
Feynman diagrams

1 Aim of the game

We are now getting ambitious and want to calculate the probabilities for relativistic
scattering processes. To do so we need to find out the Lorentz-invariant scattering
amplitude Mfi which takes us from an initial state |Ψi〉 containing some particles
with well defined momenta to a final state |Ψf 〉 containing (often different) particles
also with well defined momenta.

We make use of a graphical technique popularised by Richard Feynman1. Each
graph – known as a Feynman Diagram – represents a contribution to Mfi. This
means that each diagram actually represents a complex number (more generally
function of the external momenta). The diagrams give a pictorial way to represent
the contributions to the amplitude.
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Simplest Feynman diagram
for electron–muon elastic
scattering.

Diagrams consist of lines representing particles and vertices where particles are
created or annihilated. I will place the incoming state on the LHS and the outgoing
state on the RHS, so that we have an incoming electron with four-momentum P1

and an incoming muon with four-momentum P2. The electron and muon exchange a
photon (the electromagnetic force carrier) and in the final state we have an electron
with momentum P3 and a muon with momentum P4.

Some of the more complicated
diagrams for electron–muon
scattering.

Since the diagrams represent transitions between well-defined states in 4-momentum
they already include the contributions from all possible paths in both time and
space through which the intermediate particles may have passed. So for the diagram
at the top of the page it is not meaningful to ask “did the muon emit the photon or
absorb it?” – both processes (photon going ‘up’ and ‘down’) are already summed
in the diagram.

2 Rules for calculating diagrams

It turns out that are simple rules for calculating the complex number represented
by each diagram. These are called the Feynman rules. With a bit more math
under our belts we could derive these rules from the Lagrangian density for any
quantum field theory, but in this course we will simply quote the rules relevant for
the Standard Model.

1American physicist (1918-1988).
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2.1 Vertices

Vertices are places where particles are created or annihilated. In the case of the
electromagetic interaction there is only one basic vertex which couples a photon to
a charged particle with strength proportional to its charge.

To calculate the contribution to Mfi, for each vertex we associate a vertex factor.

For interactions of photons with electrons the vertex factor is of size −ge where ge

is a dimensionless charge or coupling constant.2 The coupling constant is a number
which represents the strength of the interaction between the particle and the force
carrier at that vertex. For the electromagnetic force the coupling strength must be
proportional to the electric charge of the particle. So for the electromagnetic vertex
we need a dimensionless quantity proportional to the charge. Recall that for the
electromagnetic fine structure constant:

αEM ≡ e2

4πε0~c
≈ 1

137
.

is dimensionless. e
−
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The electromagnetic vertex.
The vertex factor is −ge.It turns out to be convenient to choose ge such that

αEM =
g2

e

4π
.

In other words the coupling constant ge is a dimensionless measure of the electronic
charge e. The size of the coupling between the photon and the electron is

−ge = −
√

4παEM.

The electromagnetic vertex factor for any other charged particle f with charge Qf

times that of the proton is then

geQf

So, for example, the electromagnetic vertex factor for an electron is of size −ge

while for the up quark it is of size + 2
3ge.

2.2 Propagators

For each internal line – that is each virtual particle – we associate a propagator
factor. The propagator tells us about the contribution to the amplitude from a
particle travelling through space and time (integrated over all space and time). For
a particle with no spin, the Feynman propagator is a factor

1
Q · Q−m2

2For students who have taken BII: Here we are simplifying the situation by ignoring the spin
of the electron. If spin is included the vertex factor becomes −ge times a matrix, in fact a Dirac
gamma matrix, allowing the spin direction of the electron as represented by a spinor wavefunction
to change in response to interaction with the photon. In this course we ignore this complication
and for the purpose of Feynman diagrams treat all spin 1

2
fermions, such as electrons, muons, or

quarks, as spinless.
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where Q · Q = E2 − q · q is the four-momentum-squared of the internal virtual
particle3.

These intermediate particles are called virtual particles. They do not satisfy the
usual relativistic energy-momentum constraint, i.e.

Q · Q 6= m2

for these short-lived virtual particles. Such particles are sometimes said to be off
their mass-shell.

If this inequality worries you, it might help you if you consider that their energy and
momentum cannot be measured without hitting something against them. So you
will never “see” off-mass-shell particles, you will only see the effect they have on
other objects they interact with.

External particles in Feynman diagrams always satisfy the usual relativistic energy-
momentum constraint E2 − p2 = m2, and for these particles we do not include a
propagator factor. The external lines are included in the diagram purely to show
which kinds of particles are in the initial and final states.

2.2.1 Propagator example

Let’s have a look at the annihilation process e+e− → µ+µ− via a virtual photon. For
the moment we will ignore the spin of all the particles, so that we can concentrate
on the vertex factors and propagators.
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We can calculate the photon’s energy-momentum four-vector from that of the elec-
tron and the positron. Four momentum is conserved at each vertex so the photon
four-vector is Qγ = Pe+ + Pe− . Let’s calculate the virtual photon momentum
components in the zero momentum frame:

P1 = (E,p), P2 = (E,−p). (1)

Conserving energy and momentum at the first vertex, the energy-momentum vector
of the internal photon is

Qγ = (2E,0).

3 This propagator is the relativistic equivalent of the non-relativistic version of the Lippmann-
Schwinger propagator (E − H + iε)−1 that we found in non-relativistic scattering theory. Why
are the forms different? Non-relativistic propagators are Greens functions for integration over all
space. Relativistic propagators by contrast are Greens functions for integrations over both space
and time.
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So this virtual photon has more energy than momentum.

The propagator factor for the photon in this example is then

1
(2E)2 −m2

γ

=
1

4E2
.

The contribution to Mfi from this diagram is obtained my multiplying this prop-
agator by two vectex factors each of size ge. The modulus-squared of the matrix
element is then

|Mfi|2 =
∣∣∣∣ g2

e

4E2
e

∣∣∣∣2 .

If we pop this |Mfi|2 into Fermi’s Golden Rule with the appropriate density of
states

dN

dpµ
=

p2
µdΩ

(2π)3
,

and divide by an incoming flux factor 2ve, then we should get the differential cross
section

dσ =
1
ve

2π |Mfi|2
p2

µ

(2π)3
dpµ

d(Ef )
dΩ.

A little care is necessary in evaluating this. Momentum conservation means that
only one of the outgoing particles is free to contribute to the density of states. The
muon energy in the ZMF is Eµ = 1

2E0, so

dp

dE0
=

1
2

dpµ

dEµ
,

where pµ and Eµ are the momentum and energy of one of the outgoing muons.
Since those muons are real they satisfy

p2
µ + m2

µ = E2
µ

and so taking a derivative pµ dpµ = Eµ dEµ. Sticking this into the F.G.R. we’ll
want

dpµ

dE0
=

1
2

dpµ

dEµ
=

1
2

Eµ

pµ
=

1
2

1
vµ

.

We then integrate over all possible outgoing angles to gain a factor of 4π and note
that g2/4π = α, and that

pµ

Eµ
= vµ. Gathering all the parts together we find we

have a total cross-section for e+ + e− → µ+ + µ− of 4

σ = π
α2

s

∣∣∣∣vµ

ve

∣∣∣∣
where s = (2E)2 is the center-of-mass energy squared.

A quick check of dimensions is in order. The dimensions of s are [E]2, while those
of σ should be [L]2 = [E]−2. The structure constant α and the velocities v are
dimensionless so all is well.

4Neglecting spin and relativistic normalization and flux factor issues – see ‘caveats’.
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2.2.2 Second propagator example

In the previous example the virtual photon’s four-momentum vector (E,0) was
time-like.

In the electron–muon scattering case e− + µ− → e− + µ− introduced at the start
of this handout it turns out that this other virtual photon carries momentum and
not energy, so the propagator is space-like.

To see this, transform to in the zero-momentum frame. In the ZMF the electron is
kicked out with the same energy as it came in with, so it has received no energy
from the photon, and conserving energy at the vertex Eγ = 0. The direction of
the electron momentum vector has changed so it has received momentum from the
photon, pγ 6= 0. Therefore E2

γ − |p|2γ < 0 and the propagator is space-like.

2.3 Anti-particles

An anti-particle has the same mass as its corresponding particle cousin, but his
charge is the opposite to that of the particle.5

Creating anti-particles A photon travelling along in free space cannot produce an
e+ and an e−. Let’s remind ourselves why not. For a massless photon obeying the
usual Lorentz invariant condition on its energy-momentum four-vector Qγ · Qγ = 0
this reaction does not conserve energy and momentum. So it can’t happen for a
real photon.

But what about for virtual photons? The photon is couples to charge that’s what
our vertex is telling us. And charge is indeed conserved at the vertex – so we don’t
break that law. No other laws are violated, so it seems that if somehow we could
shoe-horn extra energy into the photon while at the same time giving it no extra
momentum (so that Qγ · Qγ > 2me) – then we might be able to have that photon
“decay” to an electron and positron. This situation – having a time-like photon with
energy greater than its momentum – was exaction what we found for our time-like
photon in §2.2.1, which was why that photon was able to ’decay’ into a muon and
an anti-muon.

γ
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e
−

Creation of an electron-
positron pair from a (virtual)
photon.

γ

γ

e
−

e
+

Electron–positron annihila-
tion to form two photons.

Anti-particle lines When we draw anti-particle lines (like the examples to the right)
we put arrows on the particles to indicate the direction of particle-flow. An electron
has an arrow pointing to the right as it is a particle. A positron which is an anti-
particle has an arrow pointing to the left.

5In fact if the particle is charged under under more than one force then all the charges have
to be reversed for the anti-particle. For example an anti-quark, which has electromagnetic, strong
and weak charges will have the opposite value of each of those compared to the corresponding
quark.
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Internal electron/positron lines — such as that in the lower diagram to the right
— could have either a electron moving from the lower to the upper vertex or a
positron moving from the upper to the lower vertex. We don’t and can’t know
which. The question is not phrased as an observable so in quantum mechanics we
simply ain’t privy to that sort of information. Both possibilities are included in the
internal electron/positron propagator.

3 Leading order diagrams

In principle to calculate |Mfi| we are supposed to draw and calculate all of the
infinite number of possible Feynman diagrams. Then we’d have to add up all those
complex numebrs and mod-squark the answer.

However the fact that the fine structure constant is small (αEM � 1) explains we
can get away with just summing the simplest diagram(s) when calculating Mfi.

The simplest “tree level” scattering diagram has two vertices so contains two factors
of e. The diagrams with the loops contain four vertices and hence four factors of
e. Since g2

e/4π = αEM � 1, we can see that the more complicated diagrams with
with more vertices will (all other things being equal) contribute much less to the
amplitude than the simplest ones.

αEM =
g2

e

4π
≈ 1

137

αWeak =
g2

W

4π
≈ 1

29

αStrong =
g2

s

4π
∼ 1

Coupling strengths of
the forces.

The other forces also have coupling constants, which have different strengths. The
strong force is so-called because it has a fine structure constant close to 1 which
is about a hundred times larger than αEM. In fact the weak force actually has
a larger coupling constant ≈ 1/29 than the electromagnetic force ≈ 1/137. The
reason why this force appears weak is because the force is transmitted by very heavy
particles (the W and Z bosons) so it is very short-range.

4 Key concepts

• Feynman (momentum-space) diagrams help us calculate relativistic, Lorentz-
invariant scattering amplitudes.

• Vertices are associated with dimensionless coupling constants g with vertex
factors that depend on the charge Qg

• Internal lines are integrated over all time and space so include all internal
time orderings.

• Intermediate/virtual/off-mass-shell particles have Q2 6= m2 and have prop-

agators
1

Q2 −m2
.

• For fermions, arrows show the sense of particle flow. Anti-particles have
arrows pointing the “wrong way”.
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Caveats

• Sometimes you will see books define a propagator with a plus sign on the
bottom line: 1/(q2 + m2). One of two things is going on. Either (a) q2

is their notation for a four-vector squared, but they have defined the metric
(−,+,+,+) in the opposite sense to us so that q2 = −m2 is their condi-
tion for being on-mass-shell or (b) q2 is acually intended to mean the three-
momentum squared. A bit of context may be necessary, but regardless of the
convention used the propagator should diverge in the case when the virtual
particle approaches its mass-shell.

• We have not attempted to consider what the effects of spins would be. This
is done in the fourth year after the introduction of the Dirac equation – the
relativistic wave equation for spin-half particles. The full treatment is done in
e.g. Griffiths Chs. 6 & 7.

• We have played fast and loose with phase factors (at vertices and overall
phase factors). You can see that this will not be a problem so long as only one
diagram is contributing to Mfi, but clearly relative phases become important
when adding diagrams together.

• Extra rules are needed for diagrams containing loops, because the momenta in
the loops are not fully constrained. In fact one must integrate over all possible
momenta for such diagrams. We will not need to consider such diagrams in
this course.

• The normalization of the incoming and ougtoing states needs to be considered
more carefully. The statement “I normalize to one particle per unit volume”
is not Lorentz invariant. The volume of any box at rest will compress by a
factor of 1/γ due to length contraction along the boost axis when we Lorentz
transform it. For relativistic problems we want to normalize to a Lorentz
invariant number of particles per unit volume. To achieve this we convention-
ally normalize to 1/(2E) particles per unit volume. Since 1/(2E) also scales
like 1/γ it transforms in the same manner as V . Therefore the statement “I
normalize to 1/(2E) particles per unit volume” is Lorentz invariant.
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Terminology

Mfi . . . . . . . . . . . . . . . . Lorentz invariant amplitude for |Ψi〉 → |Ψf 〉 transition

Feynman diagram . . . Graphical representation of part of the scattering amplitude

Vertex . . . . . . . . . . . . . . Point where lines join together on such a graph

Constant coupling (g) Dimensionless measure of strength of the force

Vertex factor (Qg) . . The contribution of the vertex to the diagram

Propagator . . . . . . . . . . Factor of 1/(Q · Q−m2) associated with an internal line

Tree level / leading
order . . . . . . . . . . . . . .

.
Simplest diagrams for any process with the smallest
number of g factors. Contain no closed loops.

References and further reading

• “Introduction to Elementary Particles” D. Griffiths Chapters 6 and 7 does
the full relativistic treatment, including spins, relativistic normalization and
relativistic flux factor.

• “Femptophysics”, M.G. Bowler – contains a nice description of the connection
between Feynman propagators and non-relativistic propagators.

• “Quarks and Leptons”, Halzen and Martin – introduction to the Dirac equa-
tion and full Feynman rules for QED including spin.

• “QED - The Strange Theory of Light and Matter”, Richard Feynman. Popular
book with almost no maths. Even a PPE student could understand it – if you
explained it slowly to him. In fact it has a lot to recommend it, not least that
you can order it off Amazon for about a fiver.
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