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Symmetry and Relativity

Lecture 24



  

Outline

● Gauge (“internal”) transformations
● Global gauge symmetry

– Klein-Gordon and Dirac equations
– How to add “new physics”

● Local gauge symmetry



  

Gauge transformations

● Previous example:  4-vector potential



  

Klein-Gordon field equation

● From energy-momentum relationship

● Describes scalar (spin-0) fields
● Consider Lagrangian with complex field



  

Complex fields
Example:  Klein-Gordon

Decomposition into real-valued fields

Treat as two
independent
fields

Find extremum



  

Klein-Gordon equation

● Can treat φ and φ* as two independent fields

See Section 11.1.1 of old lecture notes

Two fields, 
same mass



  

A global gauge transformation
● Unitary transformation of complex fields

– Doesn’t change the Lagrangian → shouldn’t change any physics
– “Gauge transformation of the first kind” (Pauli)

● Noether general invariance:



  

A global gauge transformation
● Noether current:

● More familiar form:

● 2 fields, equal mass, opposite charge



  

Charge conservation

● Noether current conservation:

● Integrate over
all space

● Charge is conserved!



  

Dirac field equation

● Equation of motion of spin-1/2 particles

● For our purposes, form of state and matrices 
not important – keep in mind “spinor indices”

4-component state4x4 “Dirac” matrices



  

Dirac field Lagrangian
● Lagrangian density to obtain Dirac equation



  

Dirac current

● Global gauge transformation

● 2 fields, equal mass, opposite charge
● Conserved current:



  

Global gauge invariance

● We’ve applied a global U(1) phase 
transformation to complex fields
– Klein-Gordon equation (bosons)
– Dirac equation (spin-1/2)

➔ The Noether currents reflect particles which 
have the same mass, but opposite charge
➢ Anti-particles



  

Adding new physics

● We’ve seen how we “add” physics to a Lagrangian 
(density) by simply adding terms

● Common restrictions for “new physics”:
– Local:  depend only on one spacetime point
– Real-valued action:  complex-valued actions tend to result in 

disappearing matter
– Lagrangian depends on no higher than 2nd derivatives:  higher 

orders tend to violate causality
– Action reflects other symmetries, e.g., Lorentz invariance

● Lagrangians tend to be scalar invariants



  

Lagrangians in the wild
● Recipe for form-invariant equations of motion:

– Form-invariant scalar Lagrangian (density)
– Plug into form-invariant Euler-Lagrange

EC Leskow, TAW Martin, 
A de la Puente, 
arXiv:1409.3579v2,
2 Oct 2014

A lot of particle 
physics papers start 
off by specifying 
such a Lagrangian

Kinetic energiesHiggs mass and 
self-interactions

New particle mass 
and self-interactions

Higgs+new particle 
interactions



  

Lagrangians in the wild
● Recipe for form-invariant equations of motion:

– Form-invariant scalar Lagrangian (density)
– Plug into form-invariant Euler-Lagrange

EC Leskow, TAW Martin, 
A de la Puente, 
arXiv:1409.3579v2,
2 Oct 2014

Symmetries!



  

Adding matter-EM interactions

● Contract two 4-vector fields:

Strength of coupling

Canonical momentum with EM field

But now have a gauge invariance problem



  

Dirac current coupling
● Link gauge transformation with local phase of state

● Transform Dirac equation:

✔ Gauge invariance restored! Set χ=α

U(1) gauge transformation



  

Local gauge invariance

● Turn argument around:
Local U(1) gauge symmetry → require gauge field
– Transformation of field hides gauge transformation
– “Let there be U(1) gauge symmetry, and there was light”
– Gauge field must be massless

● Can this be extended?
– SU(n):  state → complex n-tuplet
– Evaluate change due to gauge transformation
– Remove effect using a gauge field
– Add gauge-invariant kinetic energy terms



  

Local gauge invariance

● n-tuplet:
nxn Hermitian matrices

Hide gauge
transform
with new fields
(for each generator)

New fields need
kinetic energy terms



  

Problem with n>1

● Higher-rank unitary groups are non-Abelian
– Exponentiation more complicated
– Gauge field transformation more complicated

● Example:  SU(3)



  

SU(3)

● Generators (Gell-Mann matrices)



  

SU(3)

● Lie algebra

● Structure constants f completely antisymmetric 
in indices



  

Problem with n>1

● Gauge field transformation more complicated

New stuff with 
structure 
constants



  

Problem with n>1
● QCD is the land of heroic calculation



  

SU(2)

● Weak force has 3 gauge bosons
– SU(2) has 3 generators (Pauli spin matrices)

● You’ve seen this algebra – it’s for the rotation of a spin-1/2 field
– Note:  it’s actually isospin – not connected to rotational symmetry
– Introduce doublet field representation

● You’d think this would be simple



  

SU(2)

● Gauge invariance → only massless W,Z
– Experimental reality alert:  80/90 GeV

● Also a chirality problem
– Deep dive into Dirac, parity, etc.

➢ Lagrangian may have manifest symmetry, but 
symmetry could be broken in ground state (from CMP)



  

Spontaneous symmetry breaking

● Postulate a complex doublet field

● Add potential



  

Standard Model Lagrangian
W,Z,γ,g self-energy, 
kinetic energy
(Note: Zγ mixing)

Fermion interactions 
with W,Z,γ,g

W,Z,γ interactions 
with Higgs

Symmetry breaking 
potential

Fermion masses via 
coupling to Higgs field

Recent lecture notes from Corfu Summer Institute 2021:  JI Illana and AJ Cano, “Quantum 
field theory and the structure of the Standard Model”, https://arxiv.org/abs/2211.14636

https://arxiv.org/abs/2211.14636


  

Conclusion

● SM Lagrangian:  manifestly invariant with respect to 
both gauge and Lorentz transformations
– Pretty successful theory
– Elegant structure
– At least 26 free parameters

● That’s it for B2 (+)
● Congratulations for sticking with it
● Feedback
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