708–7719.

(11) Chalker, J. M.; Bernardes, G. J. L.; Lin, Y. A.; Davis, B. G. Chem. - Asian J. 2009, 4, 630–640.

(12) Mace, Y.; Raymondeau, B.; Pradet, C.; Blazejewski, J.-C.; Magnier, E. *Eur. J. Org. Chem.* **2009**, 2009, 1390–1397.

(13) Khotavivattana, T.; Verhoog, S.; Tredwell, M.; Pfeifer, L.; Calderwood, S.; Wheelhouse, K.; Collier, T. L.; Gouverneur, V. Angew. Chem., Int. Ed. 2015, 54, 9991–9995.

(14) The quality of AgOTf is important for reproducibility.

(15) See the Supporting Information.

(16) Cheng, Y.; Yuan, X.; Ma, J.; Yu, S. Chem. - Eur. J. 2015, 21, 8355–8359.

(17) A control experiment demonstrated that the cysteine disulfide dimethyl 3,3'-disulfanediyl(2R,2'R)-*bis*(2-benzamidopropanoate) did not undergo trifluoromethylation.¹⁵

(18) Schwarzenboeck, S. M.; Rauscher, I.; Bluemel, C.; Fendler, W. P.; Rowe, S. P.; Pomper, M. G.; Asfhar-Oromieh, A.; Herrmann, K.; Eiber, M. J. Nucl. Med. **2017**, *58*, 1545–1552.

(19) Hatley, R.; Macdonald, S.; Slack, R.; Le, J.; Ludbrook, S.; Lukey, P. *Angew. Chem., Int. Ed.* **2017**10.1002/anie.201707948.

(20) Vandenberghe, R.; Adamczuk, K.; Dupont, P.; Laere, K. V.; Chételat, G. Neuroimage Clin 2013, 2, 497–511.

(21) (a) Chen, X.; Park, R.; Shahinian, A. H.; Tohme, M.; Khankaldyyan, V.; Bozorgzadeh, M. H.; Bading, J. R.; Moats, R.; Laug, W. E.; Conti, P. S. *Nucl. Med. Biol.* **2004**, *31*, 179–189. (b) Cai, W.; Zhang, X.; Wu, Y.; Chen, Z. J. *Nucl. Med.* **2006**, *47*, 1172–1180. (c) Liu, S.; Hassink, M.; Selvaraj, M.; Yap, L.-P.; Park, R.; Wang, H.; Chen, X.; Fox, J. M.; Li, Z.; Conti, P. S. *Mol. Imaging* **2013**, *12*, 121–128.