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Abstract

We consider a model that has the following features: (a) time is continuous;

(b) agents are observing Brownian motion with an unknown drift; (c) their prior

belief about the drift is that it is normally distributed with a given mean and

variance. (In almost all other economic models with (a) and (b), the prior belief

has a discrete, two-point distribution.) As a consequence of (b) and (c), the posterior

belief is also characterised by a normal distribution, and we derive the incremental

mean and variance from the prior and the observations. Further, we prove that the

belief converges to the true value almost surely.
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1 Introduction

There are several notable articles in the economics literature that consider the problem

of agents observing Brownian motion with known volatility but unknown drift – be it the

value of a job match to a firm and worker, the perceived quality of a new consumption

good, the level of demand for a firm’s product in a market – and the overwhelming majority

of these assume that the drift is just one of two values – High or Low; see, for example,

Felli & Harris (1996), Bergemann & Välimäki (1997), Keller & Rady (1999), Bolton &

Harris (1999), and Moscarini (2005).1 In these models, the distribution function of beliefs

characterising the uncertainty has a discrete, two-point support, and so is captured by a

single state variable, namely the level of optimism that the drift is high. How this belief

evolves is given in Liptser & Shiryayev (1977, Theorem 9.1), and convergence properties

can be found in Karlin & Taylor (1981, Chapter 15, Sections 6 & 7).

In other models, it might not be appropriate for there to be just two possible values

of the unknown drift (or indeed, any finite or countable number). Here, we make the

same assumptions as in the job-matching model in Jovanovic (1979), namely, that the

drift was drawn by nature from a continuous distribution that is normal with known

mean and variance, so the prior belief of the agents is normally distributed. It follows

from Chernoff (1968) that the agents’ posterior belief is also normally distributed, with

an updated mean and variance.2 In the main section, we derive the incremental changes

to the mean and variance, and provide two alternative representations of the incremental

mean – see equations (4) and (5); moreover, we establish the convergence properties of

the agents’ belief.3

2 The Model

At each moment in time, the agents observe dX(t) = µ dt + σ dz(t) where µ is fixed but

unknown, σ is fixed and known, and dz is the increment of a Wiener process. At time

1Felli & Harris (1996) study wage determination in the presence of firm-specific human capital, based
on a job-matching model of the labour market, and Moscarini (2005) embeds a microeconomic job-
matching model in a macroeconomic equilibrium search environment; Bergemann & Välimäki (1997)
analyse the diffusion of a new product of uncertain value in a duopolistic market; Keller & Rady (1999)
study experimentation by a monopolist facing an unknown demand curve which is subject to random
changes. Bolton & Harris (1999) extend the two-armed bandit problem to a many-agent setting where
each agent can now learn from the experimentation of others – theirs is rather an abstract theoretical
model, as is the one studied here.

2In discrete time, it is well known that the normal distribution is a conjugate family when observations
are made with normally distributed noise – see, for example, DeGroot (1970, Chapter 9).

3Jovanovic (1979) does not have the correct equation for updating the mean (equation 9 on p.979),
nor is convergence demonstrated.
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t = 0 the agents have a prior belief that µ ∼ N (m0, s0), and update this belief in a

Bayesian fashion in light of the observations. Following Chernoff (1968, Lemma 4.1), at

time t they have a posterior belief that µ ∼ N (m(t), s(t)), with m(0) = m0 and s(0) = s0:

m(t) = s(t)
[
m0s

−1
0 + σ−2

∫ t

0
dX(u)

]
, (1)

s(t) =
(
s−1
0 + σ−2t

)−1
. (2)

The variance of the posterior belief, s(t), is deterministic and decreases towards 0; the

mean of the posterior belief, m(t), however, is a random variable, and, as we show in

section 2.1, it is a martingale given the information available to the agents. In section 2.2,

we show that m(t) is itself normally distributed, with a mean that tends to the true value

of the unknown drift and a variance that tends to 0.

2.1 Evolution of Beliefs

Equation (1) implies that dm(t) = m(t)s(t)−1 ds(t) + s(t)σ−2 dX(t), and equation (2)

implies that ds(t) = −s(t)2σ−2 dt, so

dm(t) = −m(t)s(t)σ−2 dt+ s(t)σ−2 dX(t)

= s(t)σ−2
(
dX(t)−m(t) dt

)
. (3)

These are the incremental mean and variance4 to be used when applying Itô’s lemma, for

example, although one of the alternative representations of dm(t) given in equations (4)

and (5) is usually more convenient.

Replacing dX(t) in equation (3) gives us the representation

dm(t) = s(t)σ−2
(
[µ−m(t)] dt+ σ dz(t)

)
, (4)

and the term in square brackets in equation (4) shows that, as long as there is something

that can be learned (i.e. s(t) > 0), m(t) is pulled towards the true value, µ. Even though

s(t) ↓ 0, this does not imply that m(t) converges, since the variance of Brownian motion

increases linearly with t; as we shall see, we need the stronger condition that s(t)2t ↓ 0.

Note that equation (3) or (4) can be written as

dm(t) = s(t)σ−1 dz̄(t), (5)

where

dz̄(t) = σ−1
(
dX(t)−m(t) dt

)
= σ−1

(
[µ−m(t)] dt+ σ dz(t)

)
(6)

4Cf. Liptser & Shiryayev (1977, Theorem 10.1).
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defines a Wiener process (conditional on the information available to the agents) that is

related to that in the data generating process, and called the innovation process.5 The

representation in equation (5) shows that it is changes in z̄(t) that lead to revisions of

m(t), and equation (6) shows that any such change depends on the difference between

the agents’ observation and their expectation. Also, note the difference in perspective

between the two representations of dm(t): equation (5) is from that of the agents, and

should be used when modelling their decisions; equation (4) is from that of ‘nature’ who

knows the unobserved parameter µ, and should be used by the modeller when considering

convergence of beliefs, or when simulating sample paths of the evolving mean for example.

2.2 Convergence of Beliefs

To find the distribution of m(t), one could solve the stochastic differential equation (4);

however, as we already have equation (1), we can replace dX(u) there and integrate:

m(t) = s(t)
[
m0s

−1
0 + σ−2

∫ t

0

(
µ du+ σ dz(u)

)]
= s(t)

[
m0s

−1
0 + σ−2µt+ σ−1z(t)

]
(7)

showing that the random variable m(t) is such that

m(t) ∼ N

m0s
−1
0 + µσ−2t

s−1
0 + σ−2t

,
σ−2t(

s−1
0 + σ−2t

)2

 → N(µ, 0) as t→∞,

i.e. m(t) converges to a degenerate random variable, and, since s(t) converges to 0, the

state vector 〈m(t), s(t)〉 → 〈µ, 0〉 as t→∞. This shows that each sample path {m(t)}t≥0

converges to µ with probability 1.

Even the agents in the model know that they will learn the true value of µ eventually

– it’s just that they don’t know µ now. As a consequence, they use the unconditional

distribution of m(t), namely m(t) ∼ N (m0, s0 − s(t)), which can be calculated either

from equation (7) with µ ∼ N(m0, s0) at t = 0, or by solving the stochastic differential

equation (5), ignoring the fact that z̄ and X are related.6

5This terminology is used in Liptser & Shiryayev (1977), where they show that the processes z̄ and X
are informationally equivalent.

6From equation (5), m(t) is normally distributed with E[dm(t)] = 0, so E[m(t)] = m(0) = m0; and
Var[dm(t)] = s(t)2σ−2 dt, so Var[m(t)] =

∫ t

0
s(u)2σ−2 du = −

∫ t

0
ds(u) = s(0)− s(t) = s0 − s(t).
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