B2
Symmetry and Relativity
Lecture 24




Outline

* Gauge (“Internal”) transformations

* Global gauge symmetry
- Klein-Gordon and Dirac equations
- How to add “new physics”

* Local gauge symmetry



Gauge transformatic

* Previous example: 4-vector potential

Ap(x) = Ay () = Ap(z) + Oux ()




Klein-Gordon field eq

* From energy-momentum relationship

0= P*P, +m? P, — 0,
= —0"9,0 + m>¢

* Describes scalar (spin-0) fields

* Consider Lagrangian with complex field



Complex fields

Example: Klein-Gordon

L=~ 5(0,6")(0"6) — 5m?6"

b=u+iv - Decomposition into real-valued fields

_ _9f : ﬁ e\ o FInd extremum
O—5f—a¢(5u—l—z5v)—l—a¢*(5u i0v)
0 0
of  Of ~, Treatastwo 0
0= -7 — 7= independent of
dg ¢ fields 0

= 3%




Klein-Gordon eq

See Section 11.1.1 of old lecture notes
1 *k ]‘ %k
L= —3(0,0)(0"9) — gm*¢™¢

 Cantreat @ and ¢ as two independent fields

oL _ 1 s oL 0L
% 10, »0:@( )___
L 1y 0up) )  0¢
000,0) 27 7 I .1 )
w1, 0= =38 0ud0" 5o
s : :
oL . 0=—0,0"¢" + m*d*  tuofields,
0(0,,0*) — oY %9 5 same mass
g 0=—-0,0"d+m~¢p




A global gauge transio

* Unitary transformation of complex fields
- Doesn’t change the Lagrangian - shouldn’t change any physics
- “Gauge transformation of the first kind” (Pauli)

¢ = e 5 = i\
QS*/ _ €_i>\¢* 5¢* — —’[,)\¢*
* Noether general invariance:

5£[¢a ¢*7 ¢,7 ¢*I] - £[¢ + 5¢7 QS* + 5¢*] - £[¢, ¢*]
1 1

= =5 (0u(¢" = iA§")(" (6 +iAg)) — 5m?(&° — iA§")(6 +iA0)
=L - (1+X)-C
— O()\z)ﬁ ) KM — O()\2)



A global gauge transtc

e Noether current:

oL oL

o 5 o0" — KH
7= 00,0 T 8@,
= 2 (@67 (iA0) — 5(9"6) (—iAé) — O(N?)
A
= —Z[(0"6")6 — ¢"(9")]
* More familiar form: [ 00* , 09
J, =i (6m“¢_¢ @)

2 fields, equal mass, opposite charge




Charge conserva

* Noether current conservation:

0
SN

* Integrate over

all space 0 4
/ dgm—aj = —/ d?xJ° =
v dt Jy

ot

* Charge is conserved! aq)
dt

=0

\/ d%v.J:/J-da:o
V S

Q)

dt



Dirac field equat

* Equation of motion of spin-1/2 particles

0= (iy"0p —m)y

f N\

4x4 “Dirac” matrices 4-component state

* For our purposes, form of state and matrices
not iImportant — keep in mind “spinor indices”

0 = (i[y"]",0p — Fym)y°



Dirac field Lagranc

* Lagrangian density to obtain Dirac equation
L= lz(ifyuau —m)y
— &a(ihﬂu]abaﬂ - 5gm)¢b

oL

90 = 110, — ma
oL _
e~ "
or .,
00,0 V7



Dirac current

* Global gauge transformation

oL oL —
JH = 0 — O\
0= idy (50, * F,577) ~ O
o) = —iM) = (i) (iM))

= —A(y"y)

» 2 fields, equal mass, opposite charge
* Conserved current: TH = oyl



Global gauge invar

* We've applied a global U(1) phase
transformation to complex fields

- Klein-Gordon equation (bosons)
— Dirac equation (spin-1/2)

> The Noether currents reflect particles which
have the same mass, but opposite charge

> Anti-particles



Adding new phy

* We've seen how we “add” physics to a Lagrangian
(density) by simply adding terms

 Common restrictions for “new physics”:
- Local: depend only on one spacetime point

- Real-valued action: complex-valued actions tend to result in
disappearing matter

- Lagrangian depends on no higher than 2" derivatives: higher
orders tend to violate causality

— Action reflects other symmetries, e.g., Lorentz invariance

e Lagrangians tend to be scalar invariants



Lagrangians in the

* Recipe for form-invariant equations of motion:
Form-invariant scalar Lagrangian (density)
Plug into form-invariant Euler-Lagrange

2. Toy Model

H 2.1. Real Scalar Triplet
A IOt Of partICIe The possibility of extending the SM with a real SU(2)y- triplet scalar has been extensively

studied [21-30] since such extensions generally lead to suppressed contributions to electroweak
phySICS papers Sta‘rt precision observables (EWPO). The scalar Lagrangian for a toy model including all possible gauge

Oﬁ: by SpeCIfyI ng invariant combinations of a Higgs doublet, H, and an SU(2)y triplet, ¥, given by

1 N
such a Lagrangian , s=3( A % ). (1)
Higgs mass and R Kinetic energies
self-interactions Loctar = (D H)(D"H) + Tr(D,E(DFE) - V(H, 7), @ .
where New particle mass
V) —pzmm,\omwfﬂ T [221+%Tr[22]2/ and self-interactions

L H*HTr[E? (3) .
EC Leskow, TAW Martin,
A de la Puente,

is the s potential [28, 29], and the covariant derivatives are the standard SU(2)w x U(1)y, as

+ the SM.
nggs new partICIe The scalar potential can be minimized along the directions of the neutral components of both arXiv:1409.3579v2
|nteraCt|0nS H and ¥ lpadine to twn eonditione: !

2 Oct 2014




Lagrangians in the

* Recipe for form-invariant equations of motion:

- Form-invariant scalar Lagrangian (density)
- Plug into form-invariant Euler-Lagrange

2. Toy Model

2.1. Real Scalar Triplet

The possibility of extending the SM with a real SU(2)y- triplet scalar has been extensively
studied [21-30] since such extensions generally lead to suppresse@ contributions to electroweak
precision observables (EWPO). The scalar Lggrangian for a toy model including all possible gauge |

invariant combinations Qg Higgs doublet, H, and an SU(2)w triplet, X, given by
B ¢+ - 1 no Dt
" ( ¢ ) ’ B L
erelicaiBiens Symmetries!
Locatar = (D H)'(D*H) + Tr(D,X) (D*E) - V(H, £), )
where
V(H,E) = —p2H'H + M (HTH)? + %MéTr[Zz]+ET 722
+a HISH + %H*Hﬁ[s?], (3)

EC Leskow, TAW Martin,

is the scalar potential [28, 29], and tﬂc covariant derivatives‘are the standa.rci SU(2yw x U(l)y, ‘as
in the SM. A de la Puente,

The sealar potential can be minimized along the directions of the neutral components of both arXiV: 1409 3579V2’

H and ¥ lpadine to twn eonditione:

2 Oct 2014




Adding matter-EM Inte

 Contract two 4-vector fields:

JH = py*ey)

Strength of coupling

NV

T

(i, — m)y +

(v “(10,, +eA,) —

:

P,+eA,

61&7“ Y Au E— >;\W\ e

)w (]

Canonical momentum with EM field

But now have a gauge invariance problem



Dirac current coug

* Link gauge transformation with local phase of state

* Transform Dirac equation:

(V"0 + gy A}, — m)o)’

v Gauge Invariance

AM%AL:AM—I—%X

(x) = ¢/ (2) = ei‘f%(x)
|

U(1) gauge transformation

— —qu”(ﬁua)eiqo‘v,b -+ ieiqo‘q/“(ﬁﬂw) — med%y
+ 7" Ape 1P + gy (8, x) e Y

= €% (I8 + gy Ay — m)Y
+ g7 (Bux — Opa)e 14




Local gauge invar

* Turn argument around:
Local U(1) gauge symmetry — require gauge field

- Transformation of field hides gauge transformation
- “Let there be U(1) gauge symmetry, and there was light”

— Gauge field must be massless

e Can this be extended? @
- SU(n): state — complex n-tuplet g
- Evaluate change due to gauge transformation .
- Remove effect using a gauge field
- Add gauge-invariant kinetic energy terms




Local gauge Iinvariz

nxn Hermitian matrices

e n-tuplet: =y — o = i Ty

Outp — 0" = et 0u + 1T (00 )]

Hide gauge - -/ - 1
transform > Gi — G‘ZL — G‘ZL — —a'u()éj
with new fields g
(for each generator)
1 .
— ... — (Y Ky
New fields need L= 4GMV Gj
kinetic energy terms , , ,
Y — J _ J
G, = 0,Gi, — 8,G,

&



Problem with n>

* Higher-rank unitary groups are non-Abelian
- EXxponentiation more complicated
- Gauge field transformation more complicated

 Example: SU(3)

Y1(x)
Y(x) = | P2(x)
Y3(x)



SU(3)

* Generators (Gell-Mann matrices)

0 1 0 —1
)\1 p— ]_ 0 s )\2 — 'I, O ’ )\3
0 0




SU(3)

* Lie algebra (T, Ty] = i faveT: a,bc=1---8

e Structure constants f completely antisymmetric

In Indices
V3
Ji2z =1 Jass = fers = >
1
f147 — f165 — f246 — f257 — f345 — f376 — 5



Problem with n>

* Gauge field transformation more complicated

. | |
GI -G =G~ ~0u0,

— fjmnamGz

D, =0, +igsT; G/,

Gl = 0,GL — 8,G%, — gs fimnGTG™

New stuff with

structure
constants



Problem with n

 QCD is the land of heroic calculation

£ = (i — ) — ga (" Tu) Gl — 3G, G

~ ww + GG + gSMbG + gSG3 + 92G4

2
g fabc: ade




SU(2)

* Weak force has 3 gauge bosons
- SU(2) has 3 generators (Pauli spin matrices)

0 1 0 —i 1 0
1=V 10/ 2=\ o ) =0 -1

* You've seen this algebra — it’s for the rotation of a spin-1/2 field
- Note: it’s actually isospin — not connected to rotational symmetry
— Introduce doublet field representation

o@ > (o))

* You'd think this would be simple




SU(2)

1
ng — Wﬁl — WEJ — g—WaluOéa — Eabc()ébW’uc

We, =0,Ws—0,W2 — gwe™™ W Wy

 Gauge invariance — only massless W,Z
- Experimental reality alert: 80/90 GeV
ovd

> Lagrangian may have manifest symmetry, but
symmetry could be broken in ground state (from CMP)

* Also a chirality problem
- Deep dive into Dirac, parity, etc.




Spontaneous symmetry €

* Postulate a complex doublet field
_( ¢1(=)

* Add potential

High Energy
Symmetric
Local maxima

Agsymetric
Local minimum

V(p) = 1?¢'d + A(p'¢)




Standard Model L

1 1 1 W,Z If-
a U ", b /,Z,y,9 self-energy,
L= _ZWMVWO/,,JJ _ ZB,LWBM — ZG,[WGW/I) kinetic energy
(Note: Zy mixing)
_ aw 9{/{/ : Fermion interactions
a :
—|_77bfy'u a,u — 9 TG’WM — 7}/vB'u — gsTbG'UJ w with W.Z,v,9
/ 2 . .
%% \ W, Z,v Interactions
(bl < e Symmetry breaking
1 ?7[7¢¢ potential

Fermion masses via
coupling to field

JI lllana and AJ Cano, “Quantum
ps://arxiv.org/abs/2211.14636


https://arxiv.org/abs/2211.14636

 SM Lagrangian: manifestly invariant with respect to
both gauge and Lorentz transformations

- Pretty successful theory
- Elegant structure
- At least 26 free parameters

* That's it for B2 (+)
* Congratulations for sticking with it
* Feedback >
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