
Scattering in quantum mechanics

1 The Lippmann-Schwinger equation

We are interested in a theory that can describe the scattering of a particle from a
potential V (x). Our Hamiltonian is

H = H0 + V.

where H0 is the free-particle kinetic energy operator

H0 =
p2

2m
.

In the absence of V the solutions of the Hamiltonian could be written as the free-
particle states satisfying H0|φ〉 = E|φ〉. These free-particle eigenstates could be
written as momentum eigenstates |p〉, but since that isn’t the only possibility we
hold off writing an explicit form for |φ〉 for now. The full Schrödinger equation is

H0 + V |φ〉 = E|φ〉.

We define these eigenstates of H such that |ψ〉→|φ〉 as V→0, where |φ〉 and |ψ〉
have the same energy eigenvalue. (We are able to do this since the spectra of both
H and H + V are continuous.)

A possible solution is1

|ψ〉 =
1

E −H0
V |ψ〉+ |φ〉. (1)

By multiplying by (E−H0) we can show that this looks fine, other than the problem
of the operator 1/(E − H0) being singular. The singular behaviour in (1) can be
fixed by making E slightly complex and defining

|ψ(±)〉 = |φ〉+
1

E −H0 ± iε
V |ψ(±)〉 . (2)

This is the Lippmann-Schwinger equation. We will find the physical meeting of
the (±) in the |ψ(±)〉 shortly.

2 Scattering amplitudes

To calculate scattering amplitudes we are going to have to use both the position and
the momentum basis, because |φ〉 is a momentum eigenstate, and V is a function

1Remember that functions of operators are defined by f(Â) =
P

i f(ai)|ai〉〈ai|.
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of x. If |φ〉 stands for a plane wave with momentum ~k then the wavefunction can
be written

〈x|φ〉 =
eik·x

(2π)
3
2
.

We can express (2) in the position basis by bra-ing through with 〈x| and inserting
the identity operator

∫
d3x′ |x′〉〈x′|

〈x|ψ(±)〉 = 〈x|φ〉+
∫
d3x′

〈
x
∣∣∣ 1
E −H0 ± iε

∣∣∣x′
〉
〈x′|V |ψ(±)〉. (3)

In the problem set we will show that the solution to the Green’s function defined by

G±(x,x′) ≡ ~2

2m

〈
x
∣∣∣ 1
E −H0 ± iε

∣∣∣x′
〉

is given by

G±(x,x′) = − 1
4π

e±ik|x−x′|

|x− x′|
.

Using this result we can see that the amplitude of interest simplifies to

〈x|ψ(±)〉 = 〈x|φ〉 − 1
4π

2m
~2

∫
d3x′

e±ik|x−x′|

|x− x′|
V (x′)〈x′|ψ(±)〉 (4)

where we have also assumed that the potential is local in the sense that it can be
written as

〈x′|V |x′′〉 = V (x′)δ3(x′ − x′′).

The wave function (4) is a sum of two terms. The first is the incoming plane wave.
For large |x| the spatial dependence of the second term is e±ikr/r. We can now
understand the physical meaning of the |ψ(±)〉 states; they represent outgoing (+)
and incoming (−) spherical waves respectively. We are interested in the outgoing
(+) spherical waves – the ones which have been scattered from the potential.

x

x´

We want to know the amplitude of the outgoing wave at a point x. For pratical
experiments the detector must far from the scattering centre in the sense so we can
assume |x| � |x′|.

We define a unit vector in the direction of the observation point

r̂ =
x
|x|

and also a wave-vector for particles travelling in the direction x̂,

k′ = kr̂.

Far from the scattering centre we can write

|x− x′| =
√
r2 − 2rr′ cosα+ r′2

= r

√
1− 2

r′

r
cosα+

r′2

r2

≈ r − r̂ · x′
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where α is the angle between the x and the x′ directions.

It’s safe to replace the |x− x| in the denominator in the integrand of (4) with just
r, but the phase term will need to be replaced by r − r̂ · x′. So we finally simplify
the wave function to

〈x|ψ(+)〉 r large−−−−→ 〈x|k〉 − 1
4π

2m
~2

eikr

r

∫
d3x′ eik′·x′

V (x′)〈x′|ψ(+)〉

which we can write as

〈x|ψ(+)〉 = 〈x|ψ(+)〉 =
1

(2π)
3
2

[
eik·x +

eikr

r
f(k,k′)

]
.

This makes it clear that we have a sum of an incoming plane wave and an outgoing
spherical wave with amplitude f(k′,k) given by

f(k′,k) = − 1
4π

(2π)3
2m
~2
〈k|V |ψ(±)〉. (5)

〈x|φ〉 ∝ eik|x|/|x|

Wave function of an out-
going spherical wave.

We will ignore the interference between the first term which represents the original
‘plane’ wave and the second term which represents the outgoing ‘scattered’ wave.
From (4) the scattered wave has an amplitude f(k′,k) given by So we find that the
partial cross-section dσ – the number of particles scattered into a particular region
of solid angle per unit time divided by the incident flux2 – is given by

dσ =
r2|jscatt|
|jincid|

dΩ = |f(k′,k)|2 dΩ.

3 The Born approximation

If the potential is weak we can assume that the eigenstates are only slightly modified
by V, and so we can replace |ψ(±)〉 in (5) by |k〉′.

f (1)(k′,k) = − 1
4π

(2π)3
2m
~2
〈k|V |k′〉. (6)

This is known as the Born approximation. Within this approximation we have
found the nice simple result

f (1)(k′,k) ∝ 〈k|V |k′〉 .

Up to some constant factors, the scattering amplitude is found by squeezing the
perturbing potential V between incoming and the outgoing momentum eigenstates
of the free-particle Hamiltonian.

2Remember that the flux is given by j = ~
2im

[ψ∗∇ψ − ψ∇ψ∗].
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Expanding out (6) in the position representation (by insertion of a couple of com-
pleteness relations

∫
d3x′ |x′〉〈x′|) we can write

f (1)(k′,k) = − 1
4π

2m
~2

∫
d3x′ei(k−k′)·x′

V (x′).

This result is telling us that scattering amplitude is proportional to the 3d Fourier
transform of the potential.

4 Beyond Born: propagators

To see how things develop if we don’t want to rashly assume that |ψ±〉 ≈ |φ〉 it is
useful to define a transition operator T such that

V |ψ(+)〉 = T |φ〉

Multiplying the Lippmann-Schwinger equation (2) by V we get an expression for T

T |φ〉 = V |φ〉+ V
1

E −H0 + iε
T |φ〉.

Since this is to be true for any |φ〉, the corresponding operator equation must also
be true:

T = V + V
1

E −H0 + iε
T.

This operator is defined recursively. It is is exactly what we need to find the scat-
tering amplitude, since from (5), the amplitude is given by

f(k′,k) = − 1
4π

2m
~2

(2π)3〈k′|T |k〉.

We can now find an iterative solution for T :

T = V + V
1

E −H0 + iε
V + V

1
E −H0 + iε

V
1

E −H0 + iε
V + . . . (7)

We can interpret this series of terms as a sequence of the operators corresponding
to the particle interacting with the potential (operated on by V ) and propagating
along for some distance (evolves according to 1

E−H0+iε ).

Vk

k´

V

k

k´

V

1/(E-H +i )0 e

The operator

1
E −H0 + iε

(8)

is known as the propagator. Propagators are central to much of what we will
do later on, so it is a good idea to try to work out what they mean. Physically
the propagator can be thought of as a term in the expansion (7) which is giving
a contribution the amplitude for a particile moving from an interaction at point
A to another at point B. Mathematically it is a Green’s function solution to the
Lippmann-Schwinger in the position representation (3).
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We are now in a position to quantify what we meant by a ‘weak’ potential earlier
on. From the expansion (7) we can see that the first Born approximation (6) will
be useful if the matrix elements of T can be well approximated by its first term V .

When is this condition likely to hold? Remember that the Yukawa potential was
proportional to the square of a dimensionless coupling constant ∝ g2. If g2 � 1
then successive applications of V introducing higher and higher powers of g and can
usually be neglected. This will be true for electromagnetism, since the dimensionless
coupling relevant for electromagnetism is related to the fine structure constant

g2

4π
= α =

e2

4πε0~c
≈ 1

137
.

Since α ≈� 1, we can usually get away with just the first term of (7) for electric
interactions (i.e. we can use the Born approximation).

5 Strong potentials

The strong nuclear force has a coupling constant αs ∼ 1. In such cases the terms
in T with multiple powers of V are likely to be of approximately the same size as
the leading Born term, and the expansion (7) is not a sensible way to proceed.

Nevetheless it is still possible to make progress by making use of rotational invari-
ance and conservation of probability. By expressing the incoming wave as a sum
of spherical harmonics with different orbital momentum quantum numbers l, the
maximum partial cross-section for each harmonic is found to be (see e.g. Section
7.6 of Sakurai)

σ(l)
max = 4π

(
λ

2π

)2

(2l + 1).

Key concepts

• The amplitude for scattering from a potential can be solved iteratively, using
the Lippman-Schwinger equation:

|ψ(±)〉 = |φ〉+
1

E −H0 ± iε
V |ψ(±)〉

• Collisions can be characterised as a sum over one or more point interactions
(governed by V ) interspersed with free-particle propagation described by a
propagator

1
E −H0 + iε

• If the interaction is sufficiently weak (i.e. has a coupling constant � 1) we
can approximate the scattering amplitude by the first term (V ) or terms in
an operator expansion.
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• The scattering amplitude between the ‘free-particle’ eigenstates |k〉 → |k′〉 is
given in the leading Born approximation by

f (1)(k′,k) ∝ 〈k′|V |k〉

which is the Fourier transform of the potential.

• The differential cross-section is given in terms of the scattering amplitude by

dσ

dΩ
= |f(k′,k)|2
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