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Preamble

The following three lectures were designed for the Oxford Undergraduate course and are given
during the first year BA course. These notes are not particularly original. I would like to
thank Michael Barnes, James Binney, John Magorrian and Julia Yeomans for their lecture
notes; I based these notes on theirs. I would greatly appreciate it if you could email me at
pedro.ferreira@physics.ox.ac.uk with any corrections.

1 Complex Numbers

Over time you have learnt that there are different types of numbers. You started off with
counting:

1, 2, 3, ·

and learnt about the Natural numbers, N.
You rapidly figured out that the natural number don’t quite do it; if you subtract two

arbitrary natural numbers, you might end up with a number that doesn’t fall into that set.
You then learnt about Integer numbers, Z:

· · · ,−2,−1, 0, 1, 2, 3, ·

With the integer numbers you can add and subtract any of them and you will end up with an
integer.

Something happens if you are given an equation like

m× x = n,

where m and n are integers, and asked to solve for x. The solution

x =
n

m

is not an integer. And so, we define the Rational numbers, Q, in which elements are of the form

n

m
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for any pair of integers, n and m. We can multiply and divide (as well as add and subtract)
rational numbers and we always get a rational number.

Things get trickier when we try to solve an equation like

x2 = 2

Let us check if we can solve it with a rational number, i.e. let us assume that x = n/m in
which n and m have no common factors. If we plug it in we have

n2

m2
= 2 → n2 = 2m2

and so n2 is even which means n is even. If n is even, then we can write it as n = 2q where q
is an integer. Replacing it back into the equation we are trying to solve we have

(2q)2 = 2m2 → m2 = 2q2

which means that m2 is even and thus m is even. But that contradicts our starting assumption,
that n and m have no common factors. So x cannot be a rational number. We denote the two
solutions by

x = ±
√
2

These solutions are Irrational numbers, I. The set of irrational numbers (and there are many
more irrational numbers than rational numbers) combined with the rational numbers form the
set of Real numbers, R.

It would seem that we have finished filling out the number landscape but not quite. Consider
now the following equation:

z2 = −1

It is very similar to the equation we solved above: a second order, polynomial equation and thus
should have two roots. But we clearly can’t solve it with the usual reals so need to introduce
a new type of number, an imaginary number, i, such that

z = ±i

Now, i is distinctly different from a real number. I.e. we can’t multiply, divide, add or subtract
real numbers to give us an imaginary number. So we need to include imaginary numbers with
our real numbers to form Complex numbers, C.

Is there any physical situation where we might need such a number? You will often come
across a Simple Harmonic Oscillator (SHO) throughout your degree. It characterizes a multi-
tude of different physical systems, like a simple pendulum undergoing small oscillation, a mass
connected to a spring, an electrical circuit, a standing wave, etc. It is described in terms of a
differential equation of the form

d2Q

dt2
+ ω2Q = 0
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where ω > 0. We can solve it with oscillatory functions

Q ∝ cos(ωt), sin(ωt)

Let us try solving it with a function of the form

Q = Q0e
αt

Subsituting it in and factorizing, we end up with an equation of the form

(α2 + ω2)Q0e
αt = 0

which can be solved by

α2 =
√
−ω2

Using our new found knowledge, we have that

α = ±iω

and the solutions are of the form

Q ∝ eiωt, e−iωt

We will come back to these complex exponentials in a bit.
We need to figure out a bit more on how to combine real and imaginary numbers. What

happens if we now take the 4th root of −1, i.e. what happens if we try and solve

z4 = −1?

If we follow what we did above, we have now that

z2 = ±i.

Consider one of those sets of roots

z2 = i.

The solution to this equation is (as expected) two roots of the form

z1 =
1√
2
+ i

1√
2

z2 = − 1√
2
− i

1√
2
.

Look at the way I have written each one of these solution: I have added a real part and
imaginary part. Let us check that they in fact solve the equation:

z21 = z1 × z1 =

(
1√
2
+ i

1√
2

)
×
(

1√
2
+ i

1√
2

)
=

1√
2
× 1√

2
+

1√
2
× i

1√
2
+ i

1√
2
× 1√

2
+ i

1√
2
× i

1√
2

=
1

2
+ i

1

2
+ i

1

2
− 1

2
= i,
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where I have used the distributive property of multiplication and, for the last term, the fact
that i × i = −1 (i.e. the whole reason why i was invented). In the same way, we can find the
other two roots by solving

z2 = −i

to find

z3 =
1√
2
− i

1√
2

z4 = − 1√
2
+ i

1√
2

i.e. four roots in total, as expected.
Again, look at the form these solutions have. They are the sum of a real and imaginary

number. One way to think about these numbers is that they have two dimensions, a real one
and an imaginary one. And so, if we wanted to write down a general, complex number, we
would write it as

z = x+ iy

We have that the real part of z is x, i.e.

Re(z) = x

and the imaginary part of z is y, i.e.

Im(z) = y

If we want to find some graphical way of representing them, we would need to use a plane, the
Argand plane. So, for example, a general complex number looks like this:

x

y

z
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2 Other Representations of Complex Numbers

Given that we can represent a complex number, z, on a plane, i.e. as a vector, we can use
another convenient representation. Note that a 2-D vector can be represented in terms of a
modulus (or length), r and argument (or angle), θ, such that

z = r sin θ + ir cos θ = r(sin θ + i cos θ)

Note that we then have

r2 = x2 + y2

θ = tan−1 y

x

It is useful to define some additional notation. The modulus of z, r, can be written as |z| or
mod(z) while the argument of z, θ can be written as arg(z). Note that the θ of a given z is
not unique - we can obtain the same z by adding 2πn (where n is an arbitrary integer) to θ.
We thus (sometimes but not always!) define arg(z) to be the principal value of θ which lies
between −π and π.

Let us consider a few examples. If we start with 1, we have that

mod(1) = 1

arg(1) = 0

Now consider the new number we just introduced, i,

mod(i) = 1

arg(i) =
π

2

and for −i we have

mod(−i) = 1

arg(−i) = −π

2

Finally, let us look at the four roots we found above for

z4 + 1 = 0

We then have

mod(z1) = 1

arg(z1) =
π

4
mod(z2) = 1

arg(z2) = −3π

4
mod(z3) = 1

arg(z3) = −π

4
mod(z4) = 1

arg(z4) =
3π

4
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It is useful to define the complex conjugate of z

z∗ = z − iy

Another way of writing the complex conjugate is z̄. A compact way of expressing (and calcu-
lating) the modulus is

r2 = |z| =
√
z × z∗

Given z and z∗ we can determine x and y through

x =
1

2
(z + z∗)

x =
1

2i
(z − z∗)

We can use the polar representation of a complex number to find an even more remarkable
form. To do so, take the Taylor expansion of sin θ and cos θ and combine them:

z = r(sin θ + i cos θ) = r

(
∞∑
n=0

(−1)n
θ2n+1

(2n+ 1)!
+ i

∞∑
n=0

(−1)n
θ2n

(2n)!

)

= r

(
1 + iθ − θ2

2!
− i

θ3

3!
+ · · ·

)
= r

[
1 + (iθ) +

(iθ)2

2!
+

(iθ)3

3!
+ · · ·

]
= r

∞∑
n=0

(iθ)n

n!
= reiθ

which is known as Euler’s equation.
Let us revisit the examples we had above. We can now write

i = eiπ/2

i = e−iπ/2 = eiπ/2

z1 = eiπ/4

z2 = e−i3π/4 = ei5π/4

z3 = e−iπ/4 = ei7π/4

z4 = ei3π/4

It is interesting to note that we can order the four zi which are solutions to the quartic equation,
as

zi =
{
eiπ/4, ei3π/4, ei5π/4, ei7π/4

}
The exponential representation of a complex number make certain operations very easy, as

we shall see further on. For now, note that the conjugate of a complex number

z = reiθ
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is simply

z∗ = re−iθ

You can see this by simply re-expressing it in the polar representation:

z∗ = re−iθ = r [cos(−θ) + i sin(−θ)] = r(cos θ − i sin θ) = x− iy

Let us look at a few examples where we can use the exponential representation. We can try
and express

i−2i

and

ln(1− i
√
3)

in the form x+ yi. In the first case we have

i−2i =
[
ei(

π
2
+2πn)

]−2i
= e(−2i)×i(π

2
+2πn) = eπ+4πn

where n ∈ Z. In the second case we have

ln(1− i
√
3) = ln 2e−iπ

3
+i2nπ = ln 2 + i

(
2nπ − π

3

)
again, with n ∈ Z.

We can express trigonometric functions in terms of complex numbers. Consider the case
where |z| = 1. We now have that

z = eiθ = cos θ + i sin θ

z∗ = e−iθ = cos θ − i sin θ

We can invert this system of equations to find that

cos θ =
eiθ + e−iθ

2

sin θ =
eiθ − e−iθ

2i

We can revisit the solution to the SHO we had before. We have that the general solutions
is given by

Q = Q1 cos(ωt) +Q2 sin(ωt)

But now replace the sin and cos by complex exponentials and you have

Q = Q1

(
eiωt + e−iωt

2

)
+Q2

(
eiωt − e−iωt

2i

)
=

1

2
(Q1 − iQ2)e

iωt +
1

2
(Q1 + iQ2)e

−iωt = Q+e
iωt +Q−e

−iωt
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3 Operations with Complex Numbers

We have already done some operations with complex numbers but let us look in more detail.
Consider the main four:

• Addition:

z1 + z2 = x1 + iy1 + x2 + iy2 = (x1 + x2) + i(y1 + y2)

• Subtraction:

z1 − z2 = x1 + iy1 − x2 − iy2 = (x1 − x2) + i(y1 − y2)

• Multiplication:

z1z2 = (x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1)

Note that if we represent these numbers as complex exponentials, the product looks much
simpler

z1z2 = (r1e
iθ1)(r2e

iθ2) = r1r2e
i(θ1+θ2)

We can immediately infer that

|z1z2| = |z1||z2|
arg(z1z2) = arg(z1) + arg(z2)

• Division:

z1
z2

=
(x1 + iy1)

(x2 + iy2)
=

(x1 + iy1)(x2 − iy2)

(x2 + iy2)(x2 − iy2)
=

(x1x2 + y1y2) + i(x1y2 − x2y1)

x2
2 + y22

Again, if we represent these numbers as complex exponentials, division looks much simpler

z1
z2

=
r1e

iθ1

r2eiθ2
=

r1
r2
ei(θ1−θ2)

We can immediately infer that ∣∣∣∣z1z2
∣∣∣∣ =

|z1|
|z2|

arg

(
z1
z2

)
= arg(z1)− arg(z2)

I have introduced complex numbers as roots of a number. Generally, if we want to find
roots of a complex number, it makes sense to write them as a complex exponential. Consider
a general equation of the form

zn = w
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Now express w as a complex exponential

w = rei(θ+2πk)

with k ∈ Z. Note that I have included an extra factor of ei2kπ, which is just 1. Now take the
n-th root of w to find

z = r
1
n ei

θ+2πk
n

As you can see there are a number of roots as you would expect. In fact you expect n roots
which you can obtain, simply running k = 0, 1, · · · , n − 1. You will note that the roots lie on
a circle in the complex plane with radius r1/n. Furthermore the roots are equidistant in angle
along the circle.

Let us now consider a few examples. In particular, let us look at two polynomial equations
we considered above. If we look at

z2 = −1 = ei(π+2kπ)

for k ∈ Z. We have that roots will be

z = −1 = ei(π+2kπ)/2

for k = 0, 1 so that

{z1, z2} =
{
eiπ/2, ei3π/2

}
as we saw above.

For

z4 = −1 = ei(π+2kπ)

for k ∈ Z. We have that roots will be

z = −1 = ei(π+2kπ)/4

for k = 0, 1, 2, 3 so that we now have

zi =
{
eiπ/4, ei3π/4, ei5π/4, ei7π/4

}
again, as we saw above.

We can use these operations with complex numbers to tackle a ubiquitous problem in maths
and physics: finding the roots of a polynomial equation. Consider an nth order polynomial:

Pn(z) = a0 + a1z + a2z
2 + · · ·+ anz

n =
n∑

i=0

aiz
i

It turns out that

Pn(z) = 0
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can always be solved in terms of complex numbers, i.e., we can expand Pn(z) in the form

Pn(z) = an(z − z1)(z − z2) · · · (z − zn)

where zi are the roots of the equation. We can use this factorized way of writing Pn(z) to show
that

n∑
i=1

zi = −an−1

an
n∏

i=1

zi = (−1)n
a0
an

For example, let us look at

z4 + 1 = 0

We have that

a4 = 1

a0 = 1

Now let us consider each one of the relations. First we have

4∑
i=1

zi =
1√
2
+ i

1√
2
− 1√

2
− i

1√
2
+

1√
2
− i

1√
2
− 1√

2
+ i

1√
2
= 0

as advertised. Then we have (and note that I have put them in a different order)

4∏
i=1

zi =

(
1√
2
+ i

1√
2

)
×
(

1√
2
− i

1√
2

)
×
(
− 1√

2
− i

1√
2

)
×
(
− 1√

2
+ i

1√
2

)
=

1

2
(1 + 1)× 1

2
(1 + 1) = 1× 1 = 1

again, as advertised.

4 Curves on the complex plane.

Sometimes one can consider an equation that leads to a degenerate set of solutions. This
typically arises if one just enforces one part of a complex equation of the form

f(z, z∗) = c.

For example

|f(z, z∗)| = |c|
arg[f(z, z∗)] = arg[c]

Re[f(z, z∗)] = Re[c]

Im[f(z, z∗)] = Im[c]
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can all lead to lines on the complex plane.
Suppose we consider the equation

P1(z) = z − a = c

where a and c are complex numbers. It has one root

z = c+ a

But now consider the equation

|P1(z)| = |z − a| = |c|

We can write it explicitly in terms of x and y and a = a1 + ia2 so that

|x+ iy − a1 − ia2| = |(x− a1) + i(y − a2)| =
√

(x− a1)2 + (y − a2)2 = |c|

This is the equation for a circle centred at (a1, a2) and radius |c|.
In the previous example we took the modulus of the equation and made it degenerate.

Something similar happens of we take the argument. Specifically, if we consider

arg(P1(z)) = arg(z − a) = arg c = θ0

corresponds to a ray emanating from (a1, a2) along the direction (sin θ0, cos θ0).
One can consider a multitude of such curves based on the same idea - finding a set of

degenerate roots to an equation. For example, consider the following equation

|z − 1|+ |z + 1| = 8

We can rewrite and manipulate this expression to get

|z + 1| = 8− |z − 1|√
(x+ 1)2 + y2 = 8−

√
(x− 1)2 + y2

(x+ 1)2 + y2 = 64− 16
√

(x− 1)2 + y2 + (x− 1)2 + y2

2x = 64− 16
√

(x− 1)2 + y2 − 2x

16
√

(x− 1)2 + y2 = 64− 4x√
(x− 1)2 + y2 = 4− x

4

x2 − 2x+ 1 + y2 = 16− 2x+
x

16
15

16
x2 + y2 = 15

x2

16
+

y2

15
= 1

In other words, we find that the curve is an ellipse.
Another example is

Im
(
z2
)
=

z2 − z∗2

2
= 2
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Again, working it out we have

(x2 + y2) + i2xy − (x2 + y2) + i2xy = 4i

4xy = 4

xy = 1

which is a hyperbola.

5 Functions of a Complex Variable

Let us revisit some functions you are familiar with. Consider first the exponential function:

ez = ex+iy = exeiy = ex(cos y + i sin y)

The inverse function is the logarithm. Let us write the z in exponential notation

z = reiθ = rei(θ+2nπ)

for n ∈ Z (recall that there are multiple ways of writing z). Now take the logarithm

ln z = ln
[
rei(θ+2nπ)

]
= ln r + ln

[
ei(θ+2nπ)

]
= ln r + i(θ + 2nπ)

for n ∈ Z. We have found that the logarithm of a complex number is multivalued, much like
the root of a complex number, though in this case it can take an infinite number of values.

We have the trignometric and hyperbolic functions:

cos z =
eiz + e−iz

2
cosh z =

ez + e−z

2

sin z =
eiz − e−iz

2i
sinh z =

ez − e−z

2

which are related via

cos iz = cosh z cosh iz = cos z

sin iz = i sinh z sinh iz = i sin z

For example, apply these relations to find the real and imaginary part of

sin(2 + 3i)

expressing each part as a product of hyperbolic and trigonometric functions. We have that

sin(2 + 3i) = sin(2) cos(3i) + cos(2) sin(3i) = i [sin 2 cosh(3) + cos(2) sinh(3)]

Given that we have expressed the trigonometric functions in terms of a complex exponential,
we can now find explicit inverses for them. Consider the inverse of sin. We have that

w = sin−1 z → z = sinw =
eiw − e−iw

2i
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We can re-express this as a quadratic equation, multiplying by eiw and 2i and rearranging it:

2izeiw = e2iw − 1

e2iw − 2izeiw − 1 = 0

This is a quadratic equation with a solution

eiw =
2iz ±

√
−4z2 + 4

2
= iz ±

√
1− z2

iw = ln
(
iz ±

√
1− z2

)
so

sin−1 z = −i ln
(
iz ±

√
1− z2

)
with n ∈ Z.

6 De Moivre’s Theorem

Consider, z = eiθ and the following equation

zn = einθ

Now take each side in the polar form and we have

(cos θ + i sin θ)n = cosnθ + i sinnθ

Consider a few examples. For n = 2 we can recover a formula you are familiar with, the double
angle formula. We have that

(cos θ + i sin θ)2 = cos2 θ + i2 sin θ cos θ − sin2 θ = cos 2θ + i sin 2θ

Equating the real and imaginary part we have

cos 2θ = cos2 θ − sin2 θ

sin 2θ = 2 sin θ cos θ

If we want to invert these formulas, it is easier to take the Euler formula. For example

cos2 θ =

(
eiθ + e−iθ

2

)2

=
e2iθ + 2 + e−2iθ

4
=

1

2
(1 + cos 2θ)

But we can, easily, go further. For n = 3 we can use the binomial formula to show that

cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ = cos 3θ + i sin 3θ

Which gives us some interesting equalities

cos 3θ = cos3 θ − 3 cos θ sin2 θ

sin 3θ = 3 cos2 θ sin θ − sin3 θ
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And, again, we can invert these expression by using the complex exponential to, for example
find:

sin3 θ =

(
eiθ − e−iθ

2i

)3

=
e3iθ − 3eiθ + 3e−iθ − e−3iθ

(2i)3

=
1

(2i)2

(
e3iθ − e−3iθ

2i
− 3

eiθ − e−iθ

2i

)
= −1

4
(sin 3θ − 3 sin θ)

7 Applications of complex numbers

If you consider the following equation

zn = reiθ

we have that the solution is

z = r1/nei(θ+2πk)/n

with k = 0, 1, · · · (n− 1). You will note that the roots lie on a circle in the complex plane with
radius r1/n. Furthermore the roots are equidistant in angle along the circle. Now recall that

n−1∑
k=0

zk = −an−1

an

The RHS is 0 in this case. The LHS is

r1/n
n−1∑
k=0

ei(2πk+θ)/n

which leads to

n−1∑
k=0

ei(2πk+θ)/n = 0

The real and imaginary part of this equality are

n−1∑
k=0

sin
2πk + θ

n
= 0

n−1∑
k=0

cos
2πk + θ

n
= 0

For example, we saw that was the case when we added the roots of the equation

z4 = 1
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Consider now the following series

Sn =
n∑

k=1

cos(kθ)

We can use our new found knowledge on the connection between trigonometric functions and
complex exponentials to work it out. We have that

Sn =
n∑

k=1

Re(eikθ) = Re(
n∑

k=1

eikθ)

Now, we have that the sum of a geometric series is

a(1 + r + r2 + · · · rn−1) = a
1− rn

1− r

We can apply this now to our expression:

n∑
k=1

eikθ =
n∑

k=1

(
eiθ
)k

= eiθ
1− einθ

1− eiθ
= eiθ

einθ/2

eiθ/2

(
e−inθ/2 − einθ/2

)
(e−iθ/2 − eiθ/2)

= ei(n+1)θ/2 sin
nθ
2

sin θ
2

.

If we now take the real part, we finally find

Sn =
n∑

k=0

cos(kθ) = cos
(n+ 1)θ

2

sin nθ
2

sin θ
2

Consider another example and show that

cos θ +
1

3
sin 2θ − 1

9
cos 3θ − 1

27
sin 4θ +

1

81
cos 5θ +

1

243
sin 6θ − · · ·

Let us make a guess and assume that it is the real part of some series. If we do that, we can
rewrite it as

Re

[
eiθ − i

3
ei2θ − 1

32
ei3θ +

i

33
ei4θ · · ·

]
which can be expressed more compactly as

∞∑
n=0

(−i)nei(n+1)θ

3n

This, again, is a geometric series so we have

∞∑
n=0

(−i)nei(n+1)θ

3n
=

3eiθ

3 + ieiθ

Taking the real part, we then have

cos θ +
1

3
sin 2θ − 1

9
cos 3θ − 1

27
sin 4θ +

1

81
cos 5θ +

1

243
sin 6θ − · · · = 9 cos θ

10− 6 sin θ
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Let us now consider the following integral

I =

∫
dxeax sin bx = Im

[∫
dxeaxeibx

]
We have that∫

dxe(a+ib)x =
e(a+ib)x

a+ ib
+ C

=
(a− ib)e(a+ib)x

a2 + b2
+ C

=
eax

a2 + b2
(a− ib)(cos bx+ i sin bx) + C

=
eax

a2 + b2
[a cos bx+ b sin bx+ i (a sin bx− b cos bx)] + C

If we take the Imaginary part, we now have

I =
eax

a2 + b2
(a sin bx− b cos bx) + C ′

Another integral that you will come across in a variety of settings is

I =

∫ +∞

−∞
dxe−x2/2 cos(kx) = Re

[∫ +∞

−∞
dxe−x2/2eikx

]
We can complete the squares so∫ +∞

−∞
dxe−x2/2eikx =

∫ +∞

−∞
dxe−(x−ik)2/2−k2/2

=

∫ +∞

−∞
dx̃e−x̃2/2−k2/2

= e−k2/2

∫ +∞

−∞
dx̃e−x̃2/2 =

√
π

2
e−k2/2

where I have used Gaussian integral.


