
Notes on Rates and Cross Sections

Definitions

Beam flux:
Φ = ρv

where ρ is the number density of the beam and v is the velocity.

Cross section:

σ =
wV

v

where w is the rate, V is the normalization volume, and v is the relative velocity of the
reaction particles (more strictly speaking, the incoming flux of the two individual particles).

Reaction rate is Φσtotal.

For particles incident on a target, reverse the roles such that the incident particles are the
“target” and the target is the “beam”. Then the reaction rate is ρtargetvbeamσtotal, and the
mean time before an interaction is τ = (ρtargetvbeamσtotal)

−1. The mean free path is therefore
` = vbeamτ = (ρtargetσtotal)

−1.

Rate and width:

wi =
Γi

h̄

Total width and lifetime:
Γ =

∑
i

Γi = τ−1

Fermi’s Golden Rule

w =
2π

h̄
|M|2dN

dE

where M is the matrix element 〈f |H|i〉, linking the initial and final state through an inter-
action Hamiltonian; and dN

dE
is the final state density. N is the number of final states with

energy ≤ E, and E is the total energy available to the final state.

Wavefunctions

In many nuclear physics applications, we approximate light particles, such as the e and ν,
with plane waves (which is fine far away from the interaction).

ψe,ν =
1√
V
e−i~k·~x

Again, V is the normalization factor such that, for instance,

〈e|e〉 =
∫

V
ψ∗

eψed
3x =

∫
V
d3x = 1
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The heavy particles, in this case the n and p, are considered to have largely localized wave-
functions. We don’t specify their form, because all we need to know is that

〈n|n〉 ≈
∫

V
ψ∗

nψnd
3x = 1

The approximation is due to the fact that in principle we’d integrate over all space in
calculating the norm of the wavefunction (remember that this is different from plane waves,
which don’t have a well-defined integral over all space). If, however, the wavefunction is
mostly localized, we just define V to envelope it. We can now integrate over V for both light
and heavy wavefunctions.

The wavefunction of a multi-particle state have multiple coordinates, one for each con-
stituent, so for example if pe is the final state, the wavefunction would be

|pe〉 ≈ ψp(~xp)
1√
V
e−i~kν ·~xν

Two coordinates are required, since two particles are really being described, and they aren’t
being constrained to any interrelationship (the constraint of the “contact interaction” hap-
pens through the interaction Hamiltonian, not the wavefunction). The norm of the two-
particle wavefunction would then be calculated as follows:

〈pe|pe〉 =
∫

V
d3xpd

3xeψ
∗
p(~xp)ψ

∗
e(~xe)ψe(~xe)ψp(~xp)

Matrix element

For Fermi’s theory of β decay, we postulate a contact interaction of four particles. This
interaction would be characterized by a coupling strength, GF . The contact is expressed
through a delta function which joins the constituent wavefunctions together:

H = GF δ
3(~x− ~y)

where the coordinates are those of the interacting constituents.

The form of the Fermi process, without antiparticles, is nν → pe. Note that the matrix
element is the same regardless of whether it is describing the antiparticle process, pν → ne+,
or a decay such as n → peν, since we take antiparticle wavefunctions to be the complex
conjugates of normal particle wavefunctions.

Therefore, for the Fermi β process,

M = 〈pe|H|nν〉

=
∫

V
d3xd3yψ∗

p(x)ψ
∗
e(y)Hψn(x)ψν(y)

≈
∫

V
d3xd3yψ∗

p(x)ψ
∗
e(y)GF δ

3(x− y)ψ(
nx)ψν(y)

= GF

∫
V
d3xψ∗

p(x)ψ
∗
e(x)ψn(x)ψν(x)

≈ GF

∫
V
ψ∗

p(x)
1

V
e−i(kν−ke)·xψn(x)
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At this point, we note that for the typical low energies of nuclear β decay, the e and ν
plane waves will have long wavelengths compared to the localized nuclear wavefunctions.
We therefore use the approximation

e−(kν−ke)·x = 1− i(kν − ke) · x+ · · ·

and take just the leading term (i.e., 1):

M≈ GF

V

∫
V
d3xψ∗

p(x)ψn(x)

If we then note that the proton and neutron remain essentially stationary, and that the only
real difference between them is their Coulomb energy, then

ψp ≈ ψn

which then implies that

M ≈ GF

V

∫
V
d3xψ∗

n(x)ψn(x)

≈ GF

V

which is the familiar result.

Final state density

For a single free particle, we use the Fermi gas model of plane wave states, so the number of
final states with momenta less than magnitude P is simply

N(P ) =
4
3
πP 3

(2πh̄)3/V

where the numerator is the volume in P space, and the denominator is the volume (in P
space) occupied by one state. V is the normalization volume of the plane waves.

Note that the above formula gives N as a function of P , not E as required in Fermi’s Golden
Rule. You will have to find the relationship between E and P—or more specifically (and
usually easier), the relationship between the differential elements dE and dP .

In the approximation that the nucleons remain stationary, they do not contribute to the
tally of final states (i.e., they only have one state).

Beta decay

In the case of β decay, n → peν, we need to have two plane waves in the final state, and
this must be reflected in the final state density (the matrix element remains unchanged,
of course). The total final state, however, is simply the direct product of electron and
antineutrino states, so the number of states is

N(Pe, Pν) =
16π2P 3

e P
3
ν V

2

9(2πh̄)6
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Typically, one calculates the energy spectrum of the electron, so we are really calculating

dw

dPe

=
2π

h̄
|M|2 d2N

dPedE

for a given (fixed) Pe. Because of this, along with the relationship

E = Ee + Eν

where E is the total final state energy and we are neglecting the proton energy (since it’s
stationary and consequently mostly constant), we find that

dE = dEν = cdPν

Therefore
d2N

dPedE
=

16π2P 2
e P

2
ν V

2

(2πh̄)6c

which then gives the result
dw

dPe

=
G2

FP
2
e P

2
ν

2π3h̄7c
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